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A CONTINUOUS SPACE-TIME FINITE ELEMENT METHOD

FOR THE WAVE EQUATION

DONALD A. FRENCH AND TODD E. PETERSON

Abstract. We consider a finite element method for the nonhomogeneous
second-order wave equation, which is formulated in terms of continuous ap-
proximation functions in both space and time, thereby giving a unified treat-
ment of the spatial and temporal discretizations. Our analysis uses primarily

energy arguments, which are quite common for spatial discretizations but not
for time.

We present a priori nodal (in time) superconvergence error estimates with-
out any special time step restrictions. Our method is based on tensor-product
spaces for the full discretization.

1. Introduction

The continuous time Galerkin (CTG) method is a finite element technique which
provides time discretizations for evolution problems using approximation spaces of
continuous functions. This approach is particularly appropriate for wave problems
as it retains discrete versions of the important energy conservation properties pro-
vided by the initial/boundary value problem being approximated (see [11]). Com-
putations and analyses have shown this is especially useful in the approximation of
solutions to nonlinear wave problems (see, for instance, [12], [13], or [18]). Recent
work by DeFrutos and Sanz-Serna [7] indicates that the constants in long-time esti-
mates may be smaller for such methods. Another advantage of the CTG approach
is that CTG methods of any desired order of accuracy are easily formulated.

The main purpose of this paper is to demonstrate new variational techniques
to analyze these high-order accurate space-time finite element methods. We will
prove both global convergence and nodal in time superconvergence error estimates.
The global error estimates we present have also been obtained by [4] (see also [5]),
however, by nonvariational arguments, and in earlier work of the authors [10], but
by different techniques, which required a time step restriction. The approximation
of the heat equation by CTG methods was studied by Aziz and Monk [1]. Our
report complements theirs; however, we note that the stability estimates for the
wave equation are more complicated (see §3), and our proof of superconvergence is
shorter and, we feel, more straightforward. The techniques we use would also apply
to the heat equation.
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We remark that these CTG schemes in the homogeneous case (f = 0) are equiv-
alent to Gauss-Legendre implicit Runge-Kutta (IRK) methods (see [11]). In this
connection see also [3]. For three other nonclassical finite element treatments of
the wave equation, see Babuška and Janik [2], Johnson [14], and Richter [17].

It may seem unusual to use an implicit method for approximation of the wave
equation. However, for some wave problems, particularly nonlinear problems where
there may be “blowup” or highly singular behavior, there is growing evidence of the
advantages of implicit schemes. Bona et al. [6] use the Gauss-Legendre IRK meth-
ods to solve the generalized KdV equation efficiently. Strauss and Vazquez [18] note
that certain explicit methods fail while an implicit energy-preserving scheme gives a
sensible approximation to the generalized Klein-Gordon equation. In addition, the
variational formulation of space-time finite element methods seems to facilitate the
derivation of a posteriori error estimates, which may serve as the basis for rational
adaptive grid refinement (see [14] for an example for the wave equation). Based on
these observations, we consider the CTG method a viable approach to many wave
problems, and hope that the analysis presented here for the linear wave equation
will lay the foundation for future work on the sort of nonlinear problems mentioned
above.

The outline of this paper is as follows. In §1 we specify our notations, collect
important approximation results, and describe a useful reformulation of the wave
problem. Our main estimate will involve the decomposition

y − Y = (y − Pxỹ) + (Pxỹ − ỹ) + (ỹ − Y ) = ρ+ θ + η,

where y is the partial differential equation solution, Y is the fully discrete approx-
imation, ỹ is a discrete in time and continuous in space approximation, and Px is
projection in the spatial variables. In §3 we present the fundamental arguments in
an abstract setting from which the estimates of η for the wave equation will follow.
We introduce ỹ and several necessary regularity results in §4, and in §5 we complete
the estimate of the error y − Y , using the decomposition above and the theorems
for ỹ. Section 6 has the results of several numerical experiments with the scheme,
where we explore the necessity of some of the assumptions on the initial data.

2. Preliminaries

Let Ω be a bounded region in Rd (d = 1, 2, 3) with a smooth boundary ∂Ω, and
let [0, T ] be a finite time interval. We consider the following initial/boundary value
problem: find U = U(x, t) such that

Utt −∆U = f in Ω× [0, T ],

U = 0 on ∂Ω× [0, T ],(1)

U(·, 0) = U0 and Ut(·, 0) = V0 in Ω.

Our results easily generalize to the case where−∆ is replaced by any uniformly ellip-
tic selfadjoint second-order operator which is independent of t; the time-dependent
case will be the subject of future work.

For a domain S ⊂ Rd, we will use the Lebesgue spaces L2(S) and L∞(S), and
the Sobolev spaces Hs(S) for s a positive integer, all defined in the usual way. We
will also use H1

0 (Ω) and its dual H−1(Ω). For H1
0 (Ω), we take the norm to be

‖v‖H1
0(Ω) = ‖∇v‖L2(Ω). All of these spaces are Hilbert spaces except for L∞(S).

When S = Ω, we will usually omit Ω from our notation. For functions depending
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on both space and time variables, given a time interval [a, b] and H any of the above
Hilbert spaces, we define the Hilbert space L2([a, b], H) by

‖v‖L2([a,b],H) =

(∫ b

a

‖v(·, t)‖2Hdt
)1/2

.

