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THE RABIN-MONIER THEOREM

FOR LUCAS PSEUDOPRIMES

F. ARNAULT

Abstract. We give bounds on the number of pairs (P,Q) with 0 ≤ P,Q < n
such that a composite number n is a strong Lucas pseudoprime with respect
to the parameters (P,Q).

1. Introduction

Pseudoprimes, strong pseudoprimes. It is well known that if n is a prime number,
then it satisfies one of the following relations, where n− 1 = 2kq with q odd.

bq ≡ 1 modulo n

or

there exists an integer i such that 0 ≤ i < k and b2
iq ≡ −1 modulo n.

(1)

This property is often used as a primality “test”, called the Rabin-Miller test,
which consists in checking if the property (1) holds, for several bases b. If (1)
does not hold for some b, then n is certainly composite. If (1) is found to be true
when trying several bases (usually 10 or 20), then n is likely to be prime. Composite
numbers which satisfy the condition (1) are called strong pseudoprimes with respect
to the base b. For short spsp(b).

By recent results, it is possible to build composite numbers which satisfy (1)
for several chosen bases b (see [1], [2], [5]). So, when one knows the bases used by
a given implementation of the Rabin-Miller test, one can find composite numbers
which this test finds to be prime. However, it is possible to give upper bounds for
the probability that this test will give an incorrect answer. The main result in this
direction is the Rabin-Monier theorem.

1.1. Theorem (Rabin-Monier). Let n be a composite integer distinct from 9. The
number of bases b such that 0 < b < n, which are relatively prime to n and for
which n is a spsp(b) is bounded by ϕ(n)/4, where ϕ is the Euler function.

Lucas pseudoprimes. Let P and Q be integers and D = P 2 − 4Q. For n integer,
we denote by ε(n) the Jacobi symbol (D/n). The Lucas sequences associated with
the parameters P,Q are defined by{

U0 = 0, U1 = 1,

V0 = 2, V1 = P,
and, for k ≥ 0,

{
Uk+2 = PUk+1 −QUk,
Vk+2 = PVk+1 −QVk.
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We have the following result, which can be compared with the criterion (1):

1.2. Theorem. Let p be a prime number not dividing 2QD. Put p − ε(p) = 2kq
with q odd. One of the following conditions is satisfied:

p|Uq
or

there exists i such that 0 ≤ i < k and p|V2iq.

A composite number n relatively prime to 2QD and satisfying

n|Uq
or

there exists i such that 0 ≤ i < k and p|V2iq,

(2)

where we have put n−ε(n) = 2kq with q odd, is called a strong Lucas pseudoprime
with respect to the parameters P and Q. For short we write n is an slpsp(P,Q).

As above, we can derive a “test” from this property: the strong Lucas pseudo-
prime test [4]. In this test, we check whether property (2) holds, for several pairs
(P,Q).

The main result. The main purpose of this paper is to prove the following theorem,
which is the analog of Theorem 1.1 but for strong Lucas pseudoprimes.

1.3. Theorem. Let D be an integer and n a composite number relatively prime to
2D and distinct from 9. For all integer D, the size

SL(D,n) = #

{
(P,Q)

∣∣∣∣0 ≤ P,Q < n, P 2 − 4Q ≡ D modulo n,
gcd(Q,n) = 1, n is slpsp(P,Q)

}
(3)

is less than or equal to 4
15n except if n is the product

n = (2k1q1 − 1)(2k1q1 + 1)

of twin primes with q1 odd and such that the Legendre symbols satisfy (D/2k1q1 −
1) = −1, (D/2k1q1 + 1) = 1. Also, the following inequality is always true:

SL(D,n) ≤ n/2.

The Monier formula and its analog. A result close to Theorem 1.1 was first shown
by Rabin [9]. But Monier [7] gave the following formula and used it to prove
Theorem 1.1.

