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COMPUTATION OF CONTINUED FRACTIONS
WITHOUT INPUT VALUES

P. SHIU

Abstract. An algorithm for the computation of the continued fraction ex-

pansions of numbers which are zeros of differentiable functions is given. The

method is direct in the sense that it requires function evaluations at appropri-

ate steps, rather than the value of the number as input in order to deliver the

expansion. Statistical data on the first 10000 partial quotients for various real

numbers are also given.

1. Introduction

There is a well-known simple algorithm for the development of a real number

a into a continued fraction. Regardless of how a has been specified, its actual

value is required as an input for the algorithm, which terminates if and only if

a is rational. In practice, when the algorithm is applied to an irrational number

a, an input rational approximation for a has first to be computed. This input

value is often given as a truncated digital approximation, on which exact rational

arithmetic is then performed to deliver the continued fraction expansion. When

there are many digits in the input value, the arithmetic involved in obtaining the
expansion is rather tedious, especially in the initial stages of the algorithm. This

is because exact integer-arithmetic has to be carried out on very large numbers

at each stage in order to preserve the complete quotient, which is required for

the calculation of the remaining partial quotients. In 1938 D. H. Lehmer [9]

gave a modification of the algorithm by dividing the computations into a suitable

number of sections, inside which the arithmetic involved is more manageable, so

that the modified algorithm can be executed much more speedily. Nevertheless,

the computation of a large number of partial quotients for a given real number

a is still a difficult task, and for this and other reasons, A. J. van der Poorten and

J. Shallit [14] have remarked that "It is notorious that it is generally damnably

difficult to explicitly compute the continued fraction of a quantity presented in

some other form."

It was proved by Lagrange that a necessary and sufficient condition for the

sequence of partial quotients for a to be eventually periodic is that a is a

quadratic irrational. Moreover, there is an efficient algorithm which, from the

input of the three integer coefficients of the quadratic function defining a,

determines the period and delivers all the partial quotients in the period for
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a. Furthermore, once all the partial quotients have been found, it is easy to

construct a subsequence of convergents which exhibits quadratic convergence

to a ; see, for example, [16]. This method of obtaining the continued fraction

expansion for a without an input value is much superior to the method based on

the input value, especially since there is no a priori knowledge on how accurate

the input approximation has to be in order to deliver all the partial quotients

in a period. Indeed, the length of the period cannot, or at least should not, be

determined in this indirect way.
Very little is known about the continued fraction expansion for a when it is

algebraic with degree exceeding 2, or when it is transcendental. In particular,

it is not known if the sequence of partial quotients associated with a = \/2,

or a = it, is bounded or not. Suppose that a has been defined as the zero of

a differentiable function /(/), for which the values at rational points t can be

computed with arbitrary accuracy. As we shall see, it is possible to compute the

continued fraction expansion for a directly from f(f), instead of having first

to compute an approximation to a from f(t) as an input. It will be conve-

nient to call the original algorithm the basic method, Lehmer's modification the

indirect method, and our new algorithm the direct method. The argument used

in obtaining the direct method can be interpreted as an extension of that used

by Lehmer, with the important difference that we have eliminated the need for

an input value for a. We shall give a rational-arithmetic algorithm which de-

livers the partial quotients for the continued fraction expansion for an algebraic
number a of degree exceeding 2. The method also works for a transcendental

number that has been defined as the zero of a function for which the logarithmic

derivative at a rational point can be computed with arbitrary precision.
A comparison in computing times being used shows that the direct method

is superior in the following sense. Bearing in mind that function evaluations

are required for the direct algorithm whereas external input values are readily

supplied for the indirect algorithm, the computing times for a modest number

of partial quotients using the two methods are similar, whereas it becomes pro-

hibitively long for the basic algorithm. More specifically, when the algorithms

have been implemented on a small machine, the computing time for 10000 par-

tial quotients for an algebraic number is only a few minutes. The time taken

for a transcendental number which is the zero of a function whose evaluation

is not difficult, such as sin t, which has a zero at n , is also only a few minutes.

