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A MIXED FINITE ELEMENT METHOD
FOR A STRONGLY NONLINEAR

SECOND-ORDER ELLIPTIC PROBLEM

F. A. MILNER AND E.-J. PARK

Abstract. The approximation of the solution of the first boundary value prob-

lem for a strongly nonlinear second-order elliptic problem in divergence form

by the mixed finite element method is considered. Existence and uniqueness

of the approximation are proved and optimal error estimates in L2 are estab-

lished for both the scalar and vector functions approximated by the method.

Error estimates are also derived in U , 2 < q < +00 .

1. Introduction

A large number of physical phenomena are modeled by partial differential

equations or systems of parabolic type—in evolution, or elliptic—at steady

state. Most of the models have quite strong nonlinearities which, typically,

are either weakened or removed (by linearization) before the problem is treated

analytically or numerically.

It is frequently the case that it is at least as important (if not more so) to
obtain a good approximation of some function of the gradient of the solution

of the differential equation (which may represent, for example, a velocity field

or electric field) as an approximation of the solution itself (which may repre-

sent, respectively, a pressure or an electric potential). The mixed finite element

method computes both approximations simultaneously and with the same order

of accuracy, be it directly or through postprocessing and, for some problems, it

seems to yield better results than standard finite element methods. For second-

order elliptic problems, the mixed method was described and analyzed by many

authors [3, 5, 7, 11] in the case of linear equations in divergence form, as well

as in [4, 8, 9] for quasilinear problems in divergence form.

In this paper we shall start to study the applicability of the mixed method

to more strongly nonlinear problems. Specifically, we consider the following

boundary value problem:

f -div(fl(Vp)) = /   inß,

[p = -g ondß,
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974 F. A. MILNER AND E.-J. PARK

where ßcl2 is a bounded, convex domain with C2-boundary 9ß ; a tilde un-

der a symbol is used to indicate a vector, aifixR2-»!2 is twice continuously

difierentiable with bounded derivatives through second order, / e Hx/2+E°(Q)

and g e H2+E°(3Çl), e0 > 0. Note that this implies p e #5/2+e°(ß) [6].

We shall not indicate explicitly the dependence of any function on the spatial

variables  x . Furthermore, we shall assume that  a  has a bounded positive

definite Jacobian with respect to the second argument, that is, with   a ( z ) =

(ax(z),a2(z)), z eR2,

0<A(z)<|^4<A(z).
3(zx,z2)

These conditions are satisfied, for example, for  q(V p) = k(\V p\)V p, with

K a nonnegative function. Such is the problem, for example, in the model for

minimal surfaces, where / = 0 and

¥P

g(Y/>) =   h   IV7 „•
Ji + \¥p\2

Our assumption on the Jacobian gr1'^2? implies (using the implicit function

theorem) that  V p can be locally represented as a function of the "flux"

(1-2) u=-q(Vp),

say

(1.3) Vp = -b(u).

We shall assume that this representation is global, and that  u e Hi/2+e°(íl)2 n

C°'X(Q)2-

Remark 1.1. Note that the domain of b  is not known and, though it may be

small in specific cases, it always contains a ball centered at  u  in L°°(ß). Let

us denote such a ball by 3§o ■
Combining (1.1)—(1.3), we arrive at the following coupled system of first-

order equations for u and p :

' b(u) + Yp = 0   inß,

<   div u = f in ß,

, p = -g on öß.

