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CONJUGACY CLASSES OF T(2) AND SPECTRAL RIGIDITY

RALPH PHILLIPS

Abstract. The free group T(2) is generated by A = (1 2,0 1) and B =

(10,-2 1), and setting X(i,t¡)(A) = mp(2niÇ), X((,r¡)(B) = exp(2zt¡>/) defines

a unitary character on T(2) for 0 < £,, n < 1 . A program is devised to

compute

p«(tr) = ¿ZX(i,i)(C0TlÍ- class)>

summed over all primitive conjugacy classes of T(2) of trace tr. Combined

with a Luo-Sarnak theorem, this yields lower bounds for the spectral variance

for a large sampling of characters in the range 0 < £, n < 1 . The results

indicate that the Berry conjecture for spectral rigidity does not hold for this set

of classically chaotic systems. The program is also used to compute

ö(*) = ;>>(/•/(«)),

summed over all primitive conjugacy classes of T(2) of norm N({y}) < x .

The function 6(x) is asymptotic to x , and the remainder can be written as

\0(x) - x\ = xP . The values of ß(x) are computed for all traces between

3202 and 4802 (here x = tr2 -2). The /?'s cluster around 0.6, attaining a

maximum of 2/3. Finally, it is proved that the remainder d(x) - x has a

negative bias by showing that the mean normalized remainder converges to a

negative limit.

1. Introduction

The purpose of this paper is threefold: ( 1 ) to describe a program for comput-

ing the conjugacy classes of T(2), (2) to apply this to find the spectral variance
of the Laplacian for character varieties, and (3) to study the remainders for the

prime geodesic asymptotic formulas (see [3])

(1.1) 0(x) = £ln(/V(y))   and   ;r(x) = £l,

where the sum is over the primitive conjugacy classes of norm N(y) < x . The

numerical data indicate that the Berry conjecture [2] for the spectral rigidity of

strongly chaotic systems does not hold in this situation, even when the arith-

metical symmetry is broken. Writing the remainder as \6(x) -x\ = x? , we find

that the largest value of ß is 2/3. This is somewhat of a surprise since the

expected value was 1/2. The remainder data turns out to have a negative bias;

this is explained by the fact that the normalized remainders (0(x) -x)/xx¡2 and
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Figure 1

(n(x) - \i(x))ln(x)/xll2 ultimately have a negative mean, which, incidentally,

implies an omega result for the remainders.

The program makes use of the fact that there is a one-to-one correspondence

between the primitive conjugacy classes and the directed closed geodesies for a

discrete subgroup of PSL(2, R). So to study a particular (not necessarily prim-

itive) conjugacy class of trace greater than 2, we find a (hyperbolic) matrix a in

this class whose directed axis intersects a fixed (convex) fundamental domain

F ; the segment of the axis in F will be part of the directed closed geodesic

corresponding to the conjugacy class. This axis leaves F at two points going

into two of the adjoining fundamental domains. Corresponding to each such

side there is a generator of the group, taking F into an abutting domain. If we

conjugate a with respect to this generator we see that the axis of the conjugated
matrix will again intersect F and be a part of the original closed geodesic in

F. In the next step there is only one possible exit from F which does not

backtrack (i.e., we eliminate from consideration the inverse of the conjugation

used in the previous step). Continuing in this way, we eventually return to the

original piece of the geodesic in F ; that is, we get back to the matrix a . The set

of matrices encountered consists of all the matrices in the conjugacy class whose

axes intersect F ; we call such a set a chain. Each matrix in a chain appears

in this set only once. The chain procedure in the program finds all chains of a

given trace. This idea was previously used to compute the conjugacy classes for

the "octagonal group" by Aurich et al. [1].

We shall study the subgroup

(1.2) Y(2) = {(ab,  cd) ePSL(2, R) congruent to /mod (2)},

which, together with an associated character x » can be used to define the auto-

morphic functions

(1.3) u(yz) = X(y)u(z),        yeY(2).

For F we choose the fundamental domain depicted in Fig. 1. The program

computes the number of primitive chains whose elements have a given trace

(tr) as well as the value of x on each such chain (a character does not change

its value under conjugation).

Luo and Sarnak [5] have shown for cocompact arithmetic subgroups that a

lower bound for the spectral variance of the twisted Laplacian can be obtained
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from the rate of growth r of the series

(1.4) x[zz] = ^ln2(tr)/z(tr)2,

summed over all tr < 4« + 2 ; here,

(1.5) fl(tT) = Y,X (chain),

summed over all primitive chains of trace tr. In the Luo-Sarnak development

the spectral variance is bounded below by La in the universal range, where a =

r - 2. According to the Berry conjectures, a = 1 for integrable Hamiltonians,

whereas for systems with chaotic dynamics the growth is logarithmic, in which
case q will be zero.

We have taken over this measure of spectral rigidity for {Y(2), x) even

though F is not compact. However, the Luo-Sarnak development also holds

for noncompact cofinite arithmetic groups if the ^-twisted spectrum of the

Laplacian is a pure point spectrum as it is for the generic / in our case (see §3

for further details). It should be noted that the original notion of spectral rigidity

may not be applicable for general nonarithmetic noncocompact subgroups in

view of the strong possibility that the Laplacian for such systems may not have

any (nonexceptional) point spectrum (see [8] and [11]).

As can be seen from Figures 4, 5, and 6, we found that a > 0 for all of

the sampled values of x ■ These results conform with previous investigations.