We shall say more on the advantage of such modifications on the basic method

in §4, where we also mention the metric theory of continued fractions due to

A. Khintchine, P. Levy and others (see [5, 6, 11]). Results of computations for

the partial quotients for various real numbers are given in the last section.

2. Remarks on Lehmer's method

The basic method for the continued fraction expansion of a real number is
essentially the same as the Euclidean algorithm for the computation of the great-

est common divisor of two integers. Lehmer [9] explained his indirect method

as a modification of the Euclidean algorithm applied to two real numbers. In

fact, his argument can be simplified and the method further enhanced by mak-

ing use of an exact formula for the complete quotient. Let a be a real number,
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and define the sequence of partial quotients (a„) for a by the iterative scheme

0.0 = 0.,     a0 = [a],     an+x =-,     an+x=[an+x],        « = 0,1,2,...,
a„ - an

which terminates when an = an for some n , and this happens when and only

when a is rational. This is the basic method for the delivery of the partial

quotients, and, as an algorithm, the input value for a has to be a rational

number, so that the algorithm will terminate. When this rational number has

a large numerator and denominator, the arithmetic involved in the algorithm

for a„ will be lengthy, and Lehmer's idea is that the initial section of values

for a„ can still be obtained if we use as input an approximation with a smaller

denominator, which will then speed up the calculations. Suppose now that an

has been computed for n < N from an initial approximation to a, and we

need further values for a„ . This will, of course, require a more accurate input

value for a, and we need to apply it in such a way that the process can be

continued by delivering the next section of partial quotients, namely those an

for n > N. This can be achieved by calculating also the convergents to q , so

that an updated version of the complete quotient can be calculated for the new

input value for a .

We use Perron's notation for continued fractions, and write

a = [a0, ax,..., a„ ,...] = [ao, ax,..., an , an+x],

where

otn+i = [an+i. an+2, ...]

is the (n + l)st complete quotient for a. When the values an have been

computed for n < N, we can use this formula for the complete quotient to

find more partial quotients, provided we can have a good estimate for a^+x .

This good estimate can be obtained from the revised input approximation to a

together with its last convergent x^/yN, which will also need to be computed.

The convergents x„/y„ are given by the iterative formula

JCn = ao,    xx = aoax + 1,    xn+x = an+xxn + xn_. ,

y0=l,     yi=ax, yn+i = aH+iy„ + y»-i,

and the formula relating the complete quotient and the convergent is

xn

)'n

a  = oc„+x ,
' yn    "    yn(a'yn +yn-i) '

from which a' can now be calculated from the new input value for a. Lehmer

did not mention this exact formula for a', which would have given a simpler

and better modification. For example, the analysis on exactly how many new

partial quotients can be delivered from the updated value of the complete quo-

tient can be much simplified, and we give this in the next section. The process

can now be repeated in a systematic way, so that the calculations can be divided

into sections, the number of which depends on the efficiency of the machine used

in the execution of the algorithm. It has to be said that this modification of the

basic algorithm will require the computation of the convergents as a by-product

of the evaluation of the partial quotient, but there is still an overall gain in

speed for the calculations, especially when many partial quotients are required,
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because most of the operations with large numbers have been eliminated. In §4
we mention another useful and important point in the modification of the basic

method.

3. A DIRECT METHOD

Let a be an algebraic number with degree k > 1, so that there is an ir-

reducible polynomial f(t) of degree k, with integer coefficients, such that

f(a) = 0 ^ f'(o). If t ¿ a, then, by the mean value theorem, f(t) =

f(t) - f(a) = (t - a)f'(ß), where ß is some number lying between a and

t. It follows that

(2) I«-4- mi
I/WI '

which is related to Newton's method for the computation of a. The equation

is also the basis of the argument used by Liouville to prove that a cannot be

well approximated to an order which is beyond its degree k . For, if t = x/y,

where x, y are integers, then ykf(t) = yk(x/y) is a nonzero integer, and so

the right-hand side of (2) is at least C/yk , where the constant C can be chosen

to depend only on a, because f'(ß) is near /'(a) ^ 0. Liouville's result has

subsequently been extended by A. Thue and others, culminating in the famous

Thue-Siegel-Roth theorem (see, for example, [2]).