1.4. Theorem (Monier). Let pr11 · · · prss be the prime decomposition of an odd in-
teger n > 0. Put{

n− 1 = 2kq,

pi − 1 = 2kiqi for 0 ≤ i ≤ s,
with q, qi odd,

ordering the pi’s such that k1 ≤ · · · ≤ ks. The number of bases b such that n is an
spsp(b) is expressed by the following formula

B(n) =

1 +

k1−1∑
j=0

2js

 s∏
i=1

gcd(q, qi).

Similarly, we will first prove, in Section 4, an analogous formula for the Lucas
test.
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1.5. Theorem. Let D be an integer and let pr11 · · · prss be the prime decomposition
of an integer n > 2 relatively prime to 2D. Put{

n− ε(n) = 2kq,

pi − ε(pi) = 2kiqi for 1 ≤ i ≤ s,
with q, qi odd,

ordering the pi’s such that k1 ≤ · · · ≤ ks. The number of pairs (P,Q) with 0 ≤
P,Q < n, gcd(Q,n) = 1, P 2− 4Q ≡ D modulo n and such that n is an slpsp(P,Q)
is expressed by the following formula

SL(D,n) =
s∏
i=1

(gcd(q, qi)− 1) +

k1−1∑
j=0

2js
s∏
i=1

gcd(q, qi).

2. Some lemmas

We start with three lemmas. The first two will be used to prove Theorem 1.5,
and the last to prove Theorem 1.3.

Roots in a cyclic group.

2.1. Lemma. Let G be a cyclic group and q an integer. (a) There are exactly
gcd(q, |G|) qth-roots of 1 in G. (b) An element y of G is a qth-power if and only if

y|G|/gcd(q,|G|) = 1.

In this case, y has exactly gcd(q, |G|) qth-roots in G.

Proof. Put d = gcd(q, |G|). The proof of (a) is easy if we see, using Bezout relations,
that for x ∈ G,

xq = 1⇔ xd = 1.

Also, the qth-powers in G are the dth-powers. But, y is a dth-power if and only
if y|G|/d = 1. To count the qth-roots of y whenever such a root exists, we remark
that we can obtain the others from it by multiplying it by a qth-root of 1.

Congruences in some rings.

2.2. Lemma. Let O be a ring extension of Z and α, β ∈ O. Let also p be a prime
ideal in O, r ≥ 1 be an integer, and k ∈ p ∩ Z. One has the implication

α ≡ β modulo p⇒ αk
r−1 ≡ βkr−1

modulo pr.

Proof. If α− β ∈ p, then

αk − βk = (α− β)(αk−1 + αk−2β + · · ·+ βk−1)

≡ (α− β)(αk−1 + αk−1 + · · ·+ αk−1) modulo p

= (α− β)kαk−1 ∈ p2.

This shows the assertion when r = 2. An easy induction concludes the proof.
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The ϕD function. Let D be an integer and let ε(n) denote the Jacobi symbol (D/n).
For convenience, we introduce the following number-theoretic function, studied in
[3] and defined only on integers relatively prime to 2D:{

ϕD(pr) = pr−1(p− ε(p)) for any prime p - 2D, and r ∈ N∗,
ϕD(n1n2) = ϕD(n1)ϕD(n2) for n1 and n2 relatively prime.

2.3. Lemma. Let D be an integer. For n > 0 relatively prime to 2D, we have

ϕD(n) ≤
(

4

3

)s
n

where s is the number of distinct prime factors of n. Also, we have the particular
cases:

s = 2⇒ ϕD(n) ≤ 8

5
n,

s = 3⇒ ϕD(n) ≤ 64

35
n,

s ≥ 4⇒ ϕD(n) ≤ 768

385

(
14

13

)s−4

n.

Proof. For the first part of the result, it is sufficient to handle the case where n = pr

is an odd prime power such that p - D. Then we have

ϕD(pr)

pr
=
pr−1(p− ε(p))

pr
= 1− ε(p)/p ≤ 1 + 1/p ≤ 4/3

and the result follows. The proof of the second part is similar, using the knowledge
that pi ≥ 5 for all but perhaps one subscript i, pi ≥ 7 for all but perhaps two
subscripts i, pi ≥ 11 for all but perhaps three subscripts, and pi ≥ 13 for all but
perhaps four subscripts.