There is an analogous definition for L∞([a, b], H). When [a, b] = [0, T ], these will
be denoted simply by L2(H) and L∞(H). We use C to denote a generic positive
constant, not necessarily the same at different occurrences, but always independent
of all discretization parameters, solutions, and of T .

We reformulate (2) as a first-order system by introducing the function V = Ut.
Letting

Y =

(
U
V

)
, F =

(
0
f

)
, and A =

[
0 −I
−∆ 0

]
,

we then have

Yt +AY = F in Ω× [0, T ],

Y = 0 on ∂Ω× [0, T ],(2)

Y (·, 0) =

(
U0

V0

)
in Ω,

where the domain of A is D(A) = (H2 ∩H1
0 ) ×H1

0 . It will also be convenient to
define a mapping T : H−1 → H1

0 by

−∆(Tv) = v in Ω,

T v = 0 on ∂Ω.

Finally, we define

B =

(
0 T
−I 0

)
,

with D(B) = L2×H−1. Notice that BA and AB are identities on the appropriate
domains.

We next discuss the approximation spaces and their properties. Let Shp be a

finite-dimensional subspace of H1
0 , depending on a discretization parameter h > 0.

Define the L2 projection πx : L2 → Shp by

(πxu, χ)L2 = (u, χ)L2 ∀χ ∈ Shp ,

and define the H1
0 projection Px : H1

0 → Shp by

(∇Pxu,∇χ)L2 = (∇u,∇χ)L2 ∀χ ∈ Shp .

We assume for Shp the following properties:

‖u− πxu‖L2 ≤ Chr‖u‖Hr ,(3)

where u ∈ Hr ∩H1
0 and 0 ≤ r ≤ p+ 1; and

‖u− Pxu‖Hs ≤ Chr−s‖u‖Hr ,(4)

where u ∈ Hr ∩H1
0 , 0 ≤ s ≤ r ≤ p + 1 and s = 0, 1. Define the discrete Laplace

operator −∆h : Shp → Shp by

(−∆hλ, χ)L2 = (∇λ,∇χ)L2 ∀χ ∈ Shp ,



494 D. A. FRENCH AND T. E. PETERSON

and define Th : H−1 → Shp by

(∇Thλ,∇χ)L2 = (λ, χ)L2 ∀χ ∈ Shp .
Note that Th restricted to Shp is the inverse of −∆h. We also define the following
two operators:

Ah =

(
0 −I
−∆h 0

)
and Bh =

(
0 Th
−I 0

)
.

Notice that on Shp × Shp these are inverses of each other.
Let [0, T ] be partitioned by 0 = t0 < t1 < · · · < tN = T , and let

In = [tn−1, tn], kn = tn − tn−1, k = max{kn : 1 ≤ n ≤ N}.
For functions φ which depend continuously on time, we will often use the notation
φn = φ(tn). The space of polynomials of degree q on an interval [a, b] is denoted by
Pq([a, b]). We define Skq to be those continuous functions on [0, T ] whose restriction

to any In belongs to Pq(In). Define an operator πt : L2(In) → Pq−1(In) by the
equation

(πtu, χ)L2(In) = (u, χ)L2(In) ∀χ ∈ Pq−1(In),

and also define Pt : H1([0, T ])→ Skq by Ptu(0) = u(0) and

(∂t(Ptu), χt)L2([0,T ]) = (ut, χt)L2([0,T ]) ∀χ ∈ Skq .
Note that

Ptu(tn) = u(tn), n = 0, 1, . . . , N,

and that there is no ambiguity if we talk of Pt : H1(In)→ Pq(In) (i.e., Pt may be
computed locally). Also note that πt and Pt are projections into different spaces.
We have the following approximation properties:

‖u− πtu‖L2(In) ≤ Ckrn‖∂rt u‖L2(In),(5)

where u ∈ Hr(In) and 0 ≤ r ≤ q; and

‖∂st (u− Ptu)‖L2(In) ≤ Ckr−sn ‖∂rt u‖L2(In),(6)

where u ∈ Hr(In) and 0 ≤ s ≤ r ≤ q+1, s = 0, 1. Any function φ ∈ Pq(In) satisfies
the following inverse properties:

‖φ‖L∞(In) ≤ Ck−1/2
n ‖φ‖L2(In),(7)

‖φt‖L2(In) ≤ Ck−1
n ‖φ‖L2(In),(8)

‖φ‖L2(In) ≤ C{k1/2
n |φ(tn−1)|+ ‖πtφ‖L2(In)}.(9)

(See Lemma 1, p. 42, in [9] for a proof of (9).)
The space-time domains Q = Ω × [0, T ] and Sn = Ω × In will be used in this

paper. Our approximate solutions will be defined in the space Shkpq = Shp ⊗ Skq .

The operators and estimates we have introduced for Skq and Shp can be extended in

obvious ways to the space Shkpq .
We now introduce the approximation scheme. The method is based on the

formulation (2), so U,Ut are approximated separately by u, v ∈ Shkpq . These approx-
imations are defined successively on each slab of space-time as follows:

(ut − v, χ)L2(Sn) = 0 ∀χ ∈ Shp ⊗ Pq−1(In),(10)
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(vt, λ)L2(Sn) + (∇u,∇λ)L2(Sn) = (f, λ)L2(Sn) ∀λ ∈ Shp ⊗ Pq−1(In).(11)

Also take u(·, 0) = u0 and v(·, 0) = v0, where u0, v0 ∈ Shp are some suitable approx-
imations of U0, V0. Note that the test functions χ, λ are one degree lower (q − 1)
in time to account for the fact that u and v are fixed a priori by continuity at
t = tn−1. Letting y = (u, v) and using the discrete Laplacian, we can reformulate
this problem in the same way as was done for the partial differential equation. We
obtain

(yt +Ahy, φ)L2(In,H1
0×L2) = (F, φ)L2(In,H1

0×L2) ∀φ ∈ [Shp ⊗ Pq−1(In)]2.(12)

One of the most appealing properties of this scheme is that it conserves energy
in the same way as the continuous problem. Letting χ = vt in (10) and λ = ut in
(11), we obtain

En = En−1 + (f, ut)Sn ,

where

En = 1
2‖vn‖

2
L2

+ 1
2‖∇un‖

2
L2
,

and if f = 0, then the energy is observed.