For our purpose, we simply apply (2) with t = x/y being a convergent for a,

so that, according to (1), the next complete quotient can be calculated from the

function f(t). More specifically, we now set / = x„/y„ , the «th convergent to

a, so that by ( 1 ) we have

,,* , \f'iß)\        Vn-X
(3) a -an+x - yjm\ it-

Here, ß is some number between a and tn = x„/yn, and the formula is to

be used for the computation of a', from which new partial quotients an+x,

an+2, ... can be obtained. Thus, the need for new input values from an external

source to calculate the complete quotient in the indirect algorithm has been

eliminated by function evaluation in the direct algorithm.

We remark that tn-X and t„ lie on the opposite sides of a, so that we have

bounds for a' by replacing ß with tn-X and?« in (3), and the computation

of such bounds will involve only rational arithmetic. When the two bounds are

developed into continued fractions, all the initial partial quotients that are in

agreement must also be the leading partial quotients an+x, an+2, ... for a'.

Thus, many new partial quotients can be obtained in one single iterative step

within which function evaluations are required. The difference between the two

bounds is essentially

l/'W-AOl     i/»l
y2n\f(tn)\     ~ y2\f'(a)\ '

so that a' can be computed to within B/y2, where B depends only on a and

not on n. We may therefore compute the partial quotients an+x, an+2, ... ,

an+m until the last convergent x'/y' for a' still satisfies \x'/y' - a'\ < B/y2,.

This shows that y' is of the order y„ , so that yn+m is of the order y2. In

other words, the subsequence of convergents x/y, obtained from iterations



COMPUTATION OF CONTINUED FRACTIONS WITHOUT INPUT VALUES 1311

requiring function evaluation, exhibits quadratic convergence to a. In fact,

the method can be considered as a rational-arithmetic algorithm for the imple-

mentation of Newton's method for the computation of a. In practice, we set

ß = tn , and develop a' in (3) into a continued fraction to obtain the partial

quotients an+x, an+2, ... , a„t , which is then used to update the convergents

to x = xn¡, y = yn¡ , stopping for the next iteration which requires function

evaluation when we reach yni > by2, for some small b = b(a) > 0.

The analysis shows that the scheme works just as well for a transcendental

number a which is given as the simple zero of a twice differentiable function

f(t), provided that we can calculate f'(t) and f(t) to an arbitrary accuracy at

rational points t. However, there are new considerations in the implementation

of the algorithm, and we discuss these in §5. Meanwhile, we mention that it

may happen that f'(a) is rational, in which case there is only a problem in

computing f(t). For example, in our computation of the expansion for a = n ,

we use f(t) = sin t, which has the simple zero at a, and we have f'(a) = -1 .

4.  KHINTCHINE'S CONSTANT

Suppose that we wish to compute the first N partial quotients for a certain

real number a. As we remarked earlier, there is no a priori condition that

will ensure that any precomputed value for a will be sufficiently accurate to

deliver ax, ... , aN , using the basic method. This is because the sequence (a„)

may be unbounded, so that yN > ax---aN has no fixed upper bound, and

hence 1/yj/ has no fixed positive lower bound for the determination of an

appropriate accuracy for the input value for a. Nevertheless, A. Khintchine

[5] has proved that, for almost all a in the sense of Lebesgue measure, the

sequence of geometric means associated with the sequence of partial quotients

for a has a limiting value given by

oo     r . -, log kj log 2

K=n(i+î(*T2î)    •

Khintchine gave 2.6 for the value of this slowly convergent product, and D. H.

