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A GENERALIZED DISCREPANCY AND

QUADRATURE ERROR BOUND

FRED J. HICKERNELL

Abstract. An error bound for multidimensional quadrature is derived that
includes the Koksma-Hlawka inequality as a special case. This error bound
takes the form of a product of two terms. One term, which depends only on the
integrand, is defined as a generalized variation. The other term, which depends
only on the quadrature rule, is defined as a generalized discrepancy. The
generalized discrepancy is a figure of merit for quadrature rules and includes
as special cases the Lp-star discrepancy and Pα that arises in the study of
lattice rules.

1. Introduction

The multidimensional integral

I(f) =

∫
Cs

f(x) dx

can be approximated by the sample mean,

Q(f) =
1

N

∑
z∈P

f(z),(1.1)

where Cs = [0, 1)s is the s-dimensional unit cube and P is some random or deter-
ministic sample of N points in Cs. (P may have multiple copies of the same point.)
Many quasi-random samples designed for quadrature have been discussed in the
literature. These include (t,m, s)-nets [Nie92, Chapter 4] and integration lattices
[SJ94].

Samples P whose points are uniformly scattered over Cs tend to give more
accurate approximations to the integral. Some quadrature error bounds in the
literature take the form

|I(f)−Q(f)| ≤ D(P )V (f),(1.2)

where V (f) is a measure of the variation or fluctuation of the integrand, and D(P )
is a figure of merit for the quadrature rule, or equivalently, a measure of non-
uniformity for the sample P . A popular figure of merit is the star discrepancy
[Nie92, Chapter 2] and its generalization the Lp-star discrepancy. For integration
lattices and periodic integrands the quantity Pα is often used as a figure of merit
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[SJ94, Chapter 4]. A generalization of Pα to arbitrary samples and non-periodic
integrands is also possible [Hic96]. Asymptotic bounds on these figures of merit
as N tends to infinity have been derived, but in practice it may be desirable to
compute their actual values in order to compare different samples P . The question
then arises as to which figure of merit to choose.

This article derives a family of quadrature error bounds of the form (1.2). The
figure of merit, D(P ), which we call a generalized Lp-discrepancy, includes the star
discrepancy and Pα as special cases. Other figures of merit, which have certain
advantages over the star discrepancy, are also derived. We first review the figures
of merit mentioned above and then describe the key idea underlying our analysis,
reproducing kernel Hilbert spaces.

Let | | denote the number of points in a set. The empirical distribution function
associated with the sample P can be written as |P ∩ [0, x)|/N . The uniform distri-
bution function on the unit cube is Vol([0, x)), the volume of the rectangular solid
[0, x). The star discrepancy is defined as the maximum deviation between these
two distributions [Nie92, Definition 2.1]:

D∗(P ) = sup
x∈Cs

∣∣∣∣ |P ∩ [0, x)|
N

−Vol([0, x))

∣∣∣∣ .(1.3)

The Koksma-Hlawka inequality [Nie92, Theorem 2.11] is

|I(f)−Q(f)| ≤ D∗(P )V (f),(1.4)

where V (f) is the variation of f on C̄s = [0, 1]s in the sense of Hardy and Krause.
It is possible to generalize the star discrepancy by defining an Lp-star discrepancy.
Before doing so some useful notation is introduced.

Let S = {1, . . . , s} be the set of coordinate indices. For any u ⊆ S let |u| denote
its cardinality and let Cu = [0, 1)u denote the |u|-dimensional unit cube involving
the coordinates in u. This notation allows us to distinguish cubes of the same
dimension in different coordinate directions. Furthermore, let xu denote the vector
containing the components of x whose indices are in u, and let dxu =

∏
j∈u dxj

denote the uniform measure on Cu = [0, 1)u. This notation has been used in
[Owe92, Hic96].