3. CTG approximation of an abstract IVP

In this section we consider the discretization in time of an abstract initial value
problem. Let H be a real Hilbert space, and let A be an operator defined on a
dense domain D(A) ⊂ H, which generates a strongly continuous semigroup, which
we will denote by etA. We assume that (AV, V ) ≥ 0 and that ‖A∗V ‖H ≤ C‖AV ‖H
for all V ∈ D(A). Then ‖e−tAV ‖H ≤ ‖V ‖H for all V ∈ H. In particular, these
assumptions are satisfied if A is skew-symmetric, which is the case for the wave
equation; however, our analysis is more general, and would apply also for example
to the heat equation if we took Y to be a scalar representing the temperature and
A the negative Laplacian operator. We consider the problem

Yt +AY = F, Y (0) = Y0.(13)

Precise assumptions on Y0 and F will be stated below. In this section we will denote
πt and Pt simply by π and P , respectively.

The time-discrete CTG approximation to (13) is an element y of D(A) ⊗ Skq
which satisfies y(0) = Y0 and for 1 ≤ n ≤ N

(yt, φ)L2(In,H) + (Ay, φ)L2(In,H) = (F, φ)L2(In,H) ∀φ ∈ H ⊗ Pq−1(In).(14)

We first derive a basic stability estimate.

Theorem 1. If y satisfies (14), then

(a) ‖yt‖L2(H) + ‖Ay‖L2(H) ≤ C{T 1/2‖AY0‖H + T‖AF‖L2(H) + ‖F‖L2(H)},

and for 0 ≤ t ≤ T

(b) ‖yt(t)‖H + ‖Ay(t)‖H ≤ C{‖AY0‖H + T 1/2‖AF‖L2(H) + ‖F‖L∞(H)}.
Proof. On each subinterval, (14) is equivalent to yt = −πAy + πF . Therefore, by
(9), we have

‖Ay‖L2(In,H) ≤ C{k1/2
n ‖Ayn−1‖H + ‖πAy‖L2(In,H)}

≤ C{k1/2
n ‖Ayn−1‖H + ‖yt‖L2(In,H) + ‖F‖L2(In,H)}.

(15)
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Taking φ = Ayt in (14) gives

(yt,Ayt)L2(In,H) + (Ay,Ayt)L2(In,H) = (F,Ayt)L2(In,H),

1
2‖Ayn‖

2
H − 1

2‖Ayn−1‖2H ≤ −(AF, yt)L2(In,H).

Summing over n gives
1
2‖Ayn‖

2
H ≤ 1

2‖Ay0‖2H − (AF, yt)L2([0,tn],H).(16)

On In let w(t) = t−tn−1 and write y = yn−1+wy with y ∈ H⊗Pq−1(In). Choosing
φ = y in (14) gives

(yt, y)L2(In,H) + (Ay, y)L2(In,H) = (F, y)L2(In,H),

(y, y)L2(In,H) + (wyty)L2(In,H) + (Ayn−1, y)L2(In,H)

+ (wAy, y)L2(In,H) =(F, y)L2(In,H),

‖y‖2L2(In,H) + (wyt, y)L2(In,H) ≤ −(Ayn−1, y)L2(In,H) + (F, y)L2(In,H).

Integration by parts in time establishes that

(wyt, y)L2(In,H) = − 1
2‖y‖

2
L2(In,H) + 1

2kn‖yn‖
2
H .

Thus,
1
2‖y‖

2
L2(In,H) ≤ ‖Ayn−1‖L2(In,H)‖y‖L2(In,H) + ‖F‖L2(In,H)‖y‖L2(In,H)

= k1/2
n ‖Ayn−1‖H‖y‖L2(In,H) + ‖F‖L2(In,H)‖y‖L2(In,H),

whence

‖y‖L2(In,H) ≤ 2{k1/2
n ‖Ayn−1‖H + ‖F‖L2(In,H)}.(17)

By the inverse estimate (8) and properties of w, we have

‖yt‖L2(In,H) = ‖y + wyt‖L2(In,H) ≤ ‖y‖L2(In,H) + ‖wyt‖L2(In,H) ≤ C‖y‖L2(In,H).

(18)

Equations (15)–(18) combine to give

‖yt‖2L2(In,H) + ‖Ay‖2L2(In,H) ≤ C{kn‖Ayn−1‖2H + ‖F‖2L2(In,H)}
≤ C{kn‖Ay0‖2H + kn‖AF‖L2([0,tn],H)‖yt‖L2([0,tn],H) + ‖F‖2L2(In,H)}.

