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ON THE r-RANK ARTIN CONJECTURE

FRANCESCO PAPPALARDI

Abstract. We assume the generalized Riemann hypothesis and prove an as-
ymptotic formula for the number of primes for which F∗p can be generated by
r given multiplicatively independent numbers. In the case when the r given
numbers are primes, we express the density as an Euler product and apply this
to a conjecture of Brown–Zassenhaus (J. Number Theory 3 (1971), 306–309).
Finally, in some examples, we compare the densities approximated with the
natural densities calculated with primes up to 9 · 104.

1. Introduction

Suppose a1, . . . , ar are multiplicatively independent integers none of which is ±1
or 0 and not all are perfect squares. Let Γ denote the subgroup of Q× generated by
a1, . . . , ar. For all the primes p that do not divide any of a1, . . . , ar, we consider
the reduction of Γ modulo p and denote it by Γp. Γp can be viewed as a subgroup
of F∗p. We denote by NΓ(x) the number of primes p up to x which do not divide
any of the a1, . . . , ar and such that

F∗p = Γp.(1.1)

NΓ(x) measures the number of primes for which a1, . . . , ar generate a primitive
root (mod p).

In the case r = 1, the Artin’s Conjecture for primitive roots predicts the proba-
bility for a prime p to have a given number a as a primitive root.

For example, if a = 2, then Artin Conjecture states that

N〈2〉(x) ∼
∏

l prime

(
1− 1

l(l − 1)

)
x

logx
.(1.2)

Hooley [7] has shown that if the generalized Riemann hypothesis holds for the
Dedekind zeta function of the fields Q(ζl, 2

1/l), with l prime, then the asymptotic
formula in (1.2) holds.

The idea of considering “higher rank” analogue to the Artin Conjecture is due
to Rajiv Gupta and Maruti Ram Murty who in [6] gave asymptotic formulas for
the number of primes p up to x for which r given rational points of an elliptic curve
E/Q generate (mod p) the finite group E(Fp).

We will prove the following:
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Theorem 1.1. Let Γ be as above, set nm = [Q(ζm, a
1/m
1 , . . . , a

1/m
r ) : Q] and define

δΓ =
∞∑
m=1

µ(m)

nm
.(1.3)

The sum in (1.3) converges absolutely and if the generalized Riemann hypothesis

holds for the Dedekind zeta function of the fields Q(ζm, a
1/m
1 . . . , a

1/m
r ), then

NΓ(x) = δΓ li(x) + O

(
x log(a1 · · · ar)

log2 x

)
,(1.4)

uniformly with respect to r ≤ 1
3 log 2 logx and a1, . . . , ar.

If in addition we suppose that a1, . . . , ar are primes, then

NΓ(x) = δΓ li(x) + O

(
x4r log(x · a1 · · ·ar)

logr+2 x

)
,(1.5)

uniformly with respect to r ≤ 1
4

log x
log log x and a1, . . . , ar.

The value of the density can be expressed as an Euler product. We will do this
in the case in which all the a1, . . . , ar are primes.

Theorem 1.2. Let p1, . . . , pr be odd primes, nm = [Q (ζm, p
1/m
1 , . . . , p

1/m
r ) : Q],

ñm = [Q(ζm, 2
1/m, p

1/m
1 , . . . , p

1/m
r ) : Q]. Define the r–dimensional incomplete

Artin’s constant to be:

Ar =
∏

l odd prime

(
1− 1

lr(l − 1)

)
.(1.6)

Then

∞∑
m=1

µ(m)

nm
= Ar

1− 1

2r+1

 r∏
i=1

1−

(
−1
pi

)
pr+1
i − pri − 1

+
r∏
i=1

[
1− 1

pr+1
i − pri − 1

]
and

∞∑
m=1

µ(m)

ñm
= Ar+1

1− 1

2r+2

 r∏
i=1

 1−

(
−1
pi

)
pr+2
i − pr+1

i − 1


+

r∏
i=1

[
1− 1

pr+2
i − pr+1

i − 1

] .
2. Proof of Theorem 1.1

We first note that

nm ≥ [Q(ζm, a
1/m
1 ) : Q]� ϕ(m)m

log a1
,(2.1)

therefore δΓ is a convergent series and thus a well defined number.
The first step of the proof follows the original idea of Hooley who considered the

following functions:

NΓ(x, y) = #
{
p ≤ x

∣∣ p - a1 · · · ar, ∀l, l ≤ y, l - [F∗p : Γp]
}
,(2.2)

MΓ(x, y, z) = #
{
p ≤ x

∣∣ p - a1 · · · ar, ∃l, y ≤ l ≤ z, l
∣∣[F∗p : Γp]

}
,(2.3)

MΓ(x, z) = #
{
p ≤ x

∣∣ p - a1 · · · ar, ∃l, l ≥ z, l
∣∣[F∗p : Γp]

}
,(2.4)
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where y and z are parameters to be chosen later.
Clearly,

NΓ(x, y) ≥ NΓ(x) ≥ NΓ(x, y)−MΓ(x, y, z)−MΓ(x, z).(2.5)

By the inclusion–exclusion formula, we find that if µ is the Möbius function,
then

NΓ(x, y) =
∑∗

m
µ(m)πm(x)(2.6)

where

πm(x) = #
{
p ≤ x

∣∣ p - a1 · · · ar and m|[F∗p,Γp]
}

(2.7)

and the upper ∗ means that the sum is extended to all the integers m whose prime
divisors are distinct and less than y. Also note that since m is square–free, this
forces m ≤

∏
q<y q = eϑ(y).

It is easy to see that

q | [F∗p : Γp] ⇐⇒ p - q · a1 · · ·ar and p splits completely in Q(ζq, a
1/q
1 , . . . , a1/q

r ).

(2.8)

Since a prime splits completely in two distinct fields if and only if it splits com-

pletely in their composite, if we let Lm = Q(ζm, a
1/m
1 , . . . , a

1/m
r ), then p ramifies

in Lm if and only if p|m · a1 · · · ar and we have that

πm(x) = #{p ≤ x | p is unramified and splits completely in Lm}.(2.9)

The Chebotarev Density Theorem provides us with an asymptotic formula for
πm. The following is a result due to Lagarias and Odlyzko [8].

Lemma 2.1. Suppose that L is a Galois extension of Q with discriminant dL and
degree nL, and that the generalized Riemann hypothesis holds for the Dedekind zeta
function of L; then

#{p ≤ x | p is unramified and splits completely in L}(2.10)

=
1

nL
li(x) + O(x1/2 log(x · d1/nL

L )).(2.11)

Recall that the Hensel inequality states that

log |dL| ≤ nL
∑

q|dL,q prime

log q.(2.12)

Therefore, if we let dm be the discriminant of Lm and nm its degree we find that

d1/nm
m ≤

∏
q|dm

q ≤ m · a1 . . . ar(2.13)

and finally

πm(x) =
li(x)

nm
+ O

(
x1/2 log(x ·m · a1 · · · ar)

)
.(2.14)
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Let us suppose for a moment that a1, . . . , ar are prime and put (2.14) into (2.6).
We deduce that

NΓ(x, y) =
∑∗

m
µ(m)

(
1

nm
li(x) + O

(
x1/2 log(x ·m · a1 · · · ar)

))
(2.15)

=
∞∑
m=1

µ(m)

nm
li(x) + O

(∑
m>y

2ν(m)

mrϕ(m)
li(x)

)
(2.16)

+ O
(
eϑ(y)x1/2y log(x · a1 · · · ar)

)
(2.17)

= δΓ li(x) + O

(
1

yr
x

logx
+ eϑ(y)x1/2y log(x · a1 · · ·ar)

)
.(2.18)

The first identity is a consequence of Corollary 4.2. In the case when a1, . . . , ar
are not all primes we use (2.1) and we can only deduce that

NΓ(x, y) = δΓ li(x) + O

(
log a1

y

x

logx
+ eϑ(y)x1/2y log(x · a1 · · · ar)

)
.(2.19)

To deal with the last term of (2.5), we will make use of the following result which
is implicit in the work of Matthews [9]:

Lemma 2.2. Suppose that r is a function of t such that rt−1/r is bounded. Then

# {p | |Γp| ≤ t} = O

(
t1+1/r

log t
r2r

r∑
i=1

log ai

)
(2.20)

where the constants involved in the O symbol do not depend on t nor r, nor on
{a1, . . . , ar}.