3. Connection with quadratic integers

Let P,Q be integers such that D = P 2−4Q 6= 0 and consider the Lucas sequences
(Un) and (Vn) associated with P,Q. It is easy to see that we have the relations

Uk =
αk − βk
α− β , Vk = αk + βk, for all k ∈ N,(4)

where α, β are the two roots of the polynomial X2 − PX + Q. Also, if n is an
integer relatively prime to 2QD, we can put τ = αβ−1 modulo nO. Then we have
the following equivalences, for k ∈ N,

n|Uk ⇔ τk ≡ 1 modulo n,

n|Vk ⇔ τk ≡ −1 modulo n.

Hence, if n is composite and relatively prime to 2QD, it is an slpsp(P,Q) if and
only if

τq ≡ 1 modulo n

or

there exists i such that 0 ≤ i < k and τ2iq ≡ −1 modulo n,

where n− ε(n) = 2kq with q odd.
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Norm 1 elements. Let O be the ring of integers of a quadratic field Q(
√
D). The

norm in Q(
√
D) is the map N defined by N(u+ v

√
D) = u2−Dv2 ∈ Q (u, v ∈ Q).

For z in O, the norm N(z) is in Z. For a rational integer n, the ring O/n is a free
(Z/nZ)-algebra of rank 2. We consider, in this algebra, the multiplicative group of
norm 1 elements, which we denote by (O/n)∧. In other words, (O/n)∧ is the image
of the set

{x ∈ O|N(x) ≡ 1 modulo n}
by the canonical map O → O/n.

The proof of Theorem 1.5 will be similar to Monier’s proof, but will use the
following result on the structure of the group (O/n)∧, which is proved in [3].

3.1. Theorem. Let p - 2D be a prime number and r ≥ 1 an integer. The group
(O/pr)∧ is cyclic of order pr−1(p− (D/p)).

The link between the parameters P,Q and the norm 1 elements τ is described
by the following result:

3.2. Proposition. Let D be an integer, but not a perfect square and O be the
ring of integers in Q(

√
D). Let n be an integer relatively prime to 2D. Then, for

all integers P , there exists an integer Q, uniquely determined modulo n, such that
P 2 − 4Q ≡ D modulo n. Moreover, the set of integers P such that{

0 ≤ P < n,

gcd(P 2 −D,n) = 1 (i.e. gcd(Q,n) = 1),

is in a one-to-one correspondence with the elements τ in (O/n)∧ such that τ − 1 is
a unit in O/n. This correspondence is expressed by the following formulas{

τ ≡ (P +
√
D)(P −

√
D)−1

P ≡
√
D(τ + 1)(τ − 1)−1

modulo nO.(5)

Proof. The first claim is easy, as n is odd. Then, we observe that τ−1 and τ are
conjugate in O/n. So putting u+

√
Dv =

√
D(τ + 1)(τ − 1)−1, we have

u− v
√
D =

√
D(τ + 1)(τ − 1)−1

≡ −
√
D(τ−1 + 1)(τ−1 − 1)−1 modulo n

= −
√
D(1 + τ)(1− τ)−1

=
√
D(τ + 1)(τ − 1)−1 = u+ v

√
D.

As n is odd, we obtain v ≡ 0 modulo n. So the second equation in (5) is satisfied
by a rational integer. Then we leave to the reader the task of showing that the two
relations (5) are equivalent to each other.

Remark on the square discriminant case. If D is a non-zero perfect square it is well
known that the strong Lucas test reduces to the Rabin-Miller test. It is interesting
to clarify this fact. If n is an integer relatively prime to 2D, we can put T = αβ−1

modulo n (this time, α, β are rational integers). From (4) we have the following
equivalences, for k ∈ N:

n|Uk ⇔ T k ≡ 1 modulo n, n|Vk ⇔ T k ≡ −1 modulo n.