Numerical data obtained by Schmit [9] for the Dirichlet problem on the fun-

damental domain of a cocompact subgroup indicate that the spectral rigidity in

this case is the same as that of integrable systems (i.e., a = 1 ). Luo and Sarnak

[5] proved for twisted arithmetic cocompact subgroups that

(1.6) a>2(l-4X0(x))l/2-l,

where Xq(x) is the smallest eigenvalue of the twisted Laplacian.

Table 1 contains a list of the number of conjugacy classes (in parentheses) for
each trace number n < 1000 (trace = 4«+ 2). In Fig. 7 we present a histogram
of the remainder powers ß(x) (see above) for all of the trace numbers between

800 and 1200. It will be noticed that most of the remainders are negative (i.e.,

8(x) < x) and that the /?'s bunch up around the upper bound of 2/3.

Section 4 contains a proof for all cofinite Y in PSL(2, R) that the mean

normalized remainder (MNR) for 6(x) (Theorem 4.1) and n(x) (Theorem

4.3) approaches a limit, which in the case of T(2) is -7. This explains the

negative bias. The computed MNR for 6 turns out to be slowly decreasing

from -6.70 at n = 100 to -6.90 at n = 1000. On the other hand, the MNR
data for n are increasing from -8.23 at n = 100 to -7.88 at n = 1000

(see Table 2). These results suggest that the previous computations yield good

approximations to the true asymptotic behavior of these various quantities.

2. The conjugacy classes of T(2)

There are several symmetries of Y(2) which can be used to shorten the pro-

gram. It is easy to see that this group is closed under inverse, transposition

and sign change of the off diagonal elements of a matrix (scod). We take these
symmetries up in turn:
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(i) Inverse: A hyperbolic matrix in PSL(2, R) and its inverse share the same

axis but the two axes are oppositely directed. Likewise, the set of inverses of

the matrices in a chain is again a chain, and the corresponding closed geodesies

are the same but oppositely directed. This means that the two chains are always

distinct, and in our program they are treated separately.

(ii) Transposition: Corresponding to the four sides of F are the four gener-

ators

¿ = (12,0 1),     A~x = (l  -2,01),

B = (10,-2 1),     B~x =(1 0,2 1).

A conjugation involving any one of these matrices becomes, under transposition,

another conjugation with A <-> B, A~x «5"'. If the transpose of one matrix

in the chain is in the chain, then the transpose of all matrices in the chain are in

the chain. Thus, the chain is either distinct from its transpose or self-transposed.

(iii) Scod: The conjugate of the scod of a given matrix by one of the four

generators is the scod of the conjugate of the given matrix under the inverse

of the same generator; i.e., A <-> A~x, B <-> B~x . This is evident from the

following conjugations on changing the signs of b, c, and j simultaneously:

(2 2)        AÍ(° b ' C d)Á~¡ = (í* + 2JC b + 2Jd ~ 2ja ~ 4j2c ' C d ~ 2;C) '

Bj(a b, c d)B~j = (a + 2jb b,c- 2ja + 2jd - 4j2b d - 2jb).

We conclude from this that if a given chain is, say, self-transposed, then the

scod and the scod of its transpose will also be self-transposed. Hence if a chain
includes neither a transpose nor a scod of any particular matrix in the chain,

then its transpose, its scod and the scod of its transpose will appear in distinct

chains. If the transpose (or the scod (but not both)) of any particular matrix

in the chain appears in the chain, then only the scod (or the transpose) chain

will be distinct. Finally, if both the transpose and the scod of some matrix in

the chain belong to the chain, then the chain will be self-transposed and self-

scod. This permits us to limit our computation to only one of the four (two

or one) possible chains connected by transposition and scod. Moreover, all of

these considerations hold for the inverse chains for which the character x is

the complex conjugate of the x f°r the original chain. Thus, the imaginary part
of the x contribution is cancelled out, and we need only retain the real part.

Proposition 1. The traces of hyperbolic matrices in Y(2) are of the form tr =

4/2 + 2 for n a positive integer.

Remark. Because we are treating Y (2) in PSL(2, R), we can limit ourselves

to positive traces. In what follows we shall call n the trace number.

Proof of Proposition 1. Since a and d are odd we can write a = 2j + I and
d = 2k+l. Then

ad - 1 = Ajk + 2(7 + k) = be.

Since the right-hand side is divisible by 4, (j + k) has to be even, and since

tr = a + d = 2(j + k) + 2, we see that tr is of the form 4n + 2. If the matrix

is hyperbolic, then tr > 2, and hence n > 0.   D

It is easy to see that each conjugacy class with tr > 2 contains matrices whose

axes intersect F . Since the union of the {yF, y e Y(2)} fills out the hyperbolic
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plane, the axis of any matrix a in this class will intersect some y~xF , and the

axis of ß = yay~x will intersect F. For the fundamental domain F with

cusps at -1,0, 1 and oo this can happen if and only if the fixed points of ß

straddle the point -1, 0, or 1 on the real axis. Note that the points -1,0, 1,

and oo do not belong to F .

Lemma 2. Suppose a = (a b, cd) is hyperbolic. The fixed points of a will

straddle 0 if and only if 0 < a < tr, 1 if and only if 0 < a - c < tr, and -I
if and only if 0 < a + c < tr.

Proof. The fixed points of a are

(2.3) x± = (2a - tr ±(tr2 -4)x'2)/2c = (2a - tr ± tr)/2c + S/c,

where, since tr > 6,

(2.4) 0 <<5 = ^(1 - (1 -4/tr2)1/2) < 2/tr < 1/2.

If c > 0, then x_ < 1 < x+ if and only if

a-tT+â<c<a-ô.