We now let V = H (div ; ß) = { v e L2(ß)2 : div v e L2(ß)} , W = L2(Q),

and arrive at the mixed weak form of (1.1) we shall use: (u , p) e V xW is

the solution of the system

{ {b(u), v)-(div v,p) = (g, v-n),    veV,

(divu, w) = (f, w), weW,
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where  n  is the unit exterior normal vector on <9ß, (•,•) and (•',•) denote,

respectively, the L2(ß)-inner product and the L2(öß)-inner product. We con-

sider a family of subspaces  V ,x Wh of V x W (they may be Raviart-Thomas

[11] or Brezzi-Douglas-Marini [1] families, for instance) associated with a quasi-

uniform family of polygonal decompositions of ß by triangles or quadrilaterals,

with boundary elements allowed to have one curved side. The mixed finite el-

ement method we shall analyze is the discrete form of (1.4) and is given by:

Find (uh,pf,)e V hxWh such that

{(b(uh), y) - (divy , ph) = (g, y • n),       y e V

(divu„,w) = (f,w), weWh.

This is a nonlinear algebraic system in the components of (u h, ph), which

we must prove is uniquely solvable. The plan of the paper is as follows: in

the next section we prove the unique solvability of (1.5); in §3 we derive L2-

error estimates for  u h and ph , and in §4 we derive L°°-error estimates for

u h . Finally, in §5 we discuss how these results apply to the model for minimal

surfaces.

2. Existence and uniqueness

We shall follow some of the ideas of [9] to use a fixed point argument for

the proof of existence. First, we derive from (1.4) and (1.5) the following error

equations:

[ (b(u)-b(uh),y)-(divy,p-ph) = 0,    yeVh,

I (div(u - uh), w) = 0, weWf,.

We shall need the following relations, which are integral forms of Taylor's

formula: for p e ¿@0 »

(2.2)

where

b(p) - b(u) = -B(u)(u -p) + (u- p)T[Hx (p), H2(p)](u - p)

= -B(p)(u-p),

B(u) = —^ = nl  ' '—^- is the Jacobian of b, a positive definite matrix,
du     3(u\ , u2)

32b
(2.3) H i = —f    ( j = 1, 2) is the Hessian of b,,

3ul

CT[HX,H2]C = (CTHXC,CTH2C)&R2,
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for 7 = 1,2,

(2.4)
l¿(l-t)d^(u + t[p-u])dt ^(l-t)^(u + t[p-u))dt

Ítl-Oá^'^?])''1 to^-t)%r(u + t[p-u])dt

(2.5)       B(p)
Jo &-ÍÍ + te + ri« - -if« <" io' &£ + & - M dt

li ifcM + te - ífl) ̂ /o1 f|(/f + % - if» dt

Note that 5( p ) and H¡(p), j = 1,2, are well defined since they involve

evaluations of first and second derivatives of  b   along the segment joining

the center   u   of ^b with the point   p   interior to the ball.   Furthermore,

they are bounded (matrix) functions since q has two continuous and bounded

derivatives, and its (continuous) Jacobian is bounded away from 0. Combining

(2.1)—(2.5), we arrive at a more useful set of error equations:

(B(u)(u-uh), y) - (divy, p-ph)

= ((" - uH)T[Hi(uh), H2(uh)](u -uh),y),    v€Vh,

(div(u - uh), w) = 0, w£Wh.

Let us choose now   V h x Wh as the Raviart-Thomas space of index k > 0

and introduce the L2-projection

Ph- W^Wh,

and the Raviart-Thomas projection [11]

7th: Hl(Sl)2-* Yh,

which have the following useful commuting property:

(2.7) div o 7th = Ph o div: Hx (Q,)2 ̂ Wh.

These projections have the following approximation properties [4, 9, 11]:

(2.8) \\w-Pf,w\\o,r<Cha\\w\\a>r,        0<a<k+l,        l<r<+oo,

(2.9) \\y-nhy\\o,r<Cha\\y\\air,        -<a<k+l,        l<r<+oo,

where || • ||Q,r denotes the standard norm in the Sobolev space Wa'r(Çl)  (r = 2

being omitted in this notation).
Using (2.7), we rewrite (2.6) as

(2.10)
' (B(u)[nhu-uh],y)-(divy,Php-pn)