(19)

Summing over n yields

‖yt‖2L2([0,tn],H) + ‖Ay‖2L2([0,tn],H)

≤ C{tn‖Ay0‖2H + tn‖AF‖L2([0,tn],H)‖yt‖L2([0,tn],H) + ‖F‖2L2([0,tn],H)}.
(20)

A simple kickback argument completes the proof of the first result.
To obtain the pointwise in time estimate, by (7) and (19),

‖yt‖2L∞(In,H) + ‖Ay‖2L∞(In,H) ≤ Ck−1
n {‖yt‖2L2(In,H) + ‖Ay‖2L2(In,H)}

≤ C{‖Ay0‖2H + ‖AF‖L2([0,tn],H)‖yt‖L2([0,tn],H) + k−1
n ‖F‖2L2(In,H)}

≤ C{‖Ay0‖2H + tn‖AF‖2L2([0,tn],H) + t−1
n ‖yt‖2L2([0,tn],H) + k−1

n ‖F‖2L2(In,H)}.
Now by (20) we have

‖yt‖2L∞(In,H) + ‖Ay‖2L∞(In,H)

≤ C{‖Ay0‖2H + tn‖AF‖2L2([0,tn],H) + ‖F‖2L∞([0,tn],H)}.
The desired result follows.
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If H is finite-dimensional, then existence and uniqueness of the CTG approxima-
tion follow at once from the preceding stability estimate. The next theorem shows
that this holds true in general.

Theorem 2. Given Y0 ∈ D(A) and F which satisfies ‖AF‖L2(H)+‖F‖L2(H) <∞,

there is a unique y ∈ D(A) ⊗ Skq which satisfies (14).

Proof. Let {φn} be an orthonormal basis for H, with φn ∈ D(A), and set Hn =
span{φ1, . . . , φn}. Let yn0 be the orthogonal projection of Y0 into Hn. It suffices
to consider a generic time interval, such as I = [0, 1]. For each n there exists a
unique solution to the (finite-dimensional) problem: find yn ∈ Hn⊗Pq(I) such that
yn(0) = yn0 and

(ynt +Ayn, χ)L2(I,H) = (F, χ)L2(I,H) ∀χ ∈ Hn ⊗ Pq−1(I).

By the previous theorem and the inequality

‖y‖L2(I,H) ≤ ‖y(0)‖H +

∫
I

‖yt(t)‖H dt ≤ ‖y(0)‖H + ‖yt‖L2(I,H)

it follows that {‖yn‖L2(I,H) + ‖Ayn‖L2(I,H)} is bounded. Because A is necessarily
closed (being the generator of a strongly continuous semigroup), from this we can
deduce that there is a subsequence, still denoted yn, such that yn converges weakly
in L2(I,H) to some y ∈ D(A), and further that Ayn converges weakly in L2(I,H)
to Ay. Since

(ynt , χ)L2(I,H) = −(yn, χt)L2(I,H) → −(y, χt)L2(I,H) = (yt, χ)L2(I,H),

we also have that ynt converges weakly to yt. To show that y satisfies (14), given
χ ∈ H ⊗ Pq−1(I), let χm be the orthogonal projection of χ into Hm ⊗ Pq−1(I).
Then for n ≥ m

(ynt +Ayn, χm)L2(I,H) = (F, χm)L2(I,H).

Fix m, and let n → ∞, and then let m → ∞. It only remains to show that the
initial condition is satisfied. But this is trivial: by construction yn(0) converges in
H to Y0, and it is also easy to deduce that yn(0) converges weakly in H to y(0);
it follows that y(0) = Y0. This proves existence. Uniqueness follows immediately
from the stability estimate.

The previous theorem guarantees that y(t) ∈ D(A); standard arguments show
that y(t) will have more regularity (i.e., lies in the domain of higher powers of A)
under the appropriate assumptions on Y0 and F , and this fact will be tacitly used
below. The stability estimate also allows us to prove the following error estimate.

Theorem 3. Let Y be the solution of (13), and y the CTG approximation defined
by (14). Then for 0 ≤ t ≤ T

‖Ay(t)−AY (t)‖H ≤ Ckq+1{T 1/2‖∂q+1
t A2Y ‖L2(I,H) + ‖∂q+1

t AY ‖L∞(H)}.

Proof. Write y − Y = (y − PY ) − (Y − PY ) = θ + ρ. Note that θ ∈ H ⊗ Skq
and θ(0) = 0. A short calculation establishes that θ satisfies, for any n and any
φ ∈ H ⊗ Pq−1(In),

(θt +Aθ, φ)L2(In,H) = (Aρ, φ)L2(In,H).

The stated estimate follows by applying Theorem 1b to θ, and estimating ρ using
(6).
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Our next goal is to derive a higher-order estimate for the error at time nodes
t = tn. For this we will need the following stability result.

Lemma 1. The solution y of (14) satisfies

‖∂qtAq+1y‖L2(H) ≤ CT 1/2‖A2q+1Y0‖H + CT‖A2q+1F‖L2(H)

+ C

q∑
j=1

‖∂q−jt Aq+jF‖L2(H).

Proof. Recall that on each subinterval In, y satisfies yt + πAy = πF . Operating on
this identity with ∂i−1

t Aj gives

∂itAjy = −∂i−1
t Aj+1y + ∂i−1

t (I − π)Aj+1y + ∂i−1
t πAjF.(21)

For the second term on the right-hand side, we have by (5) and (8) that

‖∂i−1
t (I − π)Aj+1y‖L2(In,H) ≤ Ck−(i−1)

n ‖(I − π)Aj+1y‖L2(In,H)

≤ Ck−(i−1)
n ki−1

n ‖∂i−1
t Aj+1y‖L2(In,H),

and thus taking norms in (21) gives

‖∂itAjy‖L2(In,H) ≤ C‖∂i−1
t Aj+1y‖L2(In,H) + ‖∂i−1

t AjπF‖L2(In,H).(22)

By summing over n and repeated use of (22) we obtain

‖∂qtAq+1y‖L2(H) ≤ C‖∂tA2qy‖L2(H) + C

q−1∑
j=1

‖∂q−jt Aq+jF‖L2(H).