Since a and c are integers, we see that this condition is the same as 0 < a-c <

tr. On the other hand, if c < 0, then x+ < 1 < X- if and only if

a-S > c> a- \v+ô.

This is exactly the same condition as before. This proves the second assertion

of the lemma, and the others are proved in a similar fashion.   D

For a hyperbolic matrix, if 0 < a < tr, then a + d > 2, ad = a(tr -a) > 1

and be = ad - 1 > 0, so that b and c have the same sign. Moreover, neither

b nor c can vanish, since otherwise ad = 1.

Definition. A matrix whose axis intersects F is called an admissible matrix

and a zero-admissible matrix if its axis straddles 0 (i.e., if 0 < a < tr) ; if in

addition 0 < b < c, it is called a list matrix.

It is easy to see that there are only a finite number of list matrices. In the

first place, a = 2k + 1 can take on only tr/2 values. For each such choice of

k,

(2.5) bc = ad-l = (2k+ l)(4n + 2-2k-l)-l= 4(2kn + n-k2).

There are at most (2kn + n-k2)xl2 choices for b/2, 0 < b < c, and once b is

chosen, c is uniquely determined by the relation (2.5). The list procedure in the

program carries out the calculation which we have just outlined for 0 < b < c.

The transpose and the scod of the above matrices also have 0 < a < tr, so

that the number of zero-admissible matrices is less than or equal to four times

the number of list matrices computed above. In the program the arrays a, b, c

enumerate the elements in the list matrices. The f array is a flag, which at any

given point in the program is 1 if the corresponding list matrix (or its transpose

or scod) has been used, and is otherwise 0.

There is a simple correspondence between the admissible matrices for which

0 < a < tr and those for which 0 < a - c < tr or 0 < a + c < tr. In fact,

(2.6)
(1 +1, 0 l)(a b, c d)(l ±l,0 1) = (a+c b', c d±c),       b' = ±(a-d)+b-c.
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Figure 2. y = -x/(2x - 1)

Thus, suppose 0 < a - c < tr and, say, c > 0 (otherwise write this as

0 < a + (-c) < tr with -c > 0). Then the matrix on the right (using the

upper sign) is a zero-admissible matrix with the same trace. This shows that

the number of admissible matrices is at most four times the number of zero-

admissible matrices. We conclude from this that the number of steps in any

chain procedure is finite and that each closed geodesic has only a finite number

of axis segments. The next lemma shows that when we exhaust the list matrices

in the chain procedure (which also takes care of their transposes and scods), we
will automatically exhaust all of the admissible matrices. Notice that the scod

of the set of list matrices includes their inverses.

Lemma 3. Each chain contains at least one zero-admissible matrix.

Proof. It suffices to consider an admissible matrix y = (a b, cd) whose fixed

points x± satisfy the conditions 0 < x- < 1 and x+ > 1 . Suppose we

conjugate with respect to B. The fixed points of / = ByB~x will be y± =

Bx± : y = -x/(2x- 1) ; see Fig. 2. In any case, 0 > y+ > -1 . If 0 < x_ < 1/2,
then y_ > 0, and y' will be a zero-admissible matrix, and the lemma is valid.

If X- = 1/2, then |j>_| = oo, and it follows from (2.3) that c' = 0, which is
impossible for a hyperbolic matrix in Y(2). Finally, if 1 > X- > 1/2, then
y_ < -1, and y' is admissible and a member of the chain.

Next we conjugate / by A to get y" = ABy(AB)~x whose fixed points are

z± = ABx± : z = (3x - 2)/(2x - 1) ; see Fig. 3. In any case, z+ > 1 . If
1/2 < x_ < 2/3, then z_ < 0, and y" is a zero-admissible matrix, and again

the lemma is valid. If 2/3 < x- < 1 , then 0 < z_ < 1 , and y" is admissible
with z_ and z+ straddling 1 as in the case of y. We now show that as we

iterate this process the x_ decreases, with the absolute value of the increment

of decrease bounded from below. In fact,

ö = x-z = x-(3x-2)/(2x- l) = x(x- \)2/(2x- I).

As X- approaches  1/2 from above, S grows and x- becomes less than 2/3
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Figure 3. z = (3x - 2)/(2x - 1)

(and hence the corresponding y" is zero-admissible) after a finite number of

steps. This concludes the proof of the lemma.   D

We are now in a position to explain the structure of the program. The chain

procedure computes all of the chains of a given trace = 4n + 2 modulo their

transpositions and scods. It does so by systematically going through the list ma-

trices (with 0 < b < c) and starting a new chain with the first such matrix which

has not been in any previous chain; the latter is denoted by a[i], b[i], c[i].

This selection is performed, with the help of the flag array /, by the "repeat"

statement at the end of the procedure. After setting the initial chain matrix

(al, bl, cl) equal to the so selected list matrix, the program goes on to the

link procedure, which then repeatedly determines the next link in the chain.

However, just before this, the program initializes e, s , and t. The conjuga-

tions defined by the four generators (2.1) are enumerated by e, and the ol
array records the inverse of the previously used conjugation. The variable 5 is

a flag which is initially 0 but is set equal to one in the link procedure when the

final link in the chain is attained (i.e., when the link calculation finally returns

to its starting matrix). The value 5 = 1 terminates the first "repeat" statement

in the chain procedure. The variable t is also a flag which is adjusted so that

at the end of a chain computation it is equal to 0 if the chain is neither self-

transposed nor self-scod, equal to 1 if it is self-transposed or self-scod (but not

both), and equal to or greater than 2 if it is both self-transposed and self-scod.

If b[i] = c[i], then t starts off as 1, since the chain is then necessarily self-

transposed. The chain procedure ends by summing up the /-values of each of

the chains of trace number n .