Let ‖ ‖p denote the Lp-norm of a function on Cu, that is

‖f‖p =

[∫
Cu

|f |p dxu
]1/p

(1 ≤ p <∞), ‖f‖∞ = inf {γ : |f | ≤ γ a.e.} ,

where “a.e.” means almost everywhere in Cu. This notation is extended to the
case of a vector of functions (fu), where u is an index running over some or all of
the subsets of S, and each fu is a function on Cu:

‖(fu)‖p =

[∑
u

‖fu‖pp
]1/p

=

[∑
u

∫
Cu

|fu|p dxu
]1/p

(1 ≤ p <∞),

‖(fu)‖∞ = max
u

‖fu‖∞ = max
u

inf {γ : |fu| ≤ γ a.e.} .
In the special case of a vector of constants ‖ ‖p corresponds to the `p-norm.

The Lp-star discrepancy is often defined as∥∥∥∥ |P ∩ [0, x)|
N

−Vol([0, x))

∥∥∥∥
p

,
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a natural generalization of (1.3). However, if one wishes to generalize (1.4) to

|I(f)−Q(f)| ≤ D∗
p(P )Vq(f) (p−1 + q−1 = 1),(1.5)

then the appropriate definition of D∗
p(P ) is

D∗
p(P ) =

∥∥∥∥∥
( |Pu ∩ [0, xu)|

N
−Vol([0, xu))

)
u6=∅

∥∥∥∥∥
p

,(1.6)

where Pu denotes the projection of the sample P into the cube Cu. This definition
also corresponds to (1.3) in the case p = ∞. The Lp-variation, Vp(f), is a gen-
eralization of the variation in the sense of Hardy and Krause and can be written
as

Vp(f) =

∥∥∥∥∥∥
(
∂|u|f
∂xu

∣∣∣∣
xS−u=(1,...,1)

)
u6=∅

∥∥∥∥∥∥
p

.(1.7)

Error bound (1.5) was derived by Zaremba [Zar68] for p = 2 and by Sobol′ [Sob69,
Chapter 8] in general. This paper provides an alternative derivation.

The figure of merit Pα arises in the study of good lattice point sets and their
generalization, integration lattices. It can be written [SJ94, Equation (4.8)] as

Pα = −1 +
1

N

∑
z∈P

s∏
j=1

[
1− (−4π2)α/2

α!
Bα(zj)

]
(α even),(1.8)

where Bα denotes the Bernoulli polynomial of degree α [AS64, Chapter 23]. Let
F(f)(k) denote the Fourier coefficients of the function f , that is,

F(f)(k) =

∫
Cs

f(x)e−2πik•x dx.

For periodic integrands belonging to the set

Eα(K) =

{
f : |F(f)(k)| ≤ K

(k̄1 . . . k̄s)α

}
, k̄j = max(|kj |, 1),(1.9)

the quadrature error for integration lattices satisfies [SJ94, Section 5.2]

|I(f)−Q(f)| ≤ PαK,(1.10)

which is also of the form (1.2).
For α = 2 the author has extended this error bound to general samples P and

integrands that are not necessarily periodic. For any positive constant β let

c2 = −1 +
1

N2

∑
z,z′∈P

s∏
j=1

{
1 + β2

[
1

2
B2({zj − z′j}) +B1(zj)B1(z

′
j)

]}
,(1.11a)

c̃2 = −1 +
1

N2

∑
z,z′∈P

s∏
j=1

[
1 +

β2

2
B2({zj − z′j})

]
,(1.11b)

where {} denotes the fractional part of a real number or vector. For a certain broad
class of integrands Hickernell [Hic96, Theorems 2.1 and 3.1] showed that

|I(f)−Q(f)| ≤ c |||f ||| in general,(1.12a)

|I(f)−Q(f)| ≤ c̃ |||f ||| if f is periodic.(1.12b)
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Here ||| ||| is a norm whose definition involves L2-norms of the mixed partial deriva-
tives of the function. Note that c̃2 = P2 for lattice rules when β = 2π.

The primary mathematical tool used in [Hic96] is reproducing kernel Hilbert
spaces. It is also the main tool used here. Let (X, 〈, 〉) be some Hilbert space of
real-valued functions on Cs, where 〈, 〉 denotes the inner product. For any x ∈ Cs

let Tx denote the evaluation functional defined as

Tx(f) = f(x) ∀f ∈ X.(1.13)

If Tx is bounded, then by the Riesz Representation Theorem there exists a repro-
ducing kernel η(•, x) ∈ X such that

f(x) = Tx(f) = 〈η(•, x), f〉 ∀f ∈ X.