So n is an slpsp(P,Q) if and only if it is an spsp(T ).
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Moreover, the proof of Proposition 3.2 could very easily be adapted to show that
there exists a one-to-one correspondence between the sets{

P

∣∣∣∣ 0 ≤ P < n
gcd(P 2 −D,n) = 1

}
and

{
T

∣∣∣∣ 0 ≤ T < n
gcd(T, n) = gcd(T − 1, n) = 1

}
.

Hence, the proof of Theorem 1.4 given by Monier could easily be adapted to prove
Theorem 1.5 in this special case where D is a perfect square.

4. Proof of Theorem 1.5

The difference between consecutive perfect squares d2 and (d+ 1)2 tends to +∞
as d tends to +∞. So the integers D+kn with k ∈ Z cannot all be perfect squares.
Because SL(D,n) is equal to SL(D+ kn, n) for all integer k, we can assume in the
proof that D is not a perfect square.

We denote by O the ring of integers of the field Q(
√
D). Proposition 3.2 shows

that we have to count the number of elements in the sets

X(n) = {τ ∈ (O/n)∧|1− τ ∈ (O/n)×, τq = 1},

Yj(n) = {τ ∈ (O/n)∧|1− τ ∈ (O/n)×, τ2jq = −1}, for 0 ≤ j ≤ k − 1,

because their sum is SL(D,n). Using the Chinese Remainder Theorem, we reduce
the problem to counting the sets X(prii ) and Yj(p

ri
i ).

Count of X(prii ).
• We first count X(prii ). By Theorem 3.1, the number of qth-roots of 1 in the

group (O/prii )∧ is

d = gcd(q, pri−1
i (pi − ε(pi)))

= gcd(q, pi − ε(pi)) since q is relatively prime to n,

= gcd(q, qi) since q is odd.

From these roots, we must throw away those such that 1−τ is not invertible modulo
pi. We show that the only such τ is the trivial root 1. Indeed, note that{

τn−ε(n) ≡ 1

τp
ri−1
i (pi−ε(pi)) ≡ 1

⇒ τd ≡ 1⇒ τpi−ε(pi) ≡ 1 modulo prii O.

Let p be a prime ideal of O containing piO. For k ≥ 1 integer, we have

τ ≡ 1 modulo p
k ⇒ τpi ≡ 1 modulo p

k+1 by Lemma 2.2,

⇒ 1 ≡ τpi−ε(pi) ≡ τ−ε(pi) modulo p
k+1

⇒ τ ≡ 1 modulo p
k+1.

So, by induction, 1− τ is not a unit modulo pri. If pi splits in O, this implies τ ≡ 1
modulo p

ri (as τ = τ−1). In both cases (inertial or split), we obtain τ ≡ 1 modulo
prii . Hence, the number of elements in X(prii ) is

d− 1 = gcd(q, qi)− 1.

Hence,

#X(n) =
s∏
i=1

(gcd(q, qi)− 1).
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Count of Yj(p
ri
i ).

• We now count Yj(p
ri
i ). Here, the invertibility condition for 1 − τ modulo pi

does not throw away any solution. Indeed, as pi is odd we cannot have, for p a
prime ideal containing piO,

1 = 12jq ≡ τ2jq ≡ −1 modulo p.

By Lemma 2.1, we have

#Yj(p
ri
i ) =

{
0 if j ≥ ki,
gcd(2jq, ϕD(prii )) = 2j gcd(q, qi) if j < ki.

Lastly, the equality

SL(D,n) = #X(n) +
k−1∑
j=0

#Yj(n)

completes the proof because, as n ≡ ε(n) modulo 2k1 (as pi ≡ ε(pi) modulo 2k1 for
all i), we have k1 ≤ k.

5. First consequences

Following the usual proof [7] of the Rabin-Monier theorem, we would easily
obtain

5.1. Corollary. If n is an odd composite integer, then

SL(D,n) ≤ ϕD(n)/4.

But, as the function ϕD(n) is not bounded by n (see [3] for more details), this
result is not of the same interest as Theorem 1.3.

In fact, using Proposition 3.2, one can show, if pr11 · · · prss is the prime decompo-
sition of n, that the size

#

{
(P,Q)

∣∣∣∣0 ≤ P,Q < n, P 2 − 4Q ≡ D modulo n,
gcd(Q,n) = 1

}
is

s∏
i=1

pri−1
i (pi − ε(pi)− 1).