The proof is now completed by applying Theorem 1 to A2qy, which is just the CTG
solution to the problem with initial data A2qY0 and nonhomogeneity A2qF .

The following is the final result of this section.

Theorem 4. Let Y be the solution of (13), and y the CTG approximation defined
by (14). Then, assuming Y0 and F have the indicated regularity, for 1 ≤ n ≤ N

‖y(tn)− Y (tn)‖H

≤ Ck2q

T‖A2q+1Y0‖H + T 3/2‖A2q+1F‖L2(H) + T 1/2

q∑
j=0

‖∂q−jt Aq+jF‖L2(H)

.
Proof. Let E = y − Y . Then on In, E satisfies Et +AE = (I − π)(Ay − F ), so

En = eknAEn−1 +

∫ tn

tn−1

e(t−tn)A(I − π)(Ay − F ) dt.

The idea of the proof is to use Taylor’s theorem to write

e(t−tn)A = Q(t) +
1

(q − 1)!

∫ t

tn−1

(t− s)q−1Aqe(s−tn)A ds,

where Q is a polynomial of degree q − 1 in time. In the case that A is unbounded,
some care is required in interpreting this identity. The procedure can be made
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precise by, for example, use of the Yosida approximation to A (see Pazy [16, p. 9]).
For the sake of clarity, we omit these details. We have

En = eknAEn−1

+
1

(q − 1)!

∫ tn

tn−1

∫ t

tn−1

(t− s)q−1Aqe(s−tn)A(I − π)(Ay − F )(t) ds dt,

since the term involving Q is zero, by the definition of π and the fact that Q is
degree q − 1 in time. Since ‖etA‖ ≤ 1, we obtain

‖En‖H ≤ ‖En−1‖H + C

∫ tn

tn−1

∫ tn

tn−1

kq−1
n ‖Aq(I − π)(Ay − F )(t)‖)H ds dt

≤ ‖En−1‖H + Ckqn

∫ tn

tn−1

‖Aq(I − π)(Ay − F )(t)‖H dt

≤ ‖En−1‖H + Ckq+1/2
n ‖Aq(I − π)(Ay − F )‖L2(In,H).

Now by (5) we obtain

‖En‖H ≤ ‖En−1‖H + Ck2q+1/2
n {‖∂qtAq+1y‖L2(In,H) + ‖∂qtAqF‖L2(In,H)}.

It follows in a straightforward way that

‖En‖H ≤ Ct1/2n k2q{‖∂qtAq+1y‖L2([0,tn],H) + ‖∂qtAqF‖L2([0,tn],H)}.

The theorem now follows by the previous lemma.

4. Applications

In this section we apply the results of the previous section to some specific
examples. First let H = H1

0 × L2, A = A, as defined in §2, and F = (0, f). Then
the CTG approximation of the previous section is the time-discrete approximation
for the wave equation, and will henceforth be denoted by ỹ. An assumption such
as Y0 ∈ D(A2q+1) implies not only assumptions about the regularity of U0 and V0,
but also certain boundary conditions, also referred to as compatibility conditions,
for these functions. These are most easily described by introducing the Ḣs spaces,
defined by

Ḣs = {v ∈ Hs: ∆jv|∂Ω = 0, j ∈ Z, 0 ≤ j < s/2}.

These are Hilbert spaces, and on Ḣs, ‖v‖Ḣs ≡ ‖∆s/2v‖L2 and ‖v‖Hs are equivalent

norms. Notice that Ḣ0 = L2 and Ḣ1 = H1
0 . It is easily checked that

D(Aj) = Ḣj+1 × Ḣj

for j ≥ 0. We also have D(A−1) = L2 ×H−1. We can now state the results that
will be needed in the next section.

Theorem 5. Let Y be the solution of (2), and ỹ the time-discrete CTG approxi-
mation. Then for j = 0, 1, . . .

(a) ‖Aj ỹt‖L∞(H1
0×L2) + ‖Aj+1ỹ‖L∞(H1

0×L2)

≤ C{‖U0‖Ḣj+2 + ‖V0‖Ḣj+1 + T 1/2‖f‖L2(Ḣj+1) + ‖f‖L∞(Ḣj)}
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and for j = −1, 0, 1, and 0 ≤ n ≤ N ,

(b) ‖Aj(ỹ − Y )(tn)‖H1
0×L2

≤ Ck2q{T‖U0‖Ḣ2q+2+j + T‖V0‖Ḣ2q+1+j +Mj(f, q, T )},
where

Mj(f, q, T ) ≡ T 3/2‖f‖L2(Ḣ2q+1+j) + T 1/2

q∑
i=0

‖∂itf‖L2(Ḣ2q−i+j ).(23)

Proof. The first result is the consequence of Theorem 1(b) applied to Aj ỹ. Part
(b) is obtained by applying Theorem 4 to Bỹ, to ỹ, and to Aỹ.