<   =((^-Uh)T[Hi(uh),H2(uh)](u-uh)+B(u)+B(u)[7ihu-u],y),    «€^

(div[7tf,u-uh],w) = 0, weWf,.
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Consider now the following (selfadjoint) operator M = M*: H2(Q) -* L2(ß),

(2.11) Mw = -div(B-x(u)Vw),

whose restriction to H2(Çl) n H0l(il) has a bounded inverse. That is, for any

W G L2(ß), there is a unique ç\> € H2(Yí) n H¿(Q) such that Mtj) = w and

\\<j>h < oil Vilo • This is guaranteed by the assumption that B~x( u ) = A(u) =

g(z¡'z2|( u ) is positive definite, since  u  is uniformly Lipschitz [6].

We shall show that (2.1) is uniquely solvable by using a fixed point argument.

Let h be small enough that nn u e Vh n 3§o, and choose a ball 3SX centered

at it h u  such that 3SX c 3§o with respect to the L°°-norm. Let now

<D: (.#, n Vh) xWh-* VhxWh

be given by
®((p,p)) = (y,q),

where ( y , q) is the solution of the system

(2.12)
' (B(u)[nhu-y],y)-(divy,Php-q)

= (B(u)[nhu-u] + (u-p)T[Hx(p),H2(p)](u-p),y),    V€Vh,

(div[nhu-y], w) = 0, wslVf,.

Note that, since the left-hand side of (2.12) corresponds to the mixed finite

element method for the operator M given by (2.11) with B( u) smooth and

Hx(-) and H2(-) uniformly bounded on âè\ , the operator «3> is well defined

[3]. Clearly, in order to establish the solvability of (1.5), it suffices to prove the

following theorem (compare (2.10) with (2.12)):

Theorem 2.1. For h sufficiently small, <I> has a fixed point.

We shall need the following technical result, the proof of which follows in an

analogous way to the one used in [9].

Lemma 2.2. Let  eg e V ,   / e L2(ß)2, and m £ L2(ß). // t e Wh satisfies

the relations
{(B(u)cg, v) - (divu, t) = ((, tj),    yeV

(divœ, w) = (m,w), weWh,

then there exists a constant  C > 0, independent of h, but dependent on

|| u ||co,i(ñ)2. sucn that

||t||o < C[A|| cq ||o + h2\\ div eg ||0 + || / ||o + \\m\\o].

Let now "V  = V h endowed with the strong norm

IMIsr» = 11^ llo,4+£ + l|div u||0.

Theorem 2.1 will be true if we prove the following result.
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Theorem 2.3. For ô > 0 sufficiently small (dependent on h via the inverse

inequality (2.18), and smaller than the radius of ¿ßx so that <P is well defined

on 3§\), «3> maps the ball of radius S of 2f   x Wh , centered at (nn u , Pf,p),

into itself.

Proof. Let \\nk u — p ||^   < ô and \\Pnp - p\\wh < à • We use in the sequel

6 = 4 + s (0 < £ « 1) and s = I + e + ^ . Then, s - § = ¿ + s0, where

0 < eo = e + -$¡1 ^ 1 • Therefore, the Sobolev embedding theorem implies that

/73/2+£°(ß) c W*>e(Çl)   and    ||x||il0 < ß£||x||3/2+£„ •

Note that the second equation in (2.12) implies that

(2.14) div(nhu - y) = 0.

We now apply Lemma 2.2 to (2.12), using eg = n„u - y , x = Pf,p-q , m = 0,

and / =B(u)[nhu - u] + (u - p)T[Hx(p), H2(p)](u - p) in (2.13). It

follows from (2.8) and (2.9) that

\\PhP - 4l|o < C[h\\nhu - y||o + hs\\u\\s + \\u - p\\l4]

(2.15) ^ C[h\\nhu - y\\o + hs\\u\\s + \\u - p\\le]