Given the reproducing kernel it is straightforward to compute the representer ζ for
any other bounded linear functional T :

T (f) = 〈ζ, f〉 ∀f ∈ X, where ζ(x) = 〈η(•, x), ζ〉 = T (η(•, x)).

In particular, if the linear functional corresponding to quadrature error, I − Q, is
bounded, then its representer can be found in terms of η:

(I −Q)(f) = 〈ξ, f〉 ∀f ∈ X, where ξ(x) = (I −Q)(η(•, x)).

The Cauchy-Schwarz inequality then implies the following error bound:

|I(f)−Q(f)| = |〈ξ, f〉| ≤ |||ξ||| |||f ||| ,(1.14)

where ||| ||| is the norm induced by the inner product (not the Lp-norm). Equality
holds when f is a constant multiple of ξ. This means that ξ is the worst-case
integrand. The quantity |||ξ||| depends only on the points P and may be identified
as D(P ) in (1.2), a figure of merit for P . Likewise |||f ||| can be identified as V (f),
a measure of the size or variation of the integrand. (In fact, the actual definition
of V (f) will be the norm of f less its constant part.)

This reproducing kernel Hilbert space approach is quite general. It will be shown
that for different choices of (X, 〈, 〉) one may obtain the error bounds and figures
of merit summarized above ((1.4)-(1.12)) as well as some new ones. To facilitate
the exposition we first present the analysis for dimension s = 1 in the next section.
Section 3 considers the arbitrary s-dimensional problem and contains the main
results — quadrature error bounds in terms of a generalized Lp-discrepancy and
variation. Periodic integrands are treated in Section 4. In Section 5 several specific
examples of the generalized discrepancy and variation are given and their relative
merits are discussed.

2. One-dimensional case

For s = 1 the key arguments and results are similar to that for multidimensional
quadrature (s > 1). However, the technical details are simpler.

Bernoulli polynomials arise in the derivation of the Euler-Maclaurin Summation
Formula [AS64, Equation 23.1.30]. They also facilitate the derivation of the the-
ory presented here. Bernoulli polynomials are defined by the following generating
function:

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
.
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The first few are

B0(x) = 1, B1(x) = x− 1/2, B2(x) = x2 − x+ 1/6.

Some relevant properties of Bernoulli polynomials quoted in [AS64, Chapter 23]
are given in the following lemma. Of particular importance is (2.1) below, which
relates f(y) to an integral involving the derivatives of f and Bernoulli polynomials.

Lemma 2.1. For non-negative integers n Bernoulli polynomials have the following
properties:

Bn(1 − x) = (−1)nBn(x) (n ≥ 0), Bn(0) = Bn(1) (n 6= 1),

dBn(x)

dx
= nBn−1(x) (n > 0),

∫ 1

0

Bn(x) dx = 0 (n > 0).

For any fixed y, {x− y} as a function of x has jump discontinuities at {x} = {y}
and has slope 1 everywhere else. Furthermore,

Bn({x− y}) is continuous for n 6= 1,

∂

∂x
Bn({x− y}) = nBn−1({x− y}) (n > 1).

If f is any function whose nth derivative is Lebesgue integrable on [0, 1), and F is
an anti-derivative of f , then for all y ∈ [0, 1)

(−1)n

n!

∫ 1

0

Bn({x− y})
dnf

dxn
dx =

n∑
i=0

Bi(y)

i!

diF

dxi

∣∣∣∣1
0

− f(y) (n > 0),(2.1)

where |10 represents the change in a function from 0 to 1.