Lehmer [10] supplied the analysis in the Euler-Maclaurin summation formula

when applied to the logarithm of the product. However, Lehmer seems to have

made an error in the calculation of the exponential function in the recovery of

the product by giving the value 2.685550 for K , whereas we find that

(4) K = 2.68545 2001065306445309714835481... .

P. Levy [11] has proved that, for almost all a, the sequence (jv^") has the

limit

(5) L = exp(7t2/121og2) = 3.275822918721811... .

Consequently, for almost all a, the number of partial quotients that can be

obtained by the basic method with an input approximation having accuracy

of m decimal digits will usually deliver n partial quotients, where n/m is

about logL/21og 10 = 7r2/(241og21og 10) = 0.97- • • . In other words, we would
normally require about an extra 3% in the decimal digits in the input in order

to obtain the desired number of partial quotients. Nevertheless, even if a is
not an exceptional number, we cannot claim for sure that a certain preassigned

number of digits will be sufficient to deliver N partial quotients.
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There is another important advantage of the direct and the indirect methods

over the basic method. Suppose, for example, that we wish to compute the first

10000 partial quotients for a real number a using the basic method. We may

wisely use 10400 decimal digits for the input value, but it is possible that even
this delivers only 9990 partial quotients, and we will be forced to use a more

accurate input value for a in order to obtain the next 10 partial quotients.

However, with the new input value for the basic method, we will need to re-

peat all the previous calculations before we are in a position to compute the 10

new partial quotients. The only other way is to use the previously calculated

partial quotients to compute also the convergents, and use the last convergent

together with the new input value to update the complete quotient, but this is

precisely the indirect method proposed by Lehmer. If we had used the indirect

method in the first place, we could have divided the process into'21 sections

by updating the input value with 500 new decimal digits for a in each section,

or perhaps even 105 sections with only 100 new decimal digits in each section.

The indirect method therefore allows us to have better control on the precise

number of partial quotients to be calculated, as well as being a faster algorithm.
Both the direct and the indirect methods can be halted and be continued again

without loss. For example, we may wish to stop the calculation when enough

partial quotients have been delivered, or when there is enough accuracy from

the output convergents, or even when a preset computing time has been reached.

Provided that we have retained the last computed partial quotient and the pre-

vious convergent, the process can always be continued again. It was our search

for an algorithm which can deliver a precise number of partial quotients that

led us to the direct algorithm.

5. The algorithm

The following is an algorithm for the direct method in the computation of
the continued fraction expansion for an algebraic a which has been specified

by the irreducible polynomial f(t).

Step 1. Enter the defining polynomial f(t) for the algebraic number a.

Step 2. Use any method to find the first two convergents tn= xn/y„, n = 0, 1,

for a.

Step 3. Enter a suitable small positive constant b = b(a).

Step 4. Enter a termination condition Satisfied.

Step 5. While NOT Satisfied, Do
Check that x„yn+x - xn+xy„ = (-1)"+1.
Compute the next (approximate) complete quotient, that is

a' = \f'(tn)\/y2„\f(tn)\-yn-l/yn.

SetB = max(by2,,yn + l).
While yn < B, and NOT Satisfied, Do

Replace n <— n + 1.
Set an = [a'], the next partial quotient.

Store (or collect relevant information on) a„.

Use a„ and the last two convergents to compute the new

convergent tn = x„/y„ .
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Update the previous convergent i„_< = xn-i/yn-i-

Replace a' *- I/(a1 - a„), the next complete quotient.
Step 6. Process and print out the collected information on the expansion

for a.

Step 7. STOP

We offer the following comments on the algorithm:

• We need to have at least two convergents as initial values for the iter-

ative scheme, and these are entered in Step 2. If a is initially badly

approximable in the sense that its leading partial quotients all have val-

ues 1, we may need to have more initial convergents, which will then

ensure that the denominator yn of the convergent is not too small at

the entry point for the iterations.