< C[h\\7thu - y\\o + (hs + S2)(\ + \\u\\s,e)2],

where C depends on  || m ||c0..(-»2 > as we have used Lemma 2.2.   Note that,

since s > 1 is being required in the approximation by projection, we may not

use the Raviart-Thomas space of index k = 0, which is why we have assumed

k > 0. Next, it is easy to show (see [9]) that

\\nhu-y\\Q<C\\l\\Q

(2.16)
< C(/z*+ f52)(l + ||zz||3/2+£o)2,

where C depends on || u ||co.i(ñ)2 ■ Substituting (2.16) in (2.15) yields the rela-

tion

(2.17) \\PhP-Qh<Kx[hs + S2],

where A^i depends on ||w||3/2+£o and || u ||Co.i(q)2 • We use now the following

"inverse-type" estimate [2]: for 2 < v < 8 ,

(2.18) \\nh u - y Ho.* < Ch2'e-2/"\\nh « - y lio,, •

Combining (2.14) and (2.18), we see that (2.17) yields

W^hU-y\\rh = \\nhu-y\\0,4+e

(2.19) <KeKxh^-x[hs + ô2]

= K2[hs-iï + h~^ô2]

= K2[h'+c+^ +h-&S2].
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Since we want that K2h?+e+M~t < § and K2h~*%S2 < f in (2.19), we need

(2.20) 2K2hî+e+&i <ô<^—hî+*i% .
2K2

Let h < (2K2)~2'E and Ô = 2K2h^+e+^¡ .  It follows that (2.20) holds, and
then (2.19) yields

II^a w - y\\y < à■

Similarly (by choosing K2 < Kx), (2.17) gives the bound

\\PhP-Q\\wh<8,

which concludes the proof.   D

Remark 2.4. Note that Theorem 2.3 not only proves that (1.5) is solvable, but

also that the solution is close to (u , p). Specifically, for small h ,

W^hU - Uh\\-rh + \\PhP-Phh< Khï+e+*ïz .

By the inverse inequality (2.18), this implies that

II*/.« - ^aIIo.oo < Ch-ài\\nhu - W/,||0,4+£
(2.21)

<Ch*&,

where C depends on || u ||3/2+£o and II w ||COi,,jj)2. We shall need this estimate

in the next section.

We can also show that the solution of (1.5) is unique (near (u , p)).

Theorem 2.5. Let (un,pn) and (y_h,qn) be solutions of (1.5). Then,   uh =

V h and ph = qh.

Proof. Let U = u h- y h and P = ph~qh ■ Then, (1.5) implies that (U , P) e

Y.\ x Wf, satisfies the relations

Í (b(uh)-b(yh),y)-(divy,P) = 0,    yeVh,

1  (divU, w) = 0, weWh,

and, using the mean value theorem, (2.2), we obtain

[ (B(uh)U,y)-(divy,P) = 0,    y€V

(2.22) i
I  (divf7,tzj) = 0, w e Wh,

where B(uh) is given by (2.5) with  p = uh and   u  replaced by  yh.

The crucial observation is now that, for h  sufficiently small, the positive

definiteness of B(u) together with (2.21) imply the positive definiteness of

B(u h). That is,

(2.23) X\\y\\2<(B(uh), y , y),        y e V ,
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where 1 > 0 is independent of h and y . Take now y = U and w = P

in (2.22). Using (2.23), we see that U = 0 and hence (div y , P) = 0,

y e Vf,. Choose y e Vh such that div y = P e Wh . Then ||P||0 = 0 gives

P = 0, as needed.   D

3.   L2-ERROR ESTIMATES

Let   Ç = u - u z,,   q=nf,u-uh,t;=p-ph, and x = Pf,p - Pf,, and

rewrite (2.1) as

( (B(uh)C, y)-(div y, O = 0,    v&Vh,

(3.1) I
| (divC,u;) = 0, we ¡Vf,

or

{ (B(u h)q, y) - (divv , x) = (B(uh)[nhu - u], y),    y£V

(diva, w) = 0, w eWh.