This size is less than n and is equal to it infinitely many times. So it seems quite
natural to try to bound SL(D,n) by kn for some constant k.

5.2. Lemma. Let pr11 · · · prss be the prime decomposition of an integer n relatively
prime to 2D. With the notations k, q, ki, qi of Theorem 1.5, we have the inequalities

SL(D,n)

ϕD(n)
≤


1

2s−1

∏s
i=1

gcd(q,qi)
qi

,
1

2s−1

∏s
i=1

1

p
ri−1
i

,

1/2s−1+δ2+···+δs where δi = ki − k1.

Proof. We follow the proof of the very similar statement by Monier [7]. We have

ϕD(n) = 2k1+···+ks ·
s∏
i=1

qi ·
s∏
i=1

pri−1
i

so, by Theorem 1.5,

SL(D,n)

ϕD(n)
≤

1 +
∑k1−1
j=0 2js

2k1+···+ks

s∏
i=1

gcd(q, qi)

qi

s∏
i=1

1

pri−1
i

.(6)
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But the left-hand factor of (6) is bounded by

1 +
∑k1−1
j=0 2js

2sk1
=

1 + (2sk1 − 1)/(2s − 1)

2sk1

=

(
1 +

2sk1

2s − 1
− 1

2s − 1

)
/2sk1

=

[(
1− 1

2s − 1

)
/2sk1

]
+

1

2s − 1
.

The last formula shows that this is a decreasing function of k1. So we can bound
it by its value at k1 = 1:

1 +
∑k1−1
j=0 2js

2sk1
≤ 1

2s−1
.(7)

The first two inequalities follow from this. The last also follows from (7), using the
equality

1 +
∑k1−1
j=0 2js

2k1+···+ks =
1 +

∑k1−1
j=0 2js

2sk1

1

2δ2+···+δs .

6. Proof of Theorem 1.3

As in Theorem 1.5, we use the following notation: Let pr11 · · · pr
s

s be the prime
decomposition of n and put

n− ε(n) = 2kq,

with q, qi odd.

pi − ε(pi) = 2kiqi for 1 ≤ i ≤ s,

The case s = 1. First, consider the case s = 1. The second inequality of Lemma 5.2
shows that

SL(D,n) ≤ 1

pr1−1
1

ϕD(n).

If p1 ≥ 5 we obtain, as r1 ≥ 2,

SL(D,n) ≤ ϕD(n)/5.

In this case, Lemma 2.3 implies SL(D,n) ≤ (4/3)n/5 = (4/15)n. If p1 = 3, a
similar argument holds, because we assume n 6= 9.

The case s = 2. Now, the case s = 2. By the second part of Lemma 2.3, it is
sufficient to show that we have

SL(D,n) ≤ 1

6
ϕD(n).(8)

• But, Lemma 5.2 gives

SL(D,n)

ϕD(n)
≤
{

1/6 if ri ≥ 2 for at least some i,

1/8 if δ2 = k2 − k1 ≥ 2,

which is sufficient to prove the assertion in both cases.
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• So we can assume that r1 = r2 = 1 (n = p1p2) and δ2 = k2 − k1 = 0 or
1. First, we consider the subcase where q1 6= q2. Then the first inequality of
Lemma 5.2 shows that

SL(D,n)

ϕD(n)
≤ 1

2

gcd(q, q1)

q1

gcd(q, q2)

q2
.

Here, we point out that at least one of the ratios gcd(q, qi)/qi is bounded by 1/3.
Otherwise, they would both be 1 and then both q1 and q2 would divide q. Also

2kq = p1p2 − ε(p1p2)

= (2k1q1 + ε(p1))(2k1+δ2q2 + ε(p2))− ε(p1p2)

= 22k1+δ2q1q2 ± 2k1(q1 ± 2δ2q2).