• In Step 3, there is some flexibility in the choice of b = b(a), which can

be estimated from f'(a) and f"(a), but it works quite well for many

a by setting b = 1/100. The value of b is used to define the control

value B for the iterative process in Step 5.

• As it has been explained, the termination condition Satisfied may be

given in terms of the required number of partial quotients to be com-

puted, or when the convergent satisfies some error bound condition, or

when the number of function evaluations in the outer loop in Step 5

has been reached.

• The partial quotients an are computed from the basic algorithm in the

inner loop in Step 5, where they may be stored, or be discarded when

relevant statistical information on them has been collected.

• As Lehmer remarked, the equation xnyn+x -xn+xyn = (-l)n+l provides

us with "an almost infallible check", and this is being incorporated just

before function evaluations.

• We set B >y„ + 1 to ensure that at least one new partial quotient and

corresponding convergent are computed in the inner loop. As to the

choice of the value b, it is possible to set B = y},-9 for robustness, and
perhaps even some gain in speed.

• The algorithm can easily be modified so that a' is evaluated to a fixed

accuracy; see the following paragraph.

The algorithm for a transcendental number a is similar, but there are some
important differences. First, f(t) and f'(t) are no longer rational, so that

the approximate complete quotient a' cannot be computed from the algorithm

using rational arithmetic. We need to specify the error within which the com-

putation of the complete quotient a' has to be maintained in each iteration.

The analysis in §3 allows us to specify this error to be of the order y~4 , which

will then preserve quadratic convergence. However, the notion of quadratic

convergence here is being considered in terms of iterations that involves func-

tion evaluation, which will be relevant only when this evaluation is extremely

difficult. In practice, it is more time-consuming in having to apply the ba-

sic continued fractions algorithm when the complete quotient is too accurately

specified, and it may be better to specify the less severe bound y„ , where
0 < ô < 1, and this in turn will require us to set the bound B for the inner loop

to be y\+s . Although quadratic convergence has been sacrificed by having more

function evaluations, nevertheless the arithmetic involved in the computation
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of the initial partial quotients for a' will be less heavily involved, and there is

usually an overall gain in speed, especially when a large number of terms in the

expansion is required. Indeed, we may wish to apply the direct algorithm only

as a device to remove the need for an input value, but otherwise still adopt the

indirect algorithm by delivering the complete quotient each time to a certain

fixed accuracy.

Finally, we mention that A. J. van der Poorten [13] has proposed a 2 x 2 ma-

trix scheme in the study of continued fractions, which gives some new insight,

simplification and clarification in the presentation of the theory. Some comput-

ing time can also be saved by incorporating the scheme in the implementation

of the algorithms.

6. Computation results

In comparison with the calculation of decimal expansions of numbers, there

seem to be very few results on the calculation of continued fraction expansions.

For the number n , there have been many calculations of its decimal expansion;

see, for example, J. M. Borwein and P. B. Borwein [1]. On the other hand, there

appear to be only seven efforts in obtaining the continued fraction expansion for

n = [ao, ax, ...], each time with an increasing number N of partial quotients

a„ . These are by Archimedes (240 BC) N = 1, Tsu Ching-chih (480) N = 3 , J.
Wallis [17] (1685) N = 33, D. H. Lehmer [9, 10] (1938, 1939) N = 90, 100,
R. S. Lehman [8] (1959) N = 1986, and K. Y. Choong, D. E. Daykin and
C. R. Rathbone [3] (1971) N = 21230. Actually, Wallis took the calculation to
N = 34, making the mistake of giving the value 1 to «34 , the correct value for

which, namely the rather large number 99, was found by Lehmer some two-and-

a-half centuries later. We should also mention that J. H. Lambert [7] proved

in 1761 that n is irrational, so that the sequence of partial quotients does not
terminate, and it is of interest to recall that his proof of the irrationality of n

is based on Euler's discovery of the continued fraction expansion for

(6) e = [2, 1,2, 1, 1,4, 1, 1,6, 1, 1,8, 1,...].