With the choices y = q  and w = x in (3.2), we see that

(B(uh)q , q) = (B(uh)[nh U - u], q).

Then, the positive definiteness of B(u h), the analogue of (2.23), implies that

Il q llo < Cllziz, u - u Ho • Thus, by (2.9), if u e Ha(il)2, 1/2 < a < k + 1, we

have

(3.3) || Ç ||o < C\\nh u - u||o<C/za||u||Q,

where C depends on || u ||co,i(q)2 • Observing that div q = 0 from (2.7) and

(3.2), if / e W'«(Q), 0 < y < k + 1, l<^<+oo,we obtain from (2.7) and
(2.8) the estimate

II divCHo,? = II divu + divq - div7if,u\\o,q

= || div M - Pf,dÍVU\\o,q

(3-4) =\\f~phfh,q

<CF||/lly,9

<CW\\u\\Y+Ug.

Error estimates for the scalar function Pf, will be obtained by the following

Lemma 3.1. Using (2.2), we can rewrite the error equations (3.1) as

f (B(u)C, y) - (divv, T) = (CT[Hi(uh), H2(uh)K, y),   yeVh,

(3.5)      I
I (divf,«;) = 0, weWh.

We shall prove now an improved version of Lemma 2.2 .
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Lemma 3.1. Assume that the solution o/(l.l) is sufficiently smooth. Then, there

is a constant C independent of h, but dependent on || u h/2+eQ and \\ u ||c,,i(ñ)j -

such that, for 0<s <k+l, \<a, ß <k+i, 1 < y < k + 1,

||t||_, < C[h?+s+x-{s+x-k)+\\ u ||, + Aa+^-«|| u IUII u \\p],

where (s + 1 - k)+ = max{0, s + 1 - k}.

Proof. Recall that

l«I —     sup    ÛLfl.
veHs{Si)   W\\s

(í/p/O

We shall employ duality to bound (t, w) for w 6 ^(ß). Let 4> e HS+2(Q.) n
H0X(Q) be the unique solution of M*<p = (c in fi such that ||0||J+2 < ^||»//||î ,

where M* is given by (2.11), and K depends on || u llo*.>f5)2 ' Then, it follows

from (2.7) and (3.5) that

(T, w) = (t, M*4>) = (x, -div(B-x(u)¥<p))

= (x,-dW(7th(B-l(u)VcP)))

(3.6) = (f^i(uh), H2(uh)]Ç - B(u)Ç, 7th(B-x(u)Y4>))

= (ÇT[Hx(uh), H2(uh)]Ç - B(u)Ç, 7ih(B-x(u)y(t>) - B~l(u)V4>))

+ (ÇT[Hi(uh),H2(uh)]Ç, B~x(u)Y(ß) + (divÇ, </> - Ph<f>).

Also, Sobolev's embedding theorem, (2.9), (2.18), and (3.3) lead to the following

bound: for \ < a, ß < k + 1,

(ÇT[Hx(uh), H2(uh)]Ç, nhB-x(u)y<t>-B-x(u)¥<j>)

< C||C||o||C||o,2+«||ä^(m)Y0 - A(u)Y4>\\o, ^

< C||Ç||o[||«A - TAM||o,2+e + II&A« ~ U\\o,2+e]h^\\Yñ^ ,±

(3.7) < Cha\\u\\a(\\Uh - ^"l|o + ^||«||/J-Ä ,2+e)\\ñ2

<CÄa||«||a(||C||0 + ll»*«-«ll0 + Ä#||»ll#)W2

< Cha\\u\\ah^\\u\\ß\\(t>\\s+2

<cha+e\\u\\a\\u\\ß\\<p\\s+2,

_   i±M
2+E   '
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while (2.9) and (3.3) yield, for \ < a < k + 1 ,

(B(u)Ç, B-x(u)V<P - nh(B-x(u)Y(f>))

< C\\Ç\\0\\B-x(u)V<t> - 7ih(B-x(u)¥<P)\\o

(3.8) <C||Ç||oA*fI-*-^||Y^||,+i-4,4+l

<CAa||?<||0Ä*+1-*-**'|l^lli+2

<Cha+s+X-S°^\\u\\aW\\s+2.