We would then have q1|q2 and q2|q1, contradicting the hypothesis q1 6= q2. Hence,
if q1 6= q2, then

SL(D,n)

ϕD(n)
≤ 1/6

and equation (8) is satisfied.
• So we can suppose that r1 = r2 = 1 (n = p1p2), δ2 = k2 − k1 equals 0 or 1,

and that q1 = q2. If δ2 = 1, the integer n is

n = (2k1q1 ± 1)(2k1+1q1 ± 1) with q1 odd

≥ (2k1q1 − 1)(2k1+1q1 − 1)

= 2(2k1q1)2 − 3(2k1q1) + 1.

Hence, 8(2k1q1)2 − 12(2k1q1) + 4 ≤ 4n. We have also

2kq = n− ε(n) = 2(2k1q1)2 + (2ε(p1) + ε(p2))(2k1q1)

and so, q1 divides q. Here, Theorem 1.5 gives

SL(D,n) = (q1 − 1)2 + (1 + 4 + · · ·+ 4k1−1)q2
1

= (q1 − 1)2 +
4k1 − 1

3
q2
1

≤ 4k1 + 2

3
q2
1 .

(9)

Hence, 15 SL(D,n) ≤ 5(2k1q1)2 +10q2
1. We distinguish the subcase k1 = 1 from the

one where k1 ≥ 2. If k1 ≥ 2 we have 10q2
1 < (22q1)2 ≤ (2k1q1)2. Hence,

4n− 15 SL(D,n) ≥ 3(2k1q1)2 − 10q2
1 − 12(2k1q1) + 4

> 2(2k1q1)2 − 12(2k1q1) + 4

= 2((2k1q1)2 − 6(2k1q1) + 2).

The roots of this polynomial are less than 6. So it is positive as soon as 2k1q1 ≥ 6.
As k1 ≥ 2, the only possibility in this case is 2k1q1 = 4, which implies k1 = 2 and
q1 = 1 so that p1 = 3 or 5, and p2 = 2k1+1q1 ± 1 = 7 or 9, so that n = 21 or 35,
and SL(D,n) = 5.
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In the other subcase (k1 = 1), δ2 = 1 and hence k2 = 2 and therefore{
n ≥ (2q1 − 1)(4q1 − 1) with q1 odd,

SL(D,n) = 2q2
1 − 2q1 + 1 from (9).

Hence,

4n− 15 SL(D,n) ≥ 2q2
1 + 6q1 − 11

> 0 if q1 6= 1.

The remaining case is q1 = 1. Since k1 = 1 and δ2 = 1 so that k2 = 2, this implies
n = 15 and SL(D,n) = 1. At this point, the result has been proved when δ2 = 1.
• Lastly, we consider the exceptional case n = p1p2, δ2 = 0 so that k1 = k2, and

q1 = q2. Then we have

n = (2k1q1 − 1)(2k1q1 + 1) = 4k1q2
1 − 1 with ε(n) = −1,

SL(D,n) = (q1 − 1)2 +
4k1 − 1

3
q2
1 as in (9).

Hence,

3(n− 2 SL(D,n)) = 4k1q2
1 − 4q2

1 + 12q1 − 9

≥ 12q1 − 9 > 0.

Therefore, SL(D,n) < n/2.

The case s = 3. Now, the case s = 3. By the second part of Lemma 2.3, it is
sufficient to show that the inequality

SL(D,n) ≤ 7

48
ϕD(n)(10)

holds.
• Lemma 5.2 implies the result under the following conditions:

SL(D,n)

ϕD(n)
≤


1/12 if ri ≥ 2 for at least one i,

1/8 if the ki’s are not all equal,

1/12 if one of the qi’s does not divide q,

because the inequality (10) is then satisfied.
• In the remaining case, we have

n = (2k1q1 + ε1)(2k1q2 + ε2)(2k1q3 + ε3)

with q1, q2 and q3 odd and dividing n− ε(n) = 2k1q. The formula of Theorem 1.5
can be written

SL(D,n) = (q1 − 1)(q2 − 1)(q3 − 1) + (1 + 8 + · · ·+ 8k1−1)q1q2q3

= (q1 − 1)(q2 − 1)(q3 − 1) +
8k1 − 1

7
q1q2q3.