Note that part (b) of the above theorem gives L2 and H1
0 estimates for U − ũ

when j = −1 and j = 0, respectively, and gives such estimates for V − ṽ when j = 0
and j = 1.

The second specific case we consider is H = Shp × Shp , with the H1
0 × L2 inner

product, and A = Ah. Then the approximation defined in §3 is the fully discrete
CTG approximation for the wave equation, and will henceforth be denoted by y.
We will need the following results.

Theorem 6. Let y = (u, v) satisfy the fully discrete equation (12). Then

(a) ‖u‖L∞(L2) + ‖Thv‖L∞(H1
0 )

≤ C{‖u0‖L2 + ‖Thv0‖H1
0

+ T 1/2‖Thf‖L2(H1
0 ) + ‖Thf‖L∞(L2)},

(b) ‖u‖L∞(H1
0 ) + ‖v‖L∞(L2)

≤ C{‖u0‖H1
0

+ ‖v0‖L2 + T 1/2‖f‖L2(L2) + ‖Thf‖L∞(H1
0 )},

(c) ‖∆hu‖L∞(L2) + ‖v‖L∞(H1
0 )

≤ C{‖∆hu0‖L2 + ‖v0‖H1
0

+ T 1/2‖f‖L2(H1
0 ) + ‖f‖L∞(L2)}.

Proof. Apply Theorem 1(b) in turn to B2
hy, to Bhy, and to y.

5. Error estimates for fully discrete CTG

Theorem 7. Let Y = (U, V ) be the solution of (2), and y = (u, v) the CTG
approximation defined by (12), with (u0, v0) = (PxU0, PxV0). Let p = max(p, 2).
For 0 ≤ t ≤ T there holds

(a) ‖u(t)− U(t)‖L2

≤ C(T + 1)kq+1{‖∂q+2
t U‖L∞(L2) + ‖∂q+1

t U‖L∞(H1
0 )}

+ C(T + 1)hp+1{‖Utt‖L∞(Hp) + ‖U‖L∞(Hp+1)},

(b) ‖u(t)− U(t)‖H1
0

≤ C(T + 1)kq+1{‖∂q+2
t U‖L∞(H1

0 ) + ‖∂q+1
t U‖L∞(H2)}

+ C(T + 1)hp{‖Utt‖L∞(Hp) + ‖U‖L∞(Hp+1)},

(c) ‖v(t)− V (t)‖L2

≤ C(T + 1)kq+1{‖∂q+2
t U‖L∞(H1

0 ) + ‖∂q+1
t U‖L∞(H2)}

+ C(T + 1)hp+1{‖Utt‖L∞(Hp+1) + ‖Ut‖L∞(Hp+1)},
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(d) ‖v(t)− V (t)‖H1
0

≤ C(T + 1)kq+1{‖∂q+2
t U‖L∞(H2) + ‖∂q+1

t U‖L∞(H3)}
+ C(T + 1)hp{‖Utt‖L∞(Hp+1) + ‖Ut‖L∞(Hp+1)}.

Proof. We write

y − Y = (y − PxPtY ) + (PxPtY − Y ) = θ + ρ.

Then u− U = θ1 + ρ1 and v − V = θ2 + ρ2. Note that θ ∈ [Shkpq ]2, θ(0) = 0, and θ
satisfies, for 1 ≤ n ≤ N ,

(θt +Ahθ, φ)L2(In,H1
0×L2) = (G,φ)L2(In,H1

0×L2) ∀φ ∈ [Pq−1(In)⊗ Shp ]2

with G = ((Pt − I)Ut, (I − Px)Utt − (I − Pt)∆U). To derive the L2-estimate for u,
begin by applying Theorem 1(b) with A = Ah to B2

hθ to obtain

‖θ1(t)‖L2 ≤ ‖Bhθ(t)‖H1
0×L2

≤ C{T 1/2‖BhG‖L2(H1
0×L2) + ‖B2

hG‖L∞(H1
0×L2)}

≤ C(T + 1)‖BhG‖L∞(H1
0×L2)

≤ C(T + 1){‖G1‖L∞(L2) + ‖ThG2‖L∞(H1
0 )}.

(24)

For G1, we have by (6),

‖G1‖L2 = ‖(I − Pt)Ut‖L2 ≤ Ckq+1‖∂q+2
t U‖L2.(25)

For G2, we have

‖ThG2‖H1
0
≤ ‖G2‖H−1

≤ ‖(I − Px)Utt‖H−1 + ‖(I − Pt)∆U‖H−1

≤ Chp+1‖Utt‖Hp + Ckq+1‖∂q+1
t U‖H1

0
.

(26)

In the last inequality we have used a negative norm estimate for Px when p > 1.
Combining (24), (25) and (26) gives an estimate for ‖θ1‖L2 . By writing ρ1 =
(I−Px)U +Px(I −Pt)U , and using the approximation properties of Px and Pt, we
obtain the estimate

‖ρ1‖L2 ≤ Chp+1‖U‖Hp+1 + Ckq+1‖∂q+1
t U‖H1

0
.

The first of the four results now follows.
Next we apply Theorem 1(b) to Bhθ to obtain

‖θ(t)‖L∞(H1
0×L2) ≤ C{T 1/2‖G‖L2(H1

0×L2) + ‖BhG‖L∞(H1
0×L2)}

≤ C(T + 1)‖G‖L∞(H1
0×L2)

≤ C(T + 1){‖G1‖L∞(H1
0 ) + ‖G2‖L∞(L2)}.