Reproducing kernels require that the space of integrands have enough regularity
to insure that Tx, as defined in (1.13), is bounded. Integrability is not enough, but
requiring the first derivative of the integrand to be integrable is sufficient. For any
p, 1 ≤ p ≤ ∞, let

Xp ≡
{
f :

df

dx
∈ Lp([0, 1))

}
.(2.2)

The sets Xp are subsets of absolutely continuous functions, and Xq ⊂ Xp for q > p.
For example, the function f defined as

f(x) = sign(x− 1/2)|x− 1/2|1/q, df

dx
=

1

q
|x− 1/2|−1+1/q,

is continuous on [0, 1) for all q ≥ 0, and f ∈ Xp for all p−1 + q−1 > 1.
One can define an inner product and reproducing kernel on X2. Suppose η has

the following form:

η(x, y) = M + β2

[
µ(x) + µ(y) +

1

2
B2({x− y}) +B1(x)B1(y)

]
,(2.3)

for some constant M (to be specified below), some arbitrary positive constant β
and some arbitrary function µ satisfying

µ ∈ X∞,

∫ 1

0

µ(x)dx = 0.(2.4)
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For any y ∈ [0, 1), η(•, y) ∈ X2, and for any function f ∈ X2,

∂η

∂x
= β2

[
dµ

dx
+B1({x− y}) +B0(x)B1(y)

]
,

β−2

∫ 1

0

∂η

∂x

df

dx
dx = f(y)−

∫ 1

0

(
f − dµ

dx

df

dx

)
dx,

by (2.1). The second term in the above expression can be identified as some linear
functional of f :

L(f) ≡
∫ 1

0

(
f − dµ

dx

df

dx

)
dx.(2.5)

The inner product on X and the induced norm are defined as

〈f, g〉 = L(f)L(g) + β−2

∫ 1

0

df

dx

dg

dx
dx, |||f |||2 =

∥∥∥∥(L(f), β−1 df

dx

)∥∥∥∥
2

.(2.6)

The η defined above is then the reproducing kernel, that is,

f(x) = 〈η(•, x), f〉 ∀f ∈ X2,(2.7)

provided that M satisfies

1 = L(η(•, y)) =

∫ 1

0

(
η − dµ

dx

∂η

∂x

)
dx = M − β2

∫ 1

0

(
dµ

dx

)2

dx.(2.8)

Thus, the constant M is determined in terms of β and µ:

M = 1 + β2

∫ 1

0

(
dµ

dx

)2

dx.(2.9)

Note that L(η(•, y)) = 1, implying that the constant 1 is the representer for the
linear functional L:

L(f) = 〈1, f〉 ∀f ∈ X2.

Having defined the Hilbert space (X, 〈, 〉) and found its reproducing kernel it is
straightforward to compute the worst-case integrand ξ and its norm:

ξ(x) = I(η(•, x))−Q(η(•, x))(2.10a)

= −β2

N

∑
z∈P

[
µ(z) +

1

2
B2({x− z}) +B1(x)B1(z)

]
,

dξ

dx
= −β2

N

∑
z∈P

[B1({x− z}) +B1(z)](2.10b)

= −β2

N

∑
z∈P

[x− 1x>z] = β2

[
−x+

1

N

∑
z∈P

1x>z

]
,

where 1x>z is the indicator function. Since 1 is the representer for L, and quadrature
rule (1.1) is exact for constants, it follows that

L(ξ) = 〈ξ, 1〉 = (I −Q)(1) = 0.
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Finally the norm of ξ follows by straightforward calculations:

|||ξ|||22 = 〈ξ, ξ〉 =

∥∥∥∥(L(ξ), β−1 dξ

dx

)∥∥∥∥2

2

=

∥∥∥∥β−1 dξ

dx

∥∥∥∥2

2

(2.11)

=
β2

N2

∑
z,z′∈P

∫ 1

0

[B1({x− z}) +B1(z)] [B1({x− z′}) +B1(z
′)] dx

=
β2

N2

∑
z,z′∈P

[
1

2
B2({z − z′}) +B1(z)B1(z

′)
]

= β2

[
1

12N2
+

1

N

N∑
i=1

(
z(i) − 2i− 1

2N

)2
]
,

where z(1) ≤ · · · ≤ z(N) are the ordered values of P , that is, the order statistics.
Quadrature error bound (1.14) is

|I(f)−Q(f)| = |〈ξ, f〉| = β−2

∣∣∣∣∫ 1

0

dξ

dx

df

dx
dx

∣∣∣∣ ≤ D2(P )V2(f),(2.12)

where

D2(P ) ≡ |||ξ|||2 =

∥∥∥∥β−1 dξ

dx

∥∥∥∥
2

, V2(f) ≡ |||f − L(f)|||2 =

∥∥∥∥β−1 df

dx

∥∥∥∥
2

.