We note that

MΓ(x, z) ≤ #

{
p ≤ x

∣∣∣∣ ∃ l ≥ z, l

∣∣∣∣p− 1

|Γp|

}
(2.21)

≤ #
{
p ≤ x

∣∣∣ |Γp| ≤ x

z

}
(2.22)

and applying Lemma 2.2 with t = x/z, we find

MΓ(x, z) = O

(
(x/z)

1+1/r r2
r log(a1 · · · ar)

log(x/z)

)
(2.23)

with the condition

r
( z
x

)1/r

= O(1).(2.24)

Finally, for the middle term of (2.5) we have that if a1 . . . ar are all prime, then

MΓ(x, y, z) ≤ # { p ≤ x | ∃ l, y ≤ l ≤ z,
p is unramified and splits completely in Ll}(2.25)

≤
∑
y≤l≤z

(
1

lr(l − 1)
li(x) + O

(
x1/2 log(x · l · a1 · · ·ar)

))
,(2.26)

since in this case for l odd prime, nl = lr(l − 1). As∑
l≥y

1

lr(l − 1)
� 1

yr
(2.27)
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and ∑
l<z

x1/2 log(x · l · a1 · · · ar)� x1/2z log(x · a1 · · ·ar),(2.28)

for r > 1 we have the estimate:

MΓ(x, y, z)� 1

yr
x

logx
+ x1/2z log(x · a1 · · · ar).(2.29)

Finally, we put (2.18), (2.23) and (2.29) into (2.5) obtaining:

NΓ(x) = δΓ li(x) + O

(
1

yr
x

logx
+ eϑ(y)x1/2y log(x · a1 · · ·ar)

)
(2.30)

+ O

(
(x/z)

1+1/r r2
r log(a1 · · ·ar)

log(x/z)

)
(2.31)

+ O
(
x1/2z log(x · a1 · · · ar)

)
.(2.32)

We choose the parameters to optimize the error term setting

eϑ(y) =
x1/2

(log x)r+3
, z =

x1/2

(log x)r+2
.(2.33)

By the hypothesis made on r, condition (2.24) is verified and we have that
y . 1

2 logx and this completes the proof for r > 1 and a1, . . . , ar primes.
In the case when a1, . . . , ar are not all primes, we estimate the middle term of

(2.5) by

MΓ(x, y, z)� log a1

y

x

logx
+ x

1
2 z log(x · a1 · · · ar).(2.34)

We use (2.19) instead of (2.18), (2.34) instead of (2.29) and deduce similarly the
claim.

Remark. Let r and a1, . . . , ar be fixed. The asymptotic formula in Theorem 1.1
can be proven on the weaker assumption that there exists a ∈ Γ with the property
that all the Dedekind zeta functions of the fields Q(ζl, a

1/l) (l large prime) have no
zeroes in the region

σ > 1− 1

r + 1
.(2.35)

Indeed, the Generalized Riemann Hypothesis is not crucial in estimating the main
term NΓ(x, y) in (2.2) (see Section 3) while the term MΓ(x, y, z) in (2.3) is bounded
by

∑
y≤l≤z

#
{
p ≤ x

∣∣∣ p is unramified and splits completely in Q(ζl, a
1/l)

}
.

(2.36)

The same technique of Lagarias and Odlyzko (see [8]) with the hypothesis (2.35) on
the zeroes of the zeta functions of the fields Q(ζl, a

1/l) allows one to prove a version
of Lemma 2.1 in which the error term is bounded uniformly by xr/(r+1) logxl so
that (2.36) is

� 1

y

x

log x
+ zxr/(r+1) logxz.(2.37)

If we choose z = x1/(r+1)/ log3 x, we find that (2.36) is o(x/ logx).
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Finally, the term MΓ(x, z) in (2.4) is bounded by

MΓ(x, z, z log4 x) +MΓ(x, z log4 x).(2.38)

The first of these two terms is estimated using the Brun–Titchmarsh Theorem, the
Mertens formula and the second term is estimated as in (2.23) applying Lemma 2.2.