The link procedure computes the next link in the chain. It starts by making

sure that the inverse of the previously used conjugation is not used again. It

then proceeds to calculate successively the other conjugations until it reaches an

admissible matrix. At each step it sets the al, bl, cl array parameter u ahead
by 1. First it checks to see whether the condition 0 < a < tr is satisfied by

al[u]. If so, it removes (a = al[u], b = |M[w]|) or (a = a\[u], b = |cl[iz]|)

from the available list matrices by changing the corresponding matrix /-value
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to 1. Then it checks to see whether or not (al[iz], bl[u], cl[u]) is equal to

the starting matrix. If not, it initializes e to 0 for the next link procedure and

determines whether it is the transpose or scod of the starting matrix; in either

case it increases t by 1. However, when b[i] = c[i], the transpose option

is not realized (the scod option remains), and in this case we have to rely on

the initializing of / in the chain procedure to advance í by 1. Finally, if

(al[u], bl[u], cl[u]) is equal to the starting matrix, then s is set equal to 1 to

end the chain. If the condition 0 < a < tr is not met, the program checks to

see whether the companion condition 0 < a ± c < tr is met. If so, the matrix

is admissible and can be added to the chain and e is reset to 0. If not, the
matrix does not belong to the chain and we return (through chain) to link with

e increased by 1 (modulo 4) and the array parameter u reset. This last option

can be iterated at most three times since one of the conjugations has to result

in an admissible matrix.

Back in the chain procedure the program combines the contributions of all

the chains of trace number n by summing the chain characters. The quantity

el is equal to one-half of the contribution of a given chain, its transpose, its
scod, and the scod of its transpose. If t = 0, then we combine the contributions
of the computed chain with that of the transpose, the scod and the transposed-
scod to get 2 e 1. If t = 1, then the chain is either self-transposed or self-scod

(but not both), and there is only the contribution of two chains to be considered,
so el is added. Finally, if t > 2, then the chain is both self-transpose and self-

scod, and there is only the contribution of this one chain to take care of, so

el/2 is added.
So far we have neglected the evaluation of the character x ■ The program

computes the sum (1.4) for all trace numbers < max, and this for d different

characters parameterized by the k, I, r arrays. To describe x > we rnake use
of the fact that T(2) is a free group generated by A and B . Each element of
the group can be uniquely expressed as

(2.7) a = Ap'BqiAPïBq2---APkBqk.

The character is determined by two parameters £,,*], 0<£,n<l:

(2.8) Xa,nM) = exp(2;n£),        X((,n)(B) = ^P(2nin)

and

(2.9) X(£,„)(a) = exp(2B'(p{ + 0»/)),        P = ¿Zpj> a = ¿ZaJ ■

In the program the char procedure computes p and q for the initial list matrix,

and these are used in the chain procedure to compute e 1. To understand how

this is done, we need the following

Proposition 4. Suppose that a is the starting hyperbolic matrix for a chain, and

y is the product of the conjugating matrices culminating with a = yay~x. If a

is primitive, then y is equal to a or its inverse. If a = a§ and an ¿s primitive,

then y = an or its inverse.

Proof. Clearly, a and y commute, and this implies that they have the same

fixed points. If a is primitive, this means that y = ak for some k e Z. On

the other hand, y has to be primitive since, if k is not of absolute value 1, the

chain computation would have ended when the cumulative conjugation reached
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a (or its inverse if k < 0). This proves the first assertion, and the second

follows by a similar argument.   D

When the current conjugating matrix results in an admissible matrix, then it

is fed into the char procedure as ol[u] + 2 (mod4). If this is A (or A~x),

then 1 (or -1) is added to p, whereas if this is B (or B~x), then 1 (or

-1 ) is added to q. In the computation of e 1 we must keep in mind that

the contribution of the transpose interchanges p and q while that of the scod
changes the signs of p and q .

Finally we note that in the main part of the program we eliminate all non-

primitive conjugacy classes by keeping track of when such classes can occur.

Suppose the starting matrix a has eigenvalues X and 1/X ; then tr(a) = X+l/X

and tr(ak) = Xk + 1/Xk . A straightforward calculation shows that in terms of

the trace numbers n^ we obtain for the trace of ak

n2 = 4(n\ + nx),

(2.10) n} = 16n3x + 24n2x + 9nx,

«4 = 64«? +128«? + 80«2 +16«,.

If we limit ourselves to the first 1000 trace numbers, then n2 occurs only for

1 < «j < 15, «3 occurs only for 1 < «■ < 3, and «4 only for «■ = 1.
One check on the program is to see whether its results remain the same if we

conjugate by elements of the modular group. As shown in [7], this amounts to

transforming the /-parameters (£, n) by the matrices (1 0, 0 1), (0 1, 1 0),

(1 0, -1 -1), (-1 -1, 1 0),(0 1, -1 -l),and (-1 -1,01). The program
did pass this test.

3. Numerical results on spectral rigidity

Next we discuss the output of the program. Our original aim was to find the

rate of growth of the series x[n] described in (1.4). To this end, we determined

the logarithm of x[n] as a function of the logarithm of the trace (4«+ 2) of the
«th trace number. Since the series grows somewhat irregularly, we computed

the slope of the best mean square linear fit over sets of 150 successive trace

numbers, starting at the trace number 751-900 and ending at 851-1000 in

increments of 15. For each such run the slope is given by

(3.1) slope =(/3*>]ln(xm)-a">]log(tr(;))ln(x[7]))/(/32-aC),

where

(3.2) a = £l,    ¿> = 5>g(trU))   and   c = ¿^(log(lr(j))2 ;

here all the summations are over the particular set. We recorded the average

r of these 11 slopes and the square root of the variance; the latter we took as

the probable error. Because of obvious symmetries, it sufficed to consider only

character parameters in the triangle 0 < r¡ < £ < 1 /2.