The quantity D2(P ) is called the generalized L2-discrepancy since it is the L2-
norm of dξ/dx. In one dimension D2(P ) is independent of the choice of µ, and β
appears only as a constant multiple. However, this is not true for s > 1 as shall
be seen in the next section. From (2.11), it follows that the minimum value of

D2(P ) is β/(
√

12N), which occurs when P = {(2i− 1)/2N : i = 1, . . . , N}. This P
corresponds to the midpoint rule, which has O(N−2) error when the integrand is
twice continuously differentiable [DR84, p. 53], but in this case has only O(N−1)
error under a weaker assumption on the integrand. The quantity V2(f) is defined as
the generalized L2-variation of the f . The variation of a function does not change
if an arbitrary constant is added to it. Likewise, adding a constant to a function
leaves the absolute quadrature error unchanged.

To define the generalizedLp-discrepancy and Lp-variation it is necessary to define
norms, ||| |||p, for Xp. For any p, 1 ≤ p ≤ ∞, let

|||f |||p =

∥∥∥∥(L(f), β−1 df

dx

)∥∥∥∥
p

.(2.13)

Given these norms it is possible to define the Lp-discrepancy and Lp-variation as a
natural extension of the L2-discrepancy and L2-variation because dξ/dx is piecewise
continuous.

Definition 2.2. For any f ∈ Xp the generalized Lp-variation is

Vp(f) ≡ |||f − L(f)|||p =

∥∥∥∥β−1 df

dx

∥∥∥∥
p

.(2.14)

For any finite sample P ⊂ [0, 1) the generalized Lp-discrepancy is defined as

Dp(P ) ≡ Vp(ξ) = |||ξ|||p =

∥∥∥∥β−1 dξ

dx

∥∥∥∥
p

.(2.15)
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Hölder’s inequality for the L2-inner product and Lp-norms implies a Hölder’s
inequality for the inner product defined in (2.6) and the norms defined in (2.13),
that is,

|〈f, g〉| ≤ |||f |||p |||g|||q ∀f ∈ Xp, g ∈ Xq (1 ≤ p, q ≤ ∞, p−1 + q−1 = 1).

Norms, variations and discrepancies of different orders p ≤ q obey the following
relationships:

|||f |||p ≤ |||f |||q , Vp(f) ≤ Vq(f), Dp(P ) ≤ Dq(P ) ∀f ∈ Xq, ∀P.
To derive quadrature error bounds in terms of the Lp-discrepancy and Lq-

variation we note that for any fixed x the reproducing kernel η(•, x) has sufficient
smoothness to lie not only in X2 but also in X∞. Thus, equation (2.7) holds for
all f ∈ X1. Likewise ξ ∈ X∞, so I(f) − Q(f) = 〈ξ, f〉 for all f ∈ X1. Applying
Hölder’s inequality yields a quadrature error bound that includes (2.12) as a special
case:

(2.16) |I(f)−Q(f)| = |〈ξ, f〉| = β−2

∣∣∣∣∫ 1

0

dξ

dx

df

dx
dx

∣∣∣∣
≤ Dp(P ) Vq(f) ∀f ∈ Xq (1 ≤ q ≤ ∞, p−1 + q−1 = 1).

The worst-case integrand, ξq ∈ Xq, is that for which the error bound is attained.
This occurs when ∣∣∣∣∫ 1

0

dξ

dx

dξq
dx

dx

∣∣∣∣ = ∥∥∥∥dξdx
∥∥∥∥
p

∥∥∥∥dξqdx
∥∥∥∥
q

in (2.16), that is,

ξq(y) =

∫ y

0

sign

(
dξ

dx

) ∣∣∣∣ dξdx
∣∣∣∣1/(q−1)

dx (1 < q ≤ ∞).(2.17)

Of course, adding an arbitrary constant to ξq or multiplying ξq by an arbitrary
constant gives another worst-case integrand.