But, ϕD(n) = 8k1q1q2q3 so, the inequality (10) can be written

(q1 − 1)(q2 − 1)(q3 − 1) +
8k1 − 1

7
q1q2q3 ≤

7

48
8k1q1q2q3

or more simply,

(q1 − 1)(q2 − 1)(q3 − 1) ≤
(

8k1

336
+

1

7

)
q1q2q3.
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This is satisfied as soon as (
8k1

336
+

1

7

)
≥ 1

and in particular as soon as k1 ≥ 3. So we can assume that k1 equals 1 or 2.
• We handle first the case k1 = 2, that is

n = (4q1 + ε1)(4q2 + ε2)(4q3 + ε3)

with q1, q2, q3 odd and dividing n− ε(n) = 4q. Suppose that q1 = q2 = 1, so that
ε1 = −ε2 and {p1, p2} = {3, 5}. Then ε(n) = −ε3 and

4q = n− ε(n) = 15(4q3 + ε3) + ε3 = 60q3 + 16ε3.

As q3|q, this implies q3|16, so q3 = 1, which is impossible because the prime p1, p2, p3

are distinct.
Hence, we can assume that q2 ≥ 3 and q3 ≥ 3 since the ordering of the primes is

arbitrary here. Then since

n ≥ (4q1 − 1)(4q2 − 1)(4q3 − 1)

= 64q1q2q3 − 16(q1q2 + q1q3 + q2q3) + 4(q1 + q2 + q3)− 1

and since

SL(D,n) = 10q1q2q3 − (q1q2 + q1q3 + q2q3) + (q1 + q2 + q3)− 1

we can see that

4n− 15 SL(D,n) ≥ 106q1q2q3 − 49(q1q2 + q1q3 + q2q3) + (q1 + q2 + q3) + 11

= 106(q1 − 1)(q2 − 3)(q3 − 3)

+ 269(q1 − 1)(q2 − 3)+269(q1 − 1)(q3 − 3)+57(q2 − 3)(q3 − 3)

+ 661(q1 − 1) + 123(q2 − 3) + 123(q3 − 3) + 237

> 0.

• Now, we consider the case where k1 = 1, that is

n = (2q1 + ε1)(2q2 + ε2)(2q3 + ε3)

with q1, q2, q3 odd and dividing n−ε(n) = 2q. First, assume that q1 = 1, so p1 = 3.
Then p2, p3 ≥ 5 so q2, q3 ≥ 3 and

n = 3(2q2 + ε2)(2q3 + ε3) ≥ 3(2q2 − 1)(3q3 − 1), SL(D,n) = q2q3.

Hence,

4n− 15 SL(D,n) ≥ 12(2q2 − 1)(2q3 − 1)− 15q2q3 = 33q2q3 − 24q2 − 24q3 + 12

= 33(q2 − 3)(q3 − 3) + 75(q2 − 3) + 75(q3 − 3) + 165 > 0.

So we can assume that all qi’s are greater than 1. But qi = 3 only if pi = 5 or
7. If q1 = q2 = 3, then {p1, p2} = {5, 7} and q3 ≥ 5. In this case n = 5 · 7(2q3 + ε3)
and SL(D,n) = 4(q3 − 1) + 9q3. Hence

4n− 15 SL(D,n) ≥ 4 · 5 · 7(2q3 − 1)− 60(q3 − 1)− 135q3

= 85q3 − 80 = 85(q3 − 5) + 345 > 0.
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So we can assume that q1 ≥ 3 and q2, q3 ≥ 5. But qi = 5 only if pi = 11. So we
can assume that q2 ≥ 5 and q3 ≥ 7. We have

n ≥ (2q1 − 1)(2q2 − 1)(2q3 − 1)

= 8q1q2q3 − 4(q1q2 + q1q3 + q2q3) + 2(q1 + q2 + q3)− 1,

SL(D,n) = (q1 − 1)(q2 − 1)(q3 − 1) + q1q2q3.