Figures 4, 5, and 6 depict the results for runs of 1000 trace numbers, entailing

1,031,772 primitive conjugacy classes. Each figure consists of computed data

(i.e., the mean slope together with the probable error) for each run and a smooth
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Figure 4. £ = z/100, n = 0

Figure 5. £ = z/100, « = z/100

curve which roughly fits the data. The character parameters for Fig. 4 are

Í = j/100, n = 0; those for Fig. 5 are £ = i/100, n = z'/100, and those for
Fig. 6 are £ = z/100, n = i/200  (0 < i < 50).
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Figure 6. Ç = i/100, n = z/200

The slope was found to be approximately equal to 3 at parameter values

(z'/8, 7/8) for integer values of i, j less than or equal to 7. These points

are closely related to congruent subgroups (see [7]). For all of the sampled
parameters the slope was greater than 2. As explained in the introduction, such

slopes are not what is expected for these strongly chaotic systems. All of the

curves display a semblance of symmetry about the line £ = 1/2. A copy of the
program, written in Pascal, can be found in the Supplement section at the end

of this issue.
When 0 < £, n < 1, the /(¿^-twisted Laplacian has a compact resolvent

and hence the Luo-Sarnak theory is valid. This means that for such x the

growth of the spectral rigidity is at least La , where a = r - 2. In order to say

something about /'s for which n = 0 (or ¿; = 0), we would have to assume

that the spectral rigidity is continuous in x > which is not known. However, the

partial sums (1.4) are obviously continuous in x > and hence the data in Fig. 4
approximate the values for the slope when (¿j, rj) (with 0 < £, « < 1) is close

to (i,0).
A slight modification of the last section of the program allowed us to compute

the number of conjugacy classes (in parentheses) for each trace number « <

1000 (see Table 1 ) and the remainder power ß(x) for the function \9(x)-x\ =

x? (see (1.1)). A histogram of these /5's for trace numbers n between 800 and

1200 is depicted in Fig. 7. This involves 1,450,632 conjugacy classes. As can

be seen, the maximum ß is 2/3. By assuming the Lindelöf hypothesis for
certain L-functions, Iwaniec [4] can prove an upper bound of 2/3. Without

this assumption, the best upper bound (also due to Iwaniec [4]) is 35/48 .
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Table 1. Trace number (number of conjugacy classes)

6
36
72
60
96
48
96

192
96
96

216
240
216
192
288
132
192
336
192
240
432
312
288
384
192
288
384
384
720;
432
264
576

576
384

384
432
408
768
480
288
480
576
720
576
384
228
960

(1152
384
672
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Table 1 (continued)
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,650( 960
,658( 576
,666(1200
,674(1344
,682( 816
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,635(1920
,643(1008
,651(1536
,659(1728
,667(1440
,675(2178
,683(1680
,691(1080
,699(1680
,707(2592
,715(2112
,723( 864
,731(1440
,739(1152
,747(4320
,755(2304
,763(1440

,771(1440
,779(1920
,787(1800
,795(1440
,803(1728
,811(1344
,819(2592
,827(3960
,835(1152
,843(1824
,851(1440
,859(1680
,867(2736
,875(3456
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,891(2040
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,939(3648
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,995(2016

,540(1728),541( 360),542( 912),543(1008),544(1344),
,548(1200),549(1512),550( 672),551(1152),552(1440),
,556( 648),557(1368),558( 720),559(1056),560(1344),
,564(192 0),565( 912),566(12 24),567(2592),568(1008),
,572(2304),573( 672),574( 672),575(3150),576(2016) ,
,580( 960),581( 672),582(1152),583( 720),584(1728),
,588(1296),589( 768),590( 768),591(1008),592(1056),
,59 6(1440),597(1056),598( 480),599(1080),600(2160),
,604( 936),605(1056),606( 624),607(1512),608(1344),
,612(2400),613( 504),614(1152),615(1152),616( 864),
,620(2304),621(1152),622( 864),62 3(192 0),624(2064),
,628(1152),629(1440),630(1584),631(1296),632(1296),
,63 6(1008),637( 864),638(1296),639(1800),640(1440),
,644(1920),645( 960),646( 576),647(2268),648(1224),
,652(2088),653( 624),654( 864),655(1344),656(2880),
,660(1920),661( 408),662(1056),663(144 0),664(14 40),
,668(1008),669(1152),67 0(1056),671(1344),672(2016),
,676( 780),677(1872),678( 864),679(1152) ,680 ( 1440) ,
,684(2160),685(1152),686(1152),687(2112),688(1344),
,692(3744),693( 960),694( 720),695(1152),696(1152),
,700(1512),701(1344),702(1536),703(1104),7 04(1440),
,708(2400),709( 720),710( 960),711(2160),712(1728),
,716(1008),717(1056),718( 528),719(3528),720(2640),
,724(192 0),725(1320),726( 936),727(1584),7 28(1896),
,732(2016),733( 840),734(1296),735(2352),736(1680),
,740(1920),741( 960),742( 864),743(1584),744(1728),
,748(1152),749(1152),750(1440),751(1248),752(1680),
,756(2304),757(1080),758( 864),759(1728),760(1152),
,764(2160),765(1584),766( 720),767(2256),768(1488),
,772(1440),773(1800 ¡,774(1800),775(1440),776(2016),
,780(1728),781( 576),782(1920),783(3024),784(2016),
,788(2016),789(1152),790( 864),791(1440),792(4320),
,796(1512),797(1344),798( 960),799(2352),800(3528),
,804(1920),805( 960),806(1248),807(2304),808( 720),
,812(1728),813(1248),814( 768),815(2112),816(1344),
,820(1536),821(1008),822(1200),823 ( 864),824(3024),
,828(1800),829( 960),830( 960),831(2880) ,832 ( 2576) ,
,836(192 0),837(1344),838(1128),839(2016),840(2064),
,844(1080),845(1800),846(1584),847(2184),848(2640),
,852(3840),853( 672),854(2304),855(2160),856( 864),
,860(1728),861(1440),862(1152),863(2016),864(2688),
,868(1440) ,869(1536),870( 960),871( 864) ,872 (2880) ,
,876(2592),877( 936),878( 912),879(1920),880(2016),
,884(2688),885( 864),886( 792),887(3600),888(1440),
,892(1296),893( 960),894(1728),895(2160),896(1440),
,9 00(3600),901( 864),902(1536),903(1440),904(1440),
,9 08(2376),909(19 20),910( 960),911(23 52),912(2 688),