(27)

We can estimate these terms by

‖G1‖H1
0

= ‖(I − Pt)Ut‖H1
0
≤ Ckq+1‖∂q+2

t U‖H1
0
,(28)

and

‖G2‖L2 ≤ ‖(I − Px)Utt‖L2 + ‖(I − Pt)∆U‖L2

≤ Chp+s‖Utt‖Hp+s + Ckq+1‖∂q+1
t ∆U‖L2,

(29)

for s = 0, 1. Inequalities (27), (28), and (29) with s = 0 give an estimate for ‖θ1‖H1
0
,

which, when combined with the appropriate estimate for ‖ρ1‖H1
0
, yields part (b) of

the theorem.



502 D. A. FRENCH AND T. E. PETERSON

To derive the third result, we use (27), (28), and (29) with s = 1 to obtain an
estimate for ‖θ2‖L2 . And ρ2 can be bounded as was ρ1, but with Ut in the place of
U .

The final result follows in a similar way from applying Theorem 1(b) to θ.

Theorem 8. Let Y = (U, V ) be the solution of (2), and y = (u, v) the CTG
approximation defined by (12), with (u0, v0) = (PxU0, PxV0). Let p = max(p, 2),
and let M be as defined in (23). For 1 ≤ n ≤ N there holds

(a) ‖u(tn)− U(tn)‖L2

≤ C(T + 1)(hp+1 + k2q){‖U0‖Ḣmax(p+2,2q+1) + ‖V0‖Ḣmax(p+1,2q)}
+ C(T + 1)2hp+1‖f‖L∞(Ḣp+1) + Ck2qM−1(f, q, T ),

(b) ‖u(tn)− U(tn)‖H1
0

≤ C(T + 1)(hp + k2q){‖U0‖Ḣmax(p+2,2q+2) + ‖V0‖Ḣmax(p+1,2q+1)}
+ C(T + 1)2hp‖f‖L∞(Ḣp+1) + Ck2qM0(f, q, T ),

(c) ‖v(tn)− V (tn)‖L2

≤ C(T + 1)(hp+1 + k2q){‖U0‖Ḣmax(p+3,2q+2) + ‖V0‖Ḣmax(p+2,2q+1)}
+ C(T + 1)2hp+1‖f‖L∞(Ḣp+2) + Ck2qM0(f, q, T ),

(d) ‖v(tn)− V (tn)‖H1
0

≤ C(T + 1)(hp + k2q){‖U0‖Ḣmax(p+3,2q+3) + ‖V0‖Ḣmax(p+2,2q+2)}
+ C(T + 1)2hp‖f‖L∞(Ḣp+2) + Ck2qM1(f, q, T ).

Proof. Let ỹ = (ũ, ṽ) be the time-discrete CTG approximation with ỹ0 = (U0, V0),
and write

y − Y = (y − Pxỹ) + (Pxỹ − ỹ) + (ỹ − Y )

= θ + ρ+ η,
(30)

where Pxỹ = (Pxũ, Pxṽ). Note that θ ∈ [Shkpq ]2, θ(0) = 0, and a short calculation
shows that θ satisfies, for 1 ≤ n ≤ N ,

(θt +Ahθ, φ)L2(In,H1
0×L2) = (G,φ)L2(In,H1

0×L2) ∀φ ∈ [Pq−1(In)⊗ Shp ]2,

where G = (0, g), with g = (I−Px)ṽt. We will prove in detail only the L2 estimate
for U − u = θ1 + ρ1 + η1, and begin by looking at the first component θ1 of θ. By
Theorem 6(a) applied to θ,

‖θ1‖L∞(L2) ≤ C{T 1/2‖Thg‖L2(H1
0 ) + ‖Thg‖L∞(L2)}

≤ C(T + 1)‖g‖L∞(H−1)

≤ C(T + 1)hp+1‖ṽt‖L∞(Hp)

≤ C(T + 1)hp+1‖Apỹt‖L∞(H1
0×L2).

In the second-to-last inequality, we have again used a negative norm estimate for
Px when p > 1. For the first component of ρ1 of ρ, we have
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‖ρ1‖L∞(L2) = ‖(I − Px)ũ‖L∞(L2)

≤ Chp+1‖ũ‖L∞(Hp+1)

≤ Chp+1‖Apỹ‖L∞(H1
0×L2).

Together, we have

‖θ1‖L∞(L2) + ‖ρ1‖L∞(L2) ≤ Chp+1{(T + 1)‖Apỹt‖L∞(H1
0×L2) + ‖Apỹ‖L∞(H1

0×L2)}
≤ Chp+1(T + 1){‖U0‖Ḣp+2 + ‖V0‖Ḣp+1 + (T + 1)‖f‖L∞(Ḣp+1)},

where the last inequality is obtained by applying Theorem 5(a). Combining this
estimate with an estimate for η1 = ũ − U from Theorem 5(b) gives the desired
result. The proofs of parts (b)–(d) follow the same pattern.

Remark 1. For other optimal-order choices of the discrete initial data, the above
estimates for u − U remain valid, while the derivation of the estimates for v − V
require u0 = PxU0. Numerical examples indicate that this restriction is necessary
in practice.

Remark 2. Global (in time) bounds of order kq+1 as in Theorem 7 could also be
obtained from the splitting (30), by estimating θ and ρ as in the proof of Theorem
8, and using Theorem 3 with A = A to estimate η.

Remark 3. In place of the splitting (30) used in the derivation of the order k2q

estimates, we could use the simpler splitting

Y hk − Y = (Y hk − Y h) + (Y h − Y ) = θ + ρ.