From this we easily deduce (if we are lucky to have good computing tools at hand)
that

4n− 15 SL(D,n) ≥ 2q1q2q3 − (q1q2 + q1q3 + q2q3)− 7(q1 + q2 + q3) + 11

= 2(q1 − 3)(q2 − 5)(q3 − 7)

+ 13(q1 − 3)(q2 − 5) + 9(q1 − 3)(q3 − 7) + 5(q2 − 5)(q3 − 7)

+ 51(q1 − 3) + 25(q2 − 5) + 15(q3 − 7) + 45.

This proves that 4n − 15 SL(D,n) > 0 because we have assumed q1 ≥ 3, q2 ≥ 5,
q3 ≥ 7.

The case s ≥ 4. Lastly, the case where s ≥ 4. Lemma 5.2 shows that

SL(D,n) ≤ ϕD(n)/2s−1 =
1

2s−4
ϕD(n)/8.

Using the inequality 2.3, we obtain

SL(D,n) ≤ 96

385

(
7

13

)s−4

n ≤ 96

385
n ≤ 4

15
n.

This finally (!) concludes the proof.

7. Worst cases and better bounds

Twin primes. We have noted that the only numbers n such that SL(D,n) > 4
15n

are products

n = (2k1q1 − 1)(2k1q1 + 1)

of twin primes with q1 odd and ε(2k1q1 − 1) = −1, ε(2k1q1 + 1) = 1. The proof of
Theorem 1.3 shows that in fact, we then have

n/3 ≤ SL(D,n) ≤ n/2.(11)

If there are infinitely many twin primes p1 < p2 satisfying the conditions (D/p1) =
−1 and (D/p2) = 1, then there are infinitely many n such that relations (11) hold.
If p1, p2 are such twin primes satisfying the additional condition k1 = 1 (that is
p1 ≡ 1 modulo 4), then for n = p1p2, we have

SL(D,n)

n
=

(q1 − 1)2 + 4k1−1
3 q2

1

4k1q2
1 − 1

=
(q1 − 1)2 + q2

1

4q2
1 − 1

=
2q2

1 − 2q1 + 1

4q2
1 − 1

.

This shows that SL(D,n)/n tends to 1/2 as q1 tends to +∞. So, under the assump-
tion that there are infinitely many such twin primes, we can find numbers n such
that SL(D,n)/n is as close as we want to 1/2. However, note that such numbers
are easy to spot, so they do not really represent a nuisance for primality testing.

Example. Let D = 2 and n = 1 000 037 · 1 000 039 = 1 000 076 001 443. Then
SL(D,n) = 500 037 000 685 and 1/2− SL(D,n)/n < 10−6.
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The bound 4/15. Among numbers n such that SL(D,n) does to exceed 4
15n, consider

those such that

n = p1p2p3 ≡ 1 modulo 4, ε(pi) = −1, and pi + 1|n+ 1 for i = 1, 2, 3

(these numbers were already encountered in [10]). We have, in this case,

SL(D,n) = (q1 − 1)(q2 − 1)(q3 − 1) + q1q2q3

which can be greater than n/4, and very close to 4/15n. For example, consider the
following

Example. Let D = 7 and n = 20705, so that

p1 = 5, p2 = 41, p3 = 101,

ε(p1) = ε(p2) = ε(p3) = ε(n) = −1,

p1 + 1 = 2q1 = 2 · 3, p2 + 1 = 2q2 = 2(3 · 7), p3 + 1 = 2q3 = 2(3 · 17),

n+ 1 = 2q = 2(3 · 7 · 17 · 29),

SL(7, 20705) = 5213.

Better bounds. There exist several ways to improve the Lucas test in order to make
it more secure. One good idea yet found in [4] and [8] is to combine a Rabin-Miller
test and a “true” (i.e. with (D/n) = −1) Lucas test. Such a combination seems
much more secure than one might expect considering each test separately. But no
precise result is known about this fact.

Another approach is found in [6] where a strong test derived from the strong
Lucas test is defined. It is shown that there the probability of error in each iteration
of this new test is less than 1/8.
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