,916(2400),917(3072),918(1728),919(1584),920(1728),
,924 (2016) ,925(1176) ,926(1200) ,927(3 528) ,928(2016) ,

,932(3120),933( 864),934( 864),935(2592),936(2160),
,94 0(1008),941(1296),942(1728),943(2112),944(2688) ,
,948(1536),949(1008),950(2016),951(1440),952(2592),

,956(1728),957(1920),958( 768),959(2304),960(2?28),
,964(192 0),965(1152),966( 8 64),967(2772),968(1872),
,972(3744),973( 720),974(264 0),975(3360),976(1056),
,980(4320) ,981(1944),982(1320),983(1584),984(1728) ,
,988(1440),989(1440),990(1680),991(1344),992(3696),
,996(192 0),997(1608),998( 960),999(3456),1000(1728)

sum of conjugacy classes = 1031772
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Figure 7. Histogram.  Remainder = \9(x) - x\ = x^ ; 800 <

trace number < 1200

There are examples in number theory where the true asymptotic nature of

a series does not reveal itself until very far out in the series, and it could be
that this is the case here. However, as we show in the next section, the negative

bias of the remainders (6(x) - x) and (n(x) - li(x)) holds up in the limit. In

fact, the limit of the mean normalized remainder (MNR) is -7 in both cases.

For 9 the data for trace numbers « < 1000 (starting at « = 51) produced an
MNR of -6.90, and the MNR for n was -7.88 at n = 1000 (see Table 2).
Both results are reasonably close to the asymptotic limit. The MNR formula is

for an integrated mean, so we evaluated the x in (9(x) - x) at the midpoint

between 4« + 2 and 4« + 6 for each trace number. There are two reasons why

the MNR values for n are less reliable than those for 9 : ( 1 ) we compensated

for the integral mean by taking the values of li(x) for the «th trace number to

be the average of its values at the traces 4« + 2.3 + /',' = 0, 1, 2, 3 ; using 2.3
instead of 2.5 allows for the decreasing slope of li(x)—a change of 0.1 in the

trace results in a change of -0.2 in the MNR and (2) the MNR was computed

using an averaging function with an abrupt discontinuity at $ = 1, whereas the

proofs of Theorems 4.1 and 4.3 require a smooth averaging function, smoother

for n than for 9 . Using our formula (4.26), V. Golovchansky and M. Smotrov
have obtained similar results for the MNR of n for Y0(N) with several zV's

(personal communication).

Finally, we mention that for character parameters £ = 1/8 and 3/8 , n = 0,

and for « < 1000 we found that p(n) = 0 (see (1.5)) for n = 1, 2mod4
except for « = 1 and 49.
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Table 2. The MNR (a) for 9 and (b) for n. Column 1: trace
number; 2: number of conjugacy classes; 3: 9(x) for (a) and

n(x) for (b); 4: MNR

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000

300
360
504
432

1008
960

1200
840

1728
672

2160
960

1512
1440
3528
1200
3600
2016
1728

163229
361686
641659
996198

1452763
1959925
2571805
3249160
4016388
4840320
5758380
6758825
7825128
9021235

10271902
11559333
12995242
14432211
16010282

-6.70
-6.86
-6.74
-6.99
-6.65
-6.
-6,
-6.
-7 .

69

91
98
10

-6.71
-6.85
-6.75
-6.83
-6.86
-6.89

89
89
89
90

100
150
200
250
300
350
400

450
500
550
600
650
700
750
800
850
900
950

1000

300
360
504
432

1008
960

1200
840

1728
672

2160
960

1512
1440
3528
1200
3600
2016
1728

14938
30862
52202
78242

110816
146156
187964
233468
284252
338092
397378
461302
528772
603772
681532
760968
848928
936360

1031772

-8.23
-8.29
-8.10
-8.29
-7.91
-7.91
-8.09
-8.13
-8.24
-7.82
-7.94
-7.82
-7.88
-7.89
-7.91
-7.90
-7.89
-7.88
-7.88

(a) (b)

4. The mean normalized remainder

We see from Fig. 7 that the remainder (9(x) - x) exhibits a negative bias.