Next, note that Sobolev's embedding theorem, (2.9), (2.18), and (3.3) lead, in

a similar way to how (3.7) was derived from them, to the following bound: for

\ <a, ß < k+ 1,

(ÇT[Hx(uh), H2(uh)K, B-x(u)Y(t>) < C|K||o||Ç||0>2+e||y^lo,^

(3.9) <C/z"||m|U/z^A||îz||/?||</)||2

<cha+e-ex\u\\a\\u\\ß\\ci>\\s+2.

Finally, (2.8) and (3.4) yield, for 0 < y < k + 1,

(div^,cp-Phçb)<\\ div Q\o\\ó-Ph4>\\o

(3.10) <Chy^2-^x-^\\u\\y+x\\4>\\s+2.(s+x.ky

<CA'+'+2-(I+,-*)+||«||7+,||^||,+2,

and combining (3.6)—(3.10) we conclude the proof.   □

Remark 3.2. Lemma 3.1 shows, in particular, that, if  u e Hy(Q.)2,  1 < y <

k + 1,then

(3.11) ||T||o<tfF+1||w||,,,

where K depends on || u ||3/2+£o and || u ||Co..(ñ)2 •

We shall now apply Lemma 3.1 to the derivation of Lq-error estimates for

the scalar function Pf,, for 2 < q < +oc .

Theorem 3.3. Let 2 < q < +oc . There exist positive constants Cq, independent

of h , but dependent on \\ u ||3/2+£() and \\ u ll<-o.i(ñ)2 ' suc^ t^iat' $ P e Wr>q(Çl)

and u e /T~«(ß)2,  \ + lq<r<k+\, then

\\P - Phh,q <Cqhr(\\p\\r,q + \\u\\r^).

Proof. Use Lemma 3.1 with 5 = 0, (2.8), and the estimate (3.11), and set

7 + - = r. Then, by the scalar analogue of (2.18), we obtain, for 1 + | < r <

k+l,
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\\P-Phh,q< \\p-PhPh,q + \\*h,q

<Kq[hr\\p\\rtq+h'-l\\x\\o]

<Kq[hr\\p\\r,q + hl-lhy+x\\u\\y]

< C^pÄr(||p||r,0 + llifllr-2) -    D
P7

Remark 3.4. Note that Theorem 3.3 shows, in particular, that,

IIp-PaIIo < Chr(\\p\\r + ||M||r_,),        2 < r < k + 1,

IIP -PaIIo.oo < CAr(||p||r>0O + ||«||r),        I < r < k+ 1.

Also note that these estimates are both of optimal rate and, in case that

|| u Hr-1 < C\\p\\r, as in the linear case, and r > 3 (which requires k > 2), then

the L2 estimate is also optimal in regularity (that is, \\p -pz,||o < C/ir||p||r).

This is true because Sobolev's embedding theorem gives //2+£(ß)2 c C0, '(ß)2.

4.   L°°-ERROR ESTIMATES FOR THE VECTOR FUNCTION   U h

In this section, we shall extend some of the ideas of [8]. First, we shall need

an Lq version of the Duality Lemma 2.2.

Lemma 4.1. Let 2 < 6 < oo and let x be given by (3.5). Then the following
relation holds :

\\?h,e<Ce(h\\Ch,8 + h2\\div{\\o,e),

where Ce depends on \\ u ||co,i(ñ)2 •

Proof. We shall employ a duality argument. For w £ L6'(£1), let tf> e W2'6'(ß)
be the unique solution of M*tf> = y/ in ß, </> = 0 on <9ß such that ||<^||2,e' <

AT||i//||o,0p . The result now follows from (3.6) by the same argument as used in

Lemma 3.1.   □

To prove our L°°-estimates, we shall use Nitsche's weighted L2-norms [10].