3. An unconditional estimate

A. I. Vinogradov in [10] proved the unconditional upper bound

N〈2〉 ≤
∏
l

(
1− 1

l2 − l

)
x

logx
+ c

x(log log x)2

log5/4 x
(3.1)

where c is an absolute constant. His method is based on a “non–abelian characters
sum decomposition” and the Selberg sieve. In this higher rank context we establish
the weaker but more general

Theorem 3.1. Suppose for simplicity, that r and a1, . . . , ar are fixed primes. With
the same notation of Theorem 1.1, there exists a constant cΓ depending only on Γ
such that

NΓ(x) ≤ δΓ
x

logx
+ cΓ

x

(log log x)r log x
.(3.2)

The proof is based on the unconditional version of the Chebotarev Density The-
orem due to Lagarias and Odlyzko (see [8]):

Lemma 3.2 (Chebotarev Density Theorem). If L is a Galois extension of Q with
discriminant dL and degree nL, then there exists an absolute constant c such that
for √

logx ≥ c n1/2
L max(log |dL|, |dL|1/nL),(3.3)

one has

#{p ≤ x | p splits completely in L} =
1

nL
li(x) + O

(
x exp(−An−1/2

L

√
logx)

)
,

(3.4)

where A is a positive constant depending only on c.

Proof of Theorem 3.1. As in the proof of Theorem 1.1 we have that for a parameter
y,

NΓ(x) ≤ NΓ(x, y) =
∑∗

m

µ(m)πm(x),(3.5)

where the sum is the same as in (2.6).
Now, by Lemma 3.2, for

nm
(

max
(

log dm, d
1/nm
m

))2

� logx,(3.6)

we have that

πm(x) =
li(x)

nm
+ O

(
x exp

(
−A
√

logx

nm

))
.(3.7)

We have already noticed that nm ≤ mr+1 and log dm ≤ nm log(m ·a1 · · · ar), so the
condition in (3.6) is verified if

mr+1
(
max

(
mr+1 log(m · a1 · · ·ar),m · a1 · · · ar

))2 � logx.(3.8)
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The last inequality is satisfied for

m� log1/(3r+3) x

(log log x)2/(3r+3)
.(3.9)

We finally choose y such that

eϑ(y) � log1/(3r+3) x

(log log x)2/(3r+3)
(3.10)

and get

NΓ(x) ≤ δΓ
x

log x
+ c0

∑
m>y

2ν(m)

mrϕ(m)

x

logx
+ c1

∑
m≤eϑ(y)

x exp

(
−A
√

logx

nm

)

≤ δΓ
x

log x
+ c2

1

yr
x

logx
+ c3xe

ϑ(y) exp

(
−A
√

logx

eϑ(y)(r+1)

)(3.11)

≤ δΓ
x

log x
+ c4

x

logx(log log x)r
.

(3.12)

This completes the proof.

4. Computation of the densities

In this section we will express the density δΓ as an Euler product in the case
when a1, . . . , ar are all prime.

The first step is to calculate the degrees of Lm over Q.

Theorem 4.1. Let p1, . . . , pr be odd primes, m a square–free integer and let

nm = [Q(ζm, p
1/m
1 , . . . , p1/m

r ) : Q],(4.1)

ñm = [Q(ζm, 2
1/m, p

1/m
1 , . . . , p1/m

r ) : Q].(4.2)

Suppose (m, p1 · · · pr) = pi1 · · · pit , then nm = ϕ(m)mr

2α and ñm = ϕ(m)mr+1

2α , where

α =


0 if m is odd or (m, p1 · · · pr) = 1,

t if m is even and pi1 ≡ pi2 ≡ · · · ≡ pit ≡ 1 (mod 4),

t− 1 otherwise.

(4.3)

Proof. Fix m > 1. We may assume without loss of generality that

p1 · · · pt = (p1 · · · pr,m).(4.4)

We let

K = Q(ζm), A = K(p
1/m
1 , . . . , p

1/m
t )(4.5)

and for any 1 ≤ i ≤ r − t, we let

Bi = A(p
1/m
t+1 , . . . , p

1/m
t+i ).(4.6)

We have that

nm = [Br−t : Q] = [Br−t : A][A : K][K : Q](4.7)

and clearly [K : Q] = ϕ(m).
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The proof is divided into four steps:
Step 1. We claim that

[Br−t : A] = mr−t.(4.8)