In this section we explain this bias by showing that the mean normalized re-

mainder,

(4.1) MNR(r)= Í >pT(s)((9(es) -2Z(s))/es'2)ds,

is eventually negative (cf. [6]); here,

(4.2) l(s) = J^e^2+^s/(l/2 + pj),

the sum is over the exceptional eigenvalues X}■ = 1/4 - p2 < 1/4, pj > 0, of

the Laplacian, ipr(s) = y/(s/T)/T, and y/ is C(1> with piecewise continuous
second derivative and

(4.3) <p(s)>0,    suppt// c (0, 1)   and        ip(s)ds=l

In the case of Y(2), X(s) = es. A similar result holds for the prime geodesic

function n(x) (see Theorem 4.3).

Theorem 4.1. Let Y be a discrete cofinite subgroup of PSL(2, R) with k > 0
cusps and v cusp forms at X= 1/4. Then

(4.4) lim MNR(T) = 4v-k + tr(<D(l/2)) - 1,
T—*cx)

where <*> is the scattering matrix.

Remark 1. If T is cocompact, then k = 0 = <t>.
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Remark 2. For Y(2), k = 3, v = 0, and tr(<D(l/2)) = -3 , so that the limit is

equal to -7.

Proof of Theorem 4.1. We begin by setting

i>l/2    for |cr| < 5,

0 for \a\ > s,
(4.5) cos(o) = {

and

(4.6) gT(o)= f   ipT(s)cos(o)e-s'2 ds.
Jo

Then

(4.7) 9(es) = ]T ln(N(y))N(yrx'2cos(ln(N(y)))

and

(4.8) /   <pT(s)9(es)e-s'2ds = Yln(N(y))N(y)-x'2gT(ln(N(y))),
.70

both sums being over the primitive conjugacy classes {y} of Y. The integral

gr in (4.6) is an even function with support in (-T, T) and

(4.9) gT(0) = c(T) = [  ip(u)e-uT/2du = 0(l/T).
Jo

The Fourier transform of gj is

(4.10)

hr(r) = 2       cos or gr(o) do = 2 /    if/r(s)e~s/2 I /  cos or e°12 do ) ds

il= 4(\+4r2)-x[ /  (cosarr + 2z-sincrrr)iiy(a)äf(T-c(r)

Upon integrating the right-hand side by parts, we see that

(4.11) M') = 0(i/(rz-2))

and is uniformly bounded. Similarly,

(4.11)' h'T(r) = 0(\/((\+r2)\r\))

and in addition, h'T(r) —» 0 for each r as T —> oc . It is easily verified that

(4.12) Ar(0) = 4(1-c(r))-> 4

and by (4.10) that

(4.13)

hT(ip) =  Í   y/T(s)e-s/2 ( Í (eap + e-"p)ea/2do\ ds

= 1eps( 1/2 + p)-lipT(s) ds + 0( \/T).
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Summing over the exceptional eigenvalues X¡■ = 1/4 - p2 < 1/4, p¡ > 0, we

get

T

(4.14) ^hT(iPj) = 2Í   WT(s)YJ{s)e-s'2ds + 0(l/T).
JO

In order to apply the Selberg trace formula, we first have to mollify cos. To

this end, let Ç(cr) € C°°(R) have support in (-1, 1) with J Ç(o)do = 1 and
set Ce(c) = C(o'/e)/e • Replacing cos by cos* Ç£, we now deal with

(4.15) gT,e(a) = gT*Çe   and   hT,e(r) = hT(r)Çs(r).

The Selberg trace formula [ 10] can now be written as

(4.16)

J¿2hT,e(rj) + Y,hT,e(iPj) + 2vhT,E(0)-l/2n [hT,E(rAl/2 + ir)dr

= \F\/2n f hT,E(r)rtanh(7ir)dr+l/2[K-tr(<&(l/2))]hT,e(0)

r        r
- 2zc In2gTt£(0)+ elliptic -I- hyperbolic - k/ti \ hT^(r) = (l/2+ ir)dr,

where cp = det(<J>).
To within o(l), the sum over the real nonzero r's together with the integral

on the left-hand side is cancelled out by the first term on the right-hand side.
In fact, it is known that [10] (cf. [3])

(4.17)

N(R) = #{|r7| < R} - l/2n [   ^-(1/2 + ir)dr = (\F\/2n)R2 + O(RlnR),
J-R  <P

and it follows from this that the three terms cancel each other to within an error

which, by (4.11 )', is of order

(4.18) \h'T(r)\rlnrdr = o(l).

All of the other terms are finite and remain so as we take the limit as e —► 0.

We are then left with a trace formula in gj and hj without the above three

terms. The gr(0) term, the elliptic term, and the /«7-('')^(l/2 + ir)dr term

are easily seen to be of o(l). There remains the sum over the imaginary r's on

the left-hand side (given by (4.14)), the «r(0) terms and the hyperbolic term

on the right-hand side.
The hyperbolic term is now equal to

(4.19) hyperbolic = 2 /   dsy/T(s)e-s'2 YYln(N(y))(l - N(y)-k)~x,
Jo

where the inner sum is over 1 < k < s/ln(N(y)) and the outer sum is over the

primitive conjugacy classes with ln(N(y)) < s. Hence, the right-hand side of

(4.19) can be rewritten as

(4.20)

2 Í   dsipT(s)e-s/2 ]T 9(es'k) + O ( Í   dsy/T(s)e~s/2 "£ f e~k° d9(e°) ) ,
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where the sums are over 1 < k < s/m, with m = In (smallest norm). Using

the crude estimate 9(es) ~ es, we can easily see that except for the first two

terms (in the first sum), this is 0(1 ¡T). The first term is

rT
2      y/T(s)e~s'29(es)ds,

Jo

whereas the second term converges to 2 as T —> oo. Combining all of the

above (in particular, (4.12), (4.14), (4.16), and (4.20)), we finally end up with
the assertion (4.4) as desired.   O

Since the maximum deviation is clearly greater than the mean deviation,

Theorem 4.1 implies the following omega result:

Corollary 4.2. If 4v -k + tr(0( 1/2)) ^ 1, then

(4.21) \9(es)-yL(s)\ = Yl(esl2).