Lambert also checked in 1770 the calculation by Wallis up to N = 26. In
1882 Lindemann proved that n is transcendental, but, as far as the behavior

of the sequence (a„) is concerned, we can only deduce from this that it is not

periodic. The calculation by Lehman [8] is given in a report in the US Ballistic

Research Laboratory, and, being unaware of this, G. Lochs [12] (1963) also

did the calculations up to N = 968. The calculation by Choong, Daykin and

Rathbone [3] is based on the indirect method with a 25000-decimal input value.

We now give the result of our calculations of the partial quotients a„ =

a(a, n) of the continued fraction expansions for various numbers a . We ex-

clude ao = [ot] in the data, so that the partial quotients a„ are labeled for

1 < n < N, and we take N = 10000. There is little point in giving the full list-
ing of the partial quotients for any particular a , since the sequence concerned

can be obtained from the method discussed in the paper. We offer instead some

statistical information in the following two tables. In Table 1 we list the number

of partial quotients taking the values a=l,2,...,10, and also those satisfy-

ing 10 < an < 100 and a„ > 100 in the last two columns. A. Khintchine [6]
and P. Levy [11] have proved that, for almost all a, the set of n for which
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Table 1. N= 10000

a = l\ a = 2\ a = 3\ a = 4\ a = 5\a = 6\a = 7\a = 8\a = 9\a = 10 10 < a < 100 a > 100

n 4173 1675 946 636 421 295 240 163 122 118 1060 151

n+y/î 4129 1672 938 601 427 288 238 183 144 117 1115 148
4206 1672 882 597 443 282 224 186 143 123 1113 129

2x 4133 1712 927 636 402 293 235 172 150 111 1103 126
4134 1706 948 581 401 302 232 185 138 117 1111 145

y/it 4177 1718 949 578 384 319 196 166 150 113 1103 147
log 71 4150 1722 969 593 438 275 218 172 135 113 1093 122

4156 1698 887 583 404 309 231 201 154 111 1120 146
log2 4149 1666 905 600 390 334 226 187 142 137 1113 151
,»/2 4192 1639 933 616 390 278 213 190 135 135 1130 149

4165 1735 924 563 416 296 201 190 155 111 1084 160
4234 1648 981 572 407 305 211 172 120 114 1104 132
4116 1724 943 579 408 318 249 176 130 111 1122 124

Expectation 4150 1699 931 589 406 297 227 179 145 120 1112 142

an = b has asymptotic density

d(b) = log
(b+l)2

0=1,2,
log2'~°b(b+l)

This then gives an "expectation" of the frequencies of the values taken by the

partial quotients for a number a which is not in the exceptional set in their

theorem, and we list such expectations corresponding to N = 10000 in the last
row.

If a is not an exceptional number for the results by Khintchine and Levy,

then, as n —> oo, the two numbers K(a, n) = (axa2---a„)x/n and L(a, n) =

(yxy2---y„)x/n should have the limits K and L given by (4) and (5). In [10]

Lehmer found that K(n, 100) = 2.6831468... and L(n, 100) = 3.269202
and from these numerical results he strongly suggested that n is not an excep-

tional number. Although we agree with his assessment, nevertheless we wish to

point out that even if there is a convergence, the rate has to be very slow. It is

easy to see that, with n = 10000, the change in value of any single partial quo-

tient will have an effect on the third decimal digit for the value of K(a, n). In

fact we found that K(n, 10000) differs from K by more than K(n, 100) does.
The same remark can also be made concerning the convergence of L(a, n), and

we only record [log10}>^] in Table 2, where we also include the largest partial

Table 2. N= 10000

Missing values for a„ < 100max{a„: n < N]