Since the polynomial

f(x) = xm − pt+1(4.9)

splits into linear factors in B1 = A(p
1/m
t+1 ), we know that [B1 : A] = m

d . Suppose q
is a prime with q|d, then

[A(p
1/q
t+1) : A] = 1 or q.(4.10)

If it was q, then we would have that

q = [A(p
1/q
t+1) : A]

∣∣∣[B1 : A] =
m

d
,(4.11)

which is a contradiction since m is square–free. Therefore p
1/q
t+1 ∈ A, which im-

plies that pt+1 ramifies in A/Q. Now, from Kummer’s theory, we know that the
only primes that ramify in A are p1, . . . , pt and those that divide m, and since
(pt+1,m) = 1, we conclude that d = 1.

By induction, we have that

[Br−t : A] = [Br−t : Br−t−1][Br−t−1 : A] = [Br−t : Br−t−1]mr−t−1,

(4.12)

so again,

[Br−t : Br−t−1] =
m

d
(4.13)

and since (pr,m) = 1, we conclude that d = 1. Hence [Br−t : A] = mr−t.
Step 2. If we let

Ai = K(p
1/m
1 , . . . , p

1/m
i ),(4.14)

then Ai+1 = Ai(p
1/m
i+1 ), and for the same reason as in Step 1,

[Ai+1 : Ai] =
m

e
.(4.15)

We claim that e = 1 or 2. Let q|e be a prime divisor and consider Ai(p
1/q
i+1). Since

m is square–free, we have that p
1/q
i+1 ∈ Ai. If p

1/q
i+1 ∈ K, then we would have a cyclic

extension of prime degree (over Q)

Q(p
1/q
i+1) ⊂ K(4.16)

and this is only possible when q = 2. Therefore we may assume that p
1/q
i+1 6∈ K,

having extensions:

K ⊆ K(p
1/q
i+1) ⊆ Ai.(4.17)

Note that Gal(Ai/K) is the direct product of cyclic groups and a general subgroup
of order q has as fixed field

K((ps1 · · · psk)1/q),(4.18)

with 1 ≤ s1 ≤ · · · ≤ sk ≤ i− 1. Therefore

K(p
1/q
i+1) = K((ps1 · · · psk)1/q)(4.19)
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and from Lemma 3 on page 87 of [1], we have that there exists 0 ≤ i ≤ q − 1 such
that (

pi+1

(ps1 · · · psk)i

)1/q

∈ K,(4.20)

and again this implies that q = 2.
Therefore, if m is odd, [Ai+1 : Ai] = m for every i, and thus [At : K] = mt.
From the Theory of Cyclotomic Fields, we know that the general quadratic

subfield of K is

Q(
√

(−1
D )D),(4.21)

where D is a positive divisor of m. We gather that if pi ≡ 1 (mod 4), 1 ≤ i ≤ t,

then
(
−1
pi

)
= 1, hence

√
pi ∈ K.

Step 3. If p1 ≡ p2 ≡ · · · ≡ pt ≡ 1 (mod 4), then let ζm be a primitive m–th root
of unity. Gal(A1/K) is generated by

σ : p
1/m
1 7→ ζ2

mp
1/m
1 .(4.22)

Note that σ(
√
p1) = (σ(p

1/m
1 ))m/2 = (ζ2

m)m/2p
(1/m)(m/2)
1 =

√
p1 and hence,

|Gal(A1/K)| = [A1 : K] =
m

2
.(4.23)

Similarly Gal(Ai+1/Ai) is generated by

σ : p
1/m
i+1 7→ ζ2

mp
1/m
i+1 ,(4.24)

therefore [Ai+1 : Ai] = m
2 and [A : K] = mt

2t .
Step 4. If there exists 1 ≤ i ≤ t such that pi ≡ 3 (mod 4), then we can suppose

without loss of generality that p1 ≡ 3 (mod 4).