A worst-case integrand ξ1 does not exist. For it to exist dξ1/dx would need to
be a Dirac delta function centered at the point where |dξ/dx| attains its maximum
value, but such a ξ1 does not have sufficient regularity to lie in X1. However, for
any ε > 0 one can find a “nearly” worst-case integrand ξ1,ε ∈ X1 such that

|I(ξ1,ε)−Q(ξ1,ε)| > [D∞(P )− ε]V1(ξ1,ε).

This is done by constructing a dξ1,ε/dx that is only non-zero near the point where
|dξ/dx| attains its maximum.

So far, a family of error bounds and figures of merit have been derived in the
one-dimensional case assuming a mild amount of regularity on the integrand. The
following theorem summarizes these results:

Theorem 2.3. For any f ∈ Xq (1 ≤ q ≤ ∞) and for s = 1 quadrature rule (1.1)
has an error

|I(f)−Q(f)| ≤ Dp(P )Vq(f) (p−1 + q−1 = 1).

Equality holds for the worst-case integrand ξq given in (2.17) for 1 < q ≤ ∞.
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3. Multidimensional case

This section generalizes the ideas of the previous one to s > 1, resulting in a
multidimensional version of Theorem 2.3. The integrands are now functions of
x = (x1, . . . , xs) and the notation introduced following (1.4) is employed.

The multidimensional generalization of Xp, the space of integrands defined in
(2.2), is a space of functions whose mixed partial derivatives are all integrable:

Xp ≡ Xp(C
s) ≡

{
f :

∂|u|f
∂xu

∈ Lp(Cu) ∀u ⊆ S

}
.(3.1)

Note that Xp(C
s) ⊂ Xp(C

t) for any s < t. In the previous section any f ∈
Xp([0, 1)) was decomposed into two parts: a constant, L(f), and a nonconstant
part, f −L(f). The variation of the integrand, Vp(f), depended only on the second
part. This decomposition is now generalized to 2s components for s ≥ 1. Let
Lj denote the operator L defined in (2.5) acting on the jth coordinate, let Lu =∏

j∈u Lj, and let L∅ be defined as the identity.

Definition 3.1. For any function f ∈ Xp(C
s) iteratively define its components,

fu as follows:

fu = LS−u(f)−
∑
v⊂u

fv (u ⊆ S).(3.2)

Lemma 3.2. The components of f ∈ Xp(C
s) defined in Definition 3.1 satisfy the

following properties:

Ljfu =

{
0 for j ∈ u,

fu for j /∈ u,
(3.3a)

fu ∈ Xp∗(Cu) ≡ {f ∈ Xp(C
u) : Lj(f) = 0 ∀j ∈ u} ,(3.3b)

and

f =
∑
u⊆S

fu,(3.3c)

Conversely, if f̂u ∈ Xp∗(Cu) are arbitrary functions, and f =
∑

u⊆S f̂u, then the

components of f as defined in Definition 3.1 are, in fact, the f̂u.

Proof. Note from the definition of L in (2.5) that L(1) = 1, thus it follows that
Ljfu = fu for j /∈ u. The proof of Ljfu = 0 for j ∈ u proceeds by induction. Note
that it holds vacuously for u = ∅. Now for any u ⊆ S suppose that Ljfv = 0 if
j ∈ v for all v ⊂ u. For any particular j ∈ u let w = u− {j} ⊂ u. It follows that

Ljfu = Lj

[
LS−u(f)−

∑
v⊂u

fv

]
= LS−w(f)−

∑
v⊂u

Lj(fv)

= LS−w(f)−
∑
v⊆w

fv = 0.

Equation (3.3b) follows from (3.3a), and equation (3.3c) follows from the definition
(3.2) for the case u = S.

Induction is also used to to prove the second part of the lemma. Since Lj f̂u = 0

for all j ∈ u, it follows that f∅ = LS(f) = f̂∅. Next for any given u it is assumed
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that fv = f̂v for all v ⊂ u. Applying the definition of fu and (3.3a) completes the
proof:

fu = LS−u

∑
w⊆S

f̂w

−∑
v⊂u

fv =
∑
w⊆u

f̂w −
∑
v⊂u

fv = f̂u.