Let p > 0, p(x) = \x - xQ\2 + p2, x0 e ß fixed, x e ß. Then, the weighted

L2-norm with weight p is defined as

\\v\\r,ß = \\ß~hyh,       reR, y e L2(Q)2.

We shall need several well-known properties of these norms, which we list as

lemmas.

Lemma 4.2. Let 6 > 2. If </> e Le'(ß)2, \ + ^ = 1, then

II Y/z"1 • 0||o,e' <^P_1"*H0lli./i.

Lemma 4.3. Given B > 2, if <p e L°°(ß)2, then

HJo,e<K(d)HjlßHJl0-l.



984 F. A. MILNER AND E.-J. PARK

We shall also need the following relations between L°° -norms and weighted

L2-norms [10]:

(4.1) ||«||i.,.<C|]n/>|i||ü||o,oo,        yeL°°(Q)2;

if w e Wh ,  x0 e ß is chosen such that ||t/j||o,oo = |w(jto)|, then

(4.2) IMIo,oo < Cyh-Xp\\w\\x<ft   for p<yh,

(4.3) \\p-xn-7th(p-xn)\\_x<IÂ<Chp-x\\n\\x^,        neL2(Q)2.

Theorem 4.4. Assume that  u e Wr'°°(Çi),  \ < r < k + 1. Then, for h suffi-

ciently small,

ÏÏH - HhWo.oo < CAr~i|lnA|i|| w||r,oo,

where C depends on \\ u ||co,i(q)2 •

Proof. In view of (2.9), it suffices to prove the theorem for   q   in place of

C = H - H h ■ Note that it follows from (2.23) and (4.3) that

M2i,ß = Wuh)q,B-l{uh)ii-lq)

<C(B(uh)q,p-lq)

= C{(B(uh)q ,p~lq- nh(p-xq)) - (B(uh)[uh - u], nh(p'xq))

(4.4)
-{B(uk)[u-nhu\, nh(p  xq))}

< C{C/V_1 ll?lli,„ - (B(uh)[uh - u], nh(p-xq))

+ (I + Chp~l)\\u - nhu\\x¡ll\\q\\Xtlx} ,

and hence, for h < yp, y sufficiently small, we get

(4.5) || q \\l„ < C{\\ u - Kh u ||2,, + (B(uh)[u-uh], nh(p~l q ))} .

Next, from (3.1), (2.7), and Lemma 4.2, we see that for any ô > 0,

(B(uh)[u-uh], nh(p-xq)) = (div(nh(p~xq)), p -ph)

= (div(nh(p-xq)), x)

= (div(p~xq), x)

= (Vp~x -q,x) + (p~x divq, x)

< IIY,""1 •■?IIo,ö'I|t|Io,o

< ̂ /»"'"illfflli.^llTllo.i

<K(ô){p-2-r>\\x\\l0)+ô\\q\\2^.
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Thus, (4.1) and (4.5) yield

\\q\\l,ß < C{||z/-7t/íM||1,/, + /3-1-5||T||o,e}

(4.6)
< C{|ln/z|í||íz-7rAM||o,oo + /?      5IMIo,el-

Next note that, by Lemmas 4.1 and 4.3, (3.4), and (4.2), we obtain, for 1 < r <

k + 2,

l|T||o,ö<C[/z|K||o,e + Ä2||divC||o,ö]

(4.7) <C/t[||tT||o,e + /2r||w|koo]

<CA[(A-V)l-*ll?lli,z, + A''||«lkoo].

Combining (4.6) and (4.7), we arrive, using (2.9), at the relation

(4.8) \\qh,K < C(9)[(\lnh\i + hp-x-i)hr\\u\\r¡o0 + hip-*\\q\U,ß],

0<r<k+1.