Let us consider A1 = K(p
1/m
1 ). We have that

[A1 : K] = m.(4.25)

Indeed, if not, we would have K(
√
p1) = K, but again this happens only if p1 ≡ 1

(mod 4), which is a contradiction. Now consider i > 1, and Ai = Ai−1(p
1/m
i ). We

claim that

[Ai : Ai−1] =
m

2
.(4.26)

Indeed either pi ≡ 1 (mod 4) or pi ≡ 3 (mod 4); in the first case
√
pi ∈ K, in the

second case
√
p1pi ∈ K. In any case, Gal(Ai/Ai−1) is generated by

σ : p
1/m
i 7→ ζ2

mp
1/m
i .(4.27)

Finally we have that

[Ai : Ai−1] =
m

2
(4.28)

and

[A : K] =
mt

2t−1
.(4.29)

This completes the proof of the first part of the theorem.
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For the second part of the statement we note that

ñm = [Br−t(2
1/m) : Br−t]nm = nmm(4.30)

using the same argument of Step 3 and noticing that for m square-free,
√

2 6∈ K.
This concludes the proof of the theorem.

Remark. A similar result as in Theorem 4.1 is due to P. D. T. A. Elliott (see [3]
and [4]).

The formulas of his Lemma 4 and Lemma 5 do not seem correct in general.
Indeed consider the field K = Q(ζ42, 3

1/42, 71/42). From Theorem 4.1 we know
that [K : Q] = ϕ(42) · 422/2. This can be verified directly by noticing that,
since

√
7 ∈ Q(ζ42,

√
3): K = Q(ζ42,

√
3, 31/3, 71/7, 31/7, 71/3). On the other hand

Lemma 5 of Elliott’s result would imply that [K : Q] = ϕ(42) · 422. Therefore in
this case his formula does not hold.

The next statement has already been used during the proof of Theorem 1.1.

Corollary 4.2. With the same notation as in Theorem 4.1, we have

nm ≥ mrϕ(m)/2min(r,ν(m)−1)(4.31)

(where ν(m) is the number of distinct prime divisors of m). Furthermore such a
lower bound is the best possible.

Remark. If we drop the condition that p1, . . . , pr are primes in Theorem 4.1,
then the estimate of Corollary 4.2 does not hold anymore. Indeed if K =

Q(ζ21, 5
1/21, 401/21), then [K : Q] = ϕ(21) · 212

3 giving a counterexample to (4.31).

We are now ready to express the density as an Euler product. The case r = 1
has been dealt with by C. Hooley in [7]. We report it here for completeness:

Lemma 4.3. Let p be a prime, nm = [Q(ζm, p
1/m) : Q] and let

A =
∏

l prime

(
1− 1

l(l− 1)

)
(4.32)

be Artin’s constant, then we have:

∞∑
m=1

µ(m)

nm
=


A if p 6≡ 1 (mod 4),

A
(

1 + 1
p2−p−1

)
if p ≡ 1 (mod 4).

(4.33)

Proof. If p 6≡ 1 (mod 4), then nm = mϕ(m) for every m and the result follows from
the definition of Artin’s constant. We can therefore assume that p ≡ 1 (mod 4),
having:

∞∑
m=1

µ(m)

nm
= Σo + Σe,(4.34)
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where Σo is the sum extended to the odd values of m and Σe to the even values.
Clearly Σo = 2A and Σe = − 1

2Σ′e, with

Σ′e =
∞∑
m=1

(m,2p)=1

µ(m)

mϕ(m)
+ 2

∞∑
m=1

p|m,m odd

µ(m)

mϕ(m)
(4.35)

= 2A+
−1

p(p− 1)

∑
m=1

(m,2p)=1

µ(m)

mϕ(m)
(4.36)

= 2A+
−1

p(p− 1)

2A(
1− 1

p(p−1)

) = 2A− 2A

p2 − p− 1
.

Finally Σo + Σe = A
(

1 + 1
p2−p−1

)
.

The general case is similar:

Proof of Theorem 1.2. As in the case r = 1, note that if m is odd, then nm =
mrϕ(m); thus we can write:

∞∑
m=1

µ(m)

nm
= A(r) + Σ(4.37)

where Σ is the sum extended to the even values of m. Let P = p1 · · · pr and
P̃ =

∏r
i=1, pi≡1(4) pi, if m is an odd positive integer and Q = (m,P ), then by

Theorem 4.1, we have

n2m =


2r m

rϕ(m)

2ν(Q) if Q|P̃ ,

2r m
rϕ(m)

2ν(Q)−1 otherwise.