This approach carries over to the prime geodesic function

(4.22) n(x) = ¿Z 1>

summed over the primitive conjugacy classes of norm < x . It is clear from the

definition of 9(x) that

(4.23) n(es)= [ I/od9(ea) = 9(es)/s + [ 9(ea)/a2do,
Jo Js

where 0 < ô < minln(zV(y)) over all norms N(y) with y hyperbolic. Setting

(4.24) lx(s) = l(s)/s   and   I2(s) = / 2Z(o)/o2do,
Js

we can write

(4.25) n(es) - I, (s) - Y2(s) = (9(es) - Y(s))/s + f\o(ea) - l(o))/o2 do.
Js

Theorem 4.3. The mean normalized remainder is given by

(4.26) lim   /   ipT(s)se-s'2(n(es)-lx(s)-l2(s))ds = 4u-K + lr(<^(l/2))-l.
7"-°°./0

Idea of proof. The assertion (4.26) will follow from Theorem 4.1 if we can show

that

(4.27) I(T)= (   ipr(s)se~s/2 f (9(ea)-Y(o))/o2 do ds ^ 0.
Jo Jó

To this end, we define co e C°°(R) as

Í <?l-l/2    for <5 < |t|, ,        , ,      iw

(4'28)   w(Ho       f„r|tf<¿/2    and   -'""{o
<?l*l/2    for <5 < |t| ,       ___,        ,_,      i co(x)   for |t| < cr,

for \x\> o.
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Then

(4.29)       f   9(e°)/o2d<J = z2ln(N(y))N(y)-x'2 Í  coa(ln(N(y)))/o2do,

summed over the primitive conjugacy classes.

Next, we apply the Selberg trace formula, with

gT(r)= /   ipT(s)se~s/2     coa(x)/a2dods
Jo Jo

(4-3°) =o)(x)(   ipT(s)se-s/2(l/x-l/s)ds,

/»OO

hr(r) = 2       cosxrgr(x)dx.
Jo

It is easy to show that gr(0) = 0 = gr(T) and that

(4-371)

/   \g{^(x)\dx = 0(l/T)   and     /   \xg<i\x)\dx = 0(l)   for i = 0, ... , 3,
Jo Jo

and it follows from this that

(4.32) Mr) = 0(1/(7X1+ Z-2)))   and   h'T(r) = 0(1/(1+ \r\3)) ;

for the latter estimate we need one more degree of smoothness in y/ . Rewriting

hj(r) as in (4.10), we can show that h'T(r) = o(l) for each r. The rest of the

argument follows that of Theorem 4.1.   D

Corollary 4.4. If 4v - k + tr(4>(l/2)) # 1, then

(4.33) \n(es) - I, (s) - l2(s)\ = Çl(ss'2/s).

In computing the MNR we have used the formula

(4.34) MNR(T)= /    normalized mean dtr/(T - 50).
./so

To make this into a mean of the type used in Theorems 4.1 and 4.3, we would

have to change o*tr into dir/Xt, the integral range into 1 to T, and (T- 50)

into ln(*T). We chose to give more weight to the larger values of tr.
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RALPH PHILLIPS

program rigidity (input, output);
{program for 1000 or less trace numbers}

type dataset = array [1..30000] of integer;

const  pi = 3.14159265359;
d = 50;        (computing for d characters}

var i,j,e,n,max,p,q,rl,r2,s,t,u: integer;  {matrix: mx = (ab, cd)}
e2,a2,b2,c2,a3,b3,sl,ul,vl,wl,xl: real;
a,b,c,f,al,bl,cl,ol: dataset;   {mx[i] obtained by ol[i] conjugacy}
m: array [0..1000] of integer;   {m counts matrices in list}
x,y,z: array [0..1000,1. .d] of real; {z counts conj. classes in n-chain}
k,l,r: array [l..d] of integer;  {original character parameters}
g,h: array [l..d] of real;    {modified character parameters}

{definition: scod (sign change in off diagonal) of mx is (a -b, -c d)}

procedure info;
var i: integer;
begin

writeln('give the maximum trace number');
readln(max);
for i:= 1 to d do

begin
writelnffor i = ', 1:1,'  give character parameters: k, 1, r');

readln(k[i],l[i],r[i]);
end;

for i:= 0 to 1000 do
for j:=  1 to d do

begin
x[i,j]:= 0;

y[i.j]:- 0;
z[i,j):= 0;

end;
for i:= 0 to 1000 do

m[i]:= 0;

for i:= 1 to d do
begin

g[i]:= 0; h[i]:= 0;
end;

end;

procedure list(n: integer); {computes all matrices with 0 < a < tr}
var e,i,j,x,y,tr,r: integer;    {having positive elements 0 < b <= c}
begin

r:= 0;  tr:= 4*n + 2;
for j:= 0 to n do

begin
x:= 2*j + 1; {possible value for a, 0 < a <= 2n+l}
e:= (x*(tr - x) - 1) div 4;
for i:= 1 to round(sqrt(e)) do

begin
y:= e mod i;
if (y = 0) then  {if i divides e then compute matrix elements}

begin
r:= r + 1;
a[r]:= x;
b[r]:= 2*i;
c[r]:= 2*e div i;
if (x <> tr - x) then

© 1995 American Mathematical Society
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