The component fu is the part of the function that depends only on xu. It
belongs to Xp∗(Cu), a subspace of Xp(C

u) whose elements satisfy the condition
Lj(f) = 0 ∀j ∈ u. The order of a component is |u|. The constant term f∅
is integrated exactly by quadrature rule (1.1), however, the other components are
subject to quadrature error. If µ = 0, then the fu are ANOVA effects, used in earlier
analysis of quadrature error by Owen [Owe92, Owe95] and the author [Hic95, Hic96].
They showed how certain quadrature rules integrate components of a certain order
better than others.

The inner product 〈, 〉 on X2(C
s) and the norms ||| |||p on Xp(C

s) are defined as

generalizations of (2.6) and (2.13) in terms of the decomposition in Lemma 3.2:

〈f, g〉 =
∑
u⊆S

β−2|u|
∫
Cu

∂|u|fu
∂xu

∂|u|gu
∂xu

dxu, |||f |||p =

∥∥∥∥∥
(
β−|u|

∂|u|fu
∂xu

)
u⊆S

∥∥∥∥∥
p

.

(3.4)

Note from Definition 3.1 that

∂|u|fu
∂xu

= LS−u

(
∂|u|f
∂xu

)
.(3.5)

This fact is used in Section 5 in deriving formulas for specific cases of the generalized
variation and discrepancy. As in the one-dimensional case we have a Hölder’s
inequality,

|〈f, g〉| ≤ |||f |||p |||g|||q ∀f ∈ Xp, g ∈ Xq (1 ≤ p, q ≤ ∞, p−1 + q−1 = 1).

Under this inner product the reproducing kernel for X2(C
s) is simply the product

of one-dimensional reproducing kernels (2.3).

Lemma 3.3. Define

η(x, y) =

s∏
j=1

η1(xj , yj),

where

η1(x1, y1) = M + β2

[
µ(x1) + µ(y1) +

1

2
B2({x1 − y1}) +B1(x1)B1(y1)

]
.

It follows that the components of η are

ηu(x, y) = ηu(xu, yu) =

s∏
j∈u

[η1(xj , yj)− 1],

and that

fu(yu) = β−2|u|
∫
Cu

∂|u|fu
∂xu

∂|u|ηu(•, yu)
∂xu

dxu ∀yu ∈ Cu,(3.6a)

f(y) = 〈f, η(•, y)〉 ∀y ∈ Cs.(3.6b)

That is, η is the reproducing kernel for Xp(C
s).
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Proof. Recall from (2.8) that L(η1(•, y1)) = 1. Using induction one can derive the
components ηu.

Induction is also used to prove (3.6a). This is true for u = ∅. Now suppose it
is true for all v ⊂ u. For any j ∈ u let v = u − j. For any fixed xj the function
∂fu/∂xj is in Xp(C

v). Thus,

β−2|u|
∫
Cu

∂|u|fu
∂xu

∂|u|ηu(•, yu)
∂xu

dxu

= β−2

∫ 1

0

[
β−2|v|

∫
Cv

∂|v|

∂xv

(
∂fu
∂xj

)
∂|v|ηu(•, yv)

∂xv
dxv

]
∂ηj(•, yj)

∂xj
dxj

= β−2

∫ 1

0

∂fu
∂xj

∣∣∣∣
xv=yv

∂ηj(•, yj)
∂xj

dxj = f(yu).

Equation (3.6b) follows from (3.4) and (3.6a).

With the reproducing kernel we can now compute the worst-case integrand for
X2(C

s) as was done in (2.10). The components of the worst-case integrand can be
calculated as well.

ξ(x) = (I −Q)(η(•, x)) =

s∏
j=1

[M + β2µ(xj)]

− 1

N

∑
z∈P

s∏
j=1

{
M + β2

[
µ(xj) + µ(zj) +

1

2
B2({xj − zj}) +B1(xj)B1(zj)

]}
,

ξu(xu) =
∏
j∈u

[M − 1 + β2µ(xj)]

− 1

N

∑
z∈P

∏
j∈u

{
M − 1 + β2

[
µ(xj) + µ(zj)

+
1

2
B2({xj − zj}) +B1(xj)B1(zj)

]}
,

∂|u|ξu
∂xu

= β2|u|

∏
j∈u

µ′(xj)− 1

N

∑
z∈P

∏
j∈u

[µ′(xj) +B1({xj − zj}) +B1(zj)]


= β2|u|

∏
j∈u

µ′(xj)− 1

N

∑
z∈P

∏
j∈u

[µ′(xj) + xj − 1xj>zj ]

 ,

where µ′ is the derivative of µ, and 1xj>zj is the indicator function. The worst-case
integrand, ξ, is used to generalize Definition 2.2 for the variation and discrepancy.