74,86,91,96,97,99,100

K(a, N) [2'og|0>,A']

n a.990 = 12737 2.65553 10224

n + yß ■31638 = 152613 70,96 2.71786 10394
q43i = 20776 90,91,96 2.66371 10244

271 a423 = 10387 66,90 2.66321 10228

ai234 = 12013 91,92 2.69275 10322

yñt q84io = 121115 66,76,78,81,88,93,95,97,98 2.64799 10199
logfl a3803 = 12760 76,79,80,82,83,87,93,98 2.63385 10152

a8804= 150283 52,66,73,80,96 2.69665 10331
log 2 ,39168 = 963664 55,73,76,96,97 2.72269 10414
2»/2 "6342 = 44122 79,80,81,82,91,94,97,99 2.70430 10368

■35409 = 28656 78,79,91 2.67668 10283
e + n amo = 2978 79,81,84,99 2.62791 10148

.39014 = 16323 56,76,80,87,89,95,97,100 2.67602 10271
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quotient found, and also the values up to 100 which are not taken by an for

n< 10000.
Perhaps we should not pay too much attention to the values of the largest par-

tial quotients being computed, since it is easy to construct a number, transcen-

dental, algebraic or rational, with any specified partial quotient at any position.
Nevertheless, the following is an interesting method of finding a number with a

large partial quotient. We first give an explanation for the relationship between

the two large partial quotients a(it, 431) = 20776 and a(2n, 425) = 10387
in Table 2. From (1) we see that if x/y is a convergent to a, then the error

|a - x/y\ is about 1 /ay2, where a is the next partial quotient. It follows that

if p\y and q\x, then

pa

a

x/q

y/p
a-

1

qay2     (pqa)(y/p)2

which indicates that the fraction x'/y', where x' = x/q, y' = y/p, should be
a convergent to pa/q, and that the corresponding next partial quotient should

have a value near pqa. In particular, if a = a(a, n0) is already a particu-

larly large partial quotient for a, and x and y have known divisors q and

p, then we may expect pa/q to have an even larger partial quotient in the

neighborhood of «o • However, for the number it, the denominator y of the

430th convergent x/y to n is an odd number, so that the corresponding large
value of the partial quotient for 2n is approximately halved instead. From

Table 2 we also find that a(a, 1638) = 152613 when a = yf2 + y[3. More-
over, on examining the 1637th convergent x/y, we find that y is divisible by
8, and therefore 8a should have a partial quotient near 8 x 152613, and in

fact a(8a, 1670) = 1220911. Indeed, we find that 5 divides x, and 24 di-
vides y, so that 24a/5 will have an even larger partial quotient, and in fact
a(24a/5, 1662) = 18313683. Our calculations here confirm what is known
theoretically on the effect of multiplication of a continued fraction by a rational

number; see, for example, [4, 15 and 13].

The results for the two algebraic numbers yf2,y¡2 + y¡3 were obtained by

the direct method, implementing the algorithm in §5. The results for n and

2tt were obtained by employing a modification of the algorithm, using the same

transcendental function sin t, but with different initial values. Similarly, the

results for n2, y/n, logn, en and log 2 were obtained from sin(yfi), sin(i2),

sin(e'), sin(logi) and <?' - 2, respectively. The remaining four numbers were

dealt with by the indirect method.
In [10] Lehmer stated that K(e, n) ~ Cnx/3 as n-»oo, where C satisfies

3eC3 = 2, and this can be proved using the explicit expansion (6). Therefore,

the number e lies in the exceptional set in the theorems of Khintchine and

Levy. It is also clear that quadratic irrationals are exceptional numbers, but
we have not found from our computations any algebraic number with degree

exceeding 2 that shows any sign of being an exceptional number, let alone one

with a sequence of bounded partial quotients. D. K. L. Shiu has proposed the
amusing but intractable problem of determining whether Khintchine's constant

K itself is not an exceptional number; in other words, whether K(K, n) —> K

as n —» oo . All we wish to say is that the numerical value for K given in (4)
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allows us to write

K = [2, 1,2, 5, 1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,3,

1, 1,1,90,2, 1, 12, 1, 1,1,1,5,2,6, 1,6,...],

so that K(K, 35) = 32/7804/35 = 2.25848....
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