(4.38)

For any Q|P , let S(Q) = {m ∈ N| (m,P ) = Q}. We have that N =
⋃
Q|P S(Q),

and the union is disjoint. Therefore,

Σ =
∑
Q|P

∑
m∈S(Q)

µ(2m)

n2m
.(4.39)

Now divide the set of divisors of P into two sets; the divisors of P̃ , and its comple-
ment. It follows that

Σ =
∑
Q|P̃

∑
m∈S(Q)

µ(2m)2ν(Q)

2rmrϕ(m)
+
∑
Q|P
Q6|P̃

∑
m∈S(Q)

µ(2m)2ν(Q)−1

2rmrϕ(m)
(4.40)

=
1

2r+1

∑
Q|P̃

2ν(Q)
∑

m∈S(Q)

µ(2m)

mrϕ(m)
+
∑
Q|P

2ν(Q)
∑

m∈S(Q)

µ(2m)

mrϕ(m)

 .(4.41)

The sum over m ∈ S(Q) is easy to evaluate,∑
m∈S(Q)

µ(2m)

mrϕ(m)
= − (−1)ν(Q)

Qrϕ(Q)

∑
(m,2P )=1

µ(m)

mrϕ(m)
(4.42)

= − (−1)ν(Q)

Qrϕ(Q)
A(r)

r∏
i=1

(
1− 1

αi + 1

)−1

,(4.43)
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where for clarity we have set αi = pri (pi − 1)− 1.
Substituting we get:

Σ =
−A(r)

2r+1

r∏
i=1

(
1− 1

αi + 1

)−1
∑
Q|P̃

(−2)ν(Q)

Qrϕ(Q)
+
∑
Q|P

(−2)ν(Q)

Qrϕ(Q)

(4.44)

=
−A(r)

2r+1

r∏
i=1

(
αi + 1

αi

) r∏
i=1

pi≡1(4)

(
1− 2

αi + 1

)
+

r∏
i=1

(
1− 2

αi + 1

)(4.45)

=
−A(r)

2r+1

 r∏
i=1

pi≡1(4)

(
1− 1

αi

) r∏
i=1

pi≡3(4)

(
1 +

1

αi

)
+

r∏
i=1

(
1− 1

αi

) .(4.46)

The claim is therefore deduced.
The second part of the statement is proved in the same manner, just by noticing

that ñm = nmm.

The next statement is important for the application.

Corollary 4.4. Let {qi}i>1 be an infinite sequence of primes and let δr be the
density of the set of primes p for which F∗p is generated by q1, . . . , qr, then

δr = 1 + O

(
1

2r

)
.(4.47)

Proof. Let Ar be defined as in the statement of Theorem 4.1. First we note that
for r > 1,

Ar < 1− 1

2 · 3r .(4.48)

It is also clear that

Ar >
∏
l>2

(
1− 1

lr

)
>

1

ζ(r)
= 1 + O

(
1

2r

)
.(4.49)

Finally it is enough to notice that

r∏
i=1

1−

(
−1
pi

)
pr+2
i − pr+1

i − 1

+
r∏
i=1

[
1− 1

pr+2
i − pr+1

i − 1

]
(4.50)

is bounded as r →∞ to deduce the claim.

It is conceivable that for any infinite sequence of multiplicatively independent
integers (that is a sequence of integers such that ai < ai+1 and for any r, a1, . . . , ar
are multiplicatively independent) the same result as Corollary 4.4 holds.
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5. Application to the conjecture of Brown–Zassenhaus

Let qi be the ith prime number. For a given prime p, the κ function of Brown–
Zassenhaus is defined as follows:

κ(p) = min
{
i
∣∣〈q1, . . . , qi| (mod p)〉 = F∗p

}
,(5.1)

(i.e. k(p) is the least index i such that the first i primes generate a primitive root
(mod p)). The conjecture of Brown–Zassenhaus [2] states that:

The probability that κ(p) ≤ [log p] is almost (but not equal to) one.
To be precise, let N(x) be the number of primes p ≤ x with κ(p) > [log p]. Then

the Brown–Zassenhaus conjecture is the two assertions:

(i) N(x) = o(π(x)),
(ii) N(x) is unbounded.

Statement (ii) is a consequence of the work of Graham and Ringrose [5]. Indeed
they proved that the least quadratic non residue is greater than c log p log log log p
for infinitely many primes p. Clearly, this implies (ii).