Definition 3.4. For any f ∈ Xp(C
s) let

Vp,u(f) ≡
∥∥∥∥∂|u|fu∂xu

∥∥∥∥
p

.(3.7a)
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The generalized Lp-variation is

Vp(f) ≡ |||f − LS(f)|||p =

∥∥∥∥(β−|u|Vp,u(f)
)
u6=∅

∥∥∥∥
p

=

∥∥∥∥∥
(
β−|u|

∂|u|fu
∂xu

)
u6=∅

∥∥∥∥∥
p

.(3.7b)

For any finite set P ⊂ Cs let

Dp,u(P ) ≡ Vp,u(β
−2|u|ξu) =

∥∥∥∥β−2|u| ∂
|u|ξu
∂xu

∥∥∥∥
p

(3.8a)

=

∥∥∥∥∥∥
∏
j∈u

µ′(xj)− 1

N

∑
z∈P

∏
j∈u

[µ′(xj) + xj − 1xj>zj ]

∥∥∥∥∥∥
p

.

The generalized Lp-discrepancy is defined as

Dp(P ) ≡ Vp(ξ) = |||ξ|||p(3.8b)

=

∥∥∥∥(β|u|Dp,u(P )
)
u6=∅

∥∥∥∥
p

=

∥∥∥∥∥
(
β−|u|

∂|u|ξu
∂xu

)
u6=∅

∥∥∥∥∥
p

=

∥∥∥∥∥∥
β|u|

∏
j∈u

µ′(xj)− 1

N

∑
z∈P

∏
j∈u

[µ′(xj) + xj − 1xj>zj ]




u6=∅

∥∥∥∥∥∥
p

.

In contrast to the one-dimensional case the generalized Lp-discrepancy depends
intrinsically on the choices of β and µ for s > 1. The consequences of these choices
are discussed below and in Section 5. Whereas the integrals defining the generalized
Lp-discrepancy are generally intractable, the case p = 2 can be reduced to a double
sum:

(3.9a) [D2,u(P )]2 ≡ β−2|u| |||ξ|||22 = β−2|u|〈ξu, ξu〉 = β−2|u|(I −Q)(ξu)

= M̄ |u| − 2

N

∑
z∈P

∏
j∈u

[M̄ + µ(zj)]

+
1

N2

∑
z,z′∈P

∏
j∈u

[
M̄ + µ(zj) + µ(z′j) +

1

2
B2({zj − z′j}) +B1(zj)B1(z

′
j)

]
,

[D2(P )]2 ≡ |||ξ|||22 = 〈ξ, ξ〉 = (I −Q)(ξ)(3.9b)

= M s − 2

N

∑
z∈P

s∏
j=1

[M + β2µ(zj)]

+
1

N2

∑
z,z′∈P

s∏
j=1

{
M

+β2

[
µ(zj) + µ(z′j) +

1

2
B2({zj − z′j}) +B1(zj)B1(z

′
j)

]}
,

where

M̄ = (M − 1)/β2 =

∫ 1

0

(
dµ

dx

)2

dx.
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Error bounds for multidimensional quadrature are analogous to those for uni-
variate quadrature and involve the generalized discrepancy and variation. Note
that ξ∅ = 0. For any f ∈ Xq(C

s)

|I(f)−Q(f)| = |〈ξ, f〉| =
∣∣∣∣∣∣
∑
u6=∅

β−2|u|
∫
Cu

∂|u|ξu
∂xu

∂|u|fu
∂xu

dxu

∣∣∣∣∣∣(3.10)

≤
∑
u6=∅

Dp,u(P )Vq,u(f) ≤ Dp(P )Vq(f) (p−1 + q−1 = 1),

by Hölder’s inequality. There is no contribution from the constant f∅ in