Now fix 6 e (2, oo) and let

(4.9) hip-t = 2Clfij'    thatis,// = />2(2C(0))-f.

Then, by (4.8),

||«?||i,z.< C|ln/2|Ur||«||r,oo,        0<r<* + l.

Finally, by (4.2) and (4.9),

|<?||o,oo < Ch  VI|ct||i,

< C|ln/z|ï/zr_i||u||ri00, \<r<k+l.   G

Remark 4.5. The error estimate of Theorem 4.4 is optimal in regularity (only

for r > 1 , since the constant C depends on || u ||co.i(ñ)2 f°r any r) > Dut ^ *s

one half power of h suboptimal in rate. This matches the estimate obtained in

[9] for the quasilinear case, but it is not as sharp as that of [4].

We can now combine Lemma 4.1 and Theorem 4.4 to obtain a better L°°-

estimate for the error in ph than the one given in Remark 3.4. That estimate

requires as many derivatives in u as in p , while the one which follows requires

one half derivative less in  u than in p .

Theorem 4.6. Assume that p e H/r,00(ß) and u e H/r"i00(ß) for some given

e, 0 < e <c 1, and 1 < r < k + 1. Then, for h sufficiently small,

IIP-PaIIo.oo < C/t'GI/zllr.oo + llwllr-l.oJ,

where C depends on || « ||c0.i(q)2 ■
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<C[Al«||r_i+e>(» + Är+*+%||r-i+e,

Proof. It follows from (2.18), Lemma 4.1, and Theorem 4.4 that, for j < a <

k + 1, 0<ß<k+l,

||t||o,oo<C/z-I||t||0 â
>   E

^C^-îllÇHo.f+^-illdivÇHo.i)

<C[hl-i+a-^]nh\^u\\a>0o + h2-ihP\\u\\ß+l,0O]

,]

<Ch'\\u\\y_i+e¡00,        l<y<k + \-e,

and the result follows from (2.8).   n

Remark 4.7. The error estimate for x = Pf,p - Pf, in Theorem 4.6 is supercon-

vergent by almost one half power of h in L°° . This is an improvement over

the first result for the quasi-linear case [8], but it is not as sharp as that of [4],

which gives a superconvergent estimate by one power of h .

5. Application to the minimal surface equation

Let p( x ) represent the vertical displacement of a surface (such as a mem-

brane or soap film) at the point x e ß, where the displacements at the bound-

ary are prescribed by the function -g. Assume ß is convex. Then, p is

determined (uniquely if g and <9ß are sufficiently smooth) as the solution of

the following boundary value problem:

YP

(5.1)
div

V
= 0   in ß,

P\2/

( p = -g on 3Q.

We see that (5.1) corresponds to the general equation (1.1) with

YP
q(¥p) =

We let

so that

u =

y/l + IYPl2

-Yp

YpI
i + IYpI2'

^i + IYpI2'

YpI-

Thus, we obtain
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We compute now the Jacobian matrix B.   Very straightforward calculations

lead to the following expressions:

r db¡.
du,

db.

l-ui

(i-|»p)2

"I "2

1   '

d"2       (Hffl2)'

db,
du,

db2
dui

»l"Z

(1-I"l2)3

l-u±

(1-lifl2)u\2)$

Therefore, we see that

db

du

with eigenvalues

= (l-\u\2)-î
1 - u\    uxu2

uxu2     1 - u21J

( Xx = Utr(B) - J(trB)2 - 4detB) =-x—T=X,
(Hül2)*

X2 =
(l-|ap)ï

X being the smaller eigenvalue and A the larger. In this case we have X > 1,

which means that

(B(u)y , y)> \\y\\l,        y e L2(Q)2.

However, in order for B to be bounded, we must be sure that \u\ < 1 . This

is equivalent to | YpI being uniformly bounded in ß, which holds under our

assumptions. It then follows that \u\< p < 1 (for some positive constant p).
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