The results of the preceding sections imply the following:

Proposition 5.1. With the same notation as above,
(1) For every fixed r, there exists a set of primes p with density greater than or

equal to 1− δr for which κ(p) > r;
(2) If the GRH holds, then κ(p) ≤ r for a set of primes p of density δr;
(3) Suppose the GRH holds.
There exists a positive absolute constant A such that, for all primes p ≤ x with

at most

O (π(x) exp (−A logx/ log logx))(5.2)

exceptions, we have that

κ(p) ≤
[

log p

4 log log p

]
.(5.3)

More generally, there is a positive absolute constant B such that for every divergent
function y = y(x) ≤ log x

4 log log x and for all primes p ≤ x with at most O
(
π(x)B−y(x)

)
exceptions, we have that

κ(p) ≤ [y(p)] .(5.4)

Proof. (1) is a direct consequence of Theorem 3.1 while (2) is a direct consequence
of Theorem 1.1.

For (3) we apply Corollary 4.4 and Theorem 1.1 with Γ = 〈q1, . . . , q[y]〉 and get
that for y ≤ logx/4 log log x,

NΓ(x) = π(x) + O

(
1

2y
x

logx

)
+ O

(
x4y(log x+ y log y)

logy+2 x

)
.(5.5)

The first error term is dominant.
Now we may suppose p ≥ x1/2, having that y(p)� y(x). Finally the number of

primes p, x1/2 ≤ p ≤ x with κ(p) ≥ [y(p)]� y(x), is bounded by

π(x) −NΓ(x)� x

logx
A−y(x),(5.6)

and this completes the proof.
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6. Computation

In this last section we will present three tables comparing the densities δΓ with
the number δ̃Γ defined as

δ̃Γ =
#{q

∣∣ π(q) ≤ 9 · 104,F∗q = Γq }
9 · 104

.(6.1)

The computation was performed using Maple V with a Work Station at the
University of Paris-Sud.

Table 1

Γ δΓ δ̃Γ

〈2〉 0.37396 0.37368

〈2, 3〉 0.69750 0.69779

〈2, 3, 5〉 0.85679 0.85794

〈2, 3, 5, 7〉 0.93129 0.93253

〈2, 3, 5, 7, 11〉 0.96667 0.96798

〈2, 3, 5, 7, 11, 13〉 0.98368 0.98484

The next table considers subgroups generated by odd primes.

Table 2

Γ δΓ δ̃Γ

〈3〉 0.37396 0.37403

〈3, 5〉 0.69985 0.70069

〈3, 5, 7〉 0.85678 0.85777

〈3, 5, 7, 11〉 0.93129 0.93242

〈3, 5, 7, 11, 13〉 0.96667 0.96779

〈3, 5, 7, 11, 13, 17〉 0.98368 0.98464

Table 3 needs an explanation: The first line corresponding to the slot i, j contains
the value of δ〈i,j〉 while the second line contains δ̃〈i,j〉.
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Table 3

19 17 13 11 7 5 3
.69750 .69755 .69762 .69750 .69750 .69985 .69750

2
.69923 .69863 .69812 .69940 .69803 .70096 .69779
.69750 .69755 .69762 .69749 .69745 .69985

3
.69857 .69852 .69810 .69796 .69846 .70069
.69985 .69990 .69996 .69985 .69985

5
.70146 .70104 .70031 .70066 .70009
.69750 .69755 .69762 .69750

7
.69887 .69886 .69888 .69882
.69750 .69755 .69762

11
.69938 .69932 .69936
.69762 .69767

13
.70011 .69740
.69755

17
.69829

While performing the computation we discovered the following new examples of
primes for which the κ function has value larger than 12. These examples are not
in the paper of Brown–Zassenhaus [2].

Table 4

p κ(p) log p
366791 14 12.81
514751 14 13.15
880871 13 13.69
1083289 13 13.90
1139519 13 13.95
1579751 13 14.27
1884791 13 14.45

The first five primes are interesting since they satisfy

κ(p) ≥ [log p].(6.2)

Together with those in [2], they provide a complete list of the primes p ≤ 2 · 106

with κ(p) ≥ 13.
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