Here, for clarity, we have used superscripts to indicate space and time discretiza-
tions. Estimates for ρ are well known, and θ can be estimated by applying Theorem
4 with A = Ah. However, this results in the appearance of discrete norms of the
data. For example, in the case f = 0 one would have

‖θ(tn)‖H1
0×L2

≤ CTk2q‖A2q+1
h y0‖H1

0×L2

≤ CTk2q{‖∆q+1
h u0‖L2 + ‖∆q

hv0‖H1
0
}.

Bounding the quantities on the right-hand side in terms of continuous Sobolev
norms of the data U0, V0 can be done in some cases, but apparently not in all.

6. Numerical results

In this section we present some numerical results for Ω = (0, 1) ⊂ R, with
Shp based on a uniform mesh, and uniform time steps. The estimated rates of
convergence reported in the tables are all with respect to the parameter h.

First, we investigate how the choice of the discrete initial data affects the approx-
imation. In Example 1 the exact solution is smooth, and we take p = 3, q = 2, and
k = O(h), so that L2 errors should be fourth-order with respect to h, and H1

0 errors
should be third-order. The results are consistent with Remark 2: the approxima-
tion of U is insensitive to the choice of u0 and v0, whereas for the approximation
of V to be of optimal order it is necessary that u0 be the elliptic projection of U0

(but v0 is still free to be any reasonable choice). However, we have also observed in
practice that when p = q = 1, any optimal-order choice of the discrete initial data
results in all quantities being of optimal order, so that in this case the assumption
u0 = PxU0 required for our analysis may be unnecessary.
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Example 1. Choice of discrete initial data

Utt − Uxx = 0

U(x, t) = sin(πx) cos(πt+ 1)

p = 3, q = 2, T = 1.0, k = h

(1a) u0 = PxU0, v0 = πxV0

1/h 1/k ‖(U − u)(T )‖L2 rate ‖(U − u)(T )‖H1
0

rate

16 16 0.3845e− 5 0.3106e− 4
32 32 0.2413e− 6 4.00 0.3656e− 5 3.09
64 64 0.1509e− 7 4.00 0.4496e− 6 3.02
128 128 0.9412e− 9 4.00 0.5597e− 7 3.00

1/h 1/k ‖(V − v)(T )‖L2 rate ‖(V − v)(T )‖H1
0

rate

16 16 0.7883e− 5 0.1561e− 3
32 32 0.4916e− 6 4.00 0.1813e− 4 3.11
64 64 0.3051e− 7 4.00 0.2320e− 5 2.97
128 128 0.1905e− 8 4.00 0.2891e− 6 3.00

(1b) u0 = πxU0, v0 = PxV0

1/h 1/k ‖(U − u)(T )‖L2 rate ‖(U − u)(T )‖H1
0

rate

16 16 0.3859e− 5 0.3367e− 4
32 32 0.2415e− 6 4.00 0.3765e− 5 3.16
64 64 0.1508e− 7 4.00 0.4764e− 6 2.98
128 128 0.9418e− 9 4.00 0.5910e− 7 3.01

1/h 1/k ‖(V − v)(T )‖L2 rate ‖(V − v)(T )‖H1
0

rate

16 16 0.1627e− 4 0.1688e− 2
32 32 0.2261e− 5 2.85 0.5373e− 3 1.65
64 64 0.2515e− 6 3.16 0.1224e− 3 2.13
128 128 0.3116e− 7 3.01 0.3102e− 4 1.98

Next, we consider the compatibility conditions. Suppose f is identically zero
and p > 1. Then for ‖(U − u)(tn)‖L2 to be of optimal order, Theorem 8 requires
that

U0 ∈ Ḣmax(p+2,2q+1), V0 ∈ Ḣmax(p+1,2q).

If, for example, 2q = p+1, a reasonable choice if k = O(h), then these assumptions
are no more than those required for the standard time-continuous space-discrete
finite element approximation to be of optimal order. For another example, suppose
p = q > 1. Then the assumptions are stronger than those required for the space-
discretization alone. In Example 2, p = q = 2 and k = O(h3/4), so that for L2

errors O(h3) would be optimal. We have set V0 = 0 and chosen U0 to be a smooth
function, so that the only remaining issue is whether U0 satisfies the appropriate
compatibility conditions. For ‖U − u‖L2 to be O(h3), our analysis requires that

U0 ∈ Ḣ5 → U0 = U0xx = U0xxxx = 0 on ∂Ω.

The numerical results indicate that this assumption is necessary.
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Example 2. Compatibility conditions for U0

Utt − Uxx = 0

U0(x) = [x(1− x)]a, V0 = 0

p = 2, q = 2, T = 0.9, k = O(h3/4), u0 = PxU0

(2a) a = 4, U0 = U0xx = 0 on ∂Ω

1/h 1/k ‖(U − û)(T )‖L2 rate
32 13 0.1937E − 05
64 22 0.3431E − 06 2.50
128 38 0.5486E − 07 2.64
256 64 0.9164E − 08 2.58
512 107 0.1526E − 08 2.59

(2b) a = 5, U0 = U0xx = U0xxxx = 0 on ∂Ω

1/h 1/k ‖(U − u)(T )‖L2 rate
32 13 0.7700E − 06
64 22 0.1018E − 06 2.92
128 38 0.1181E − 07 3.11
256 64 0.1487E − 08 2.99
512 107 0.1913E − 09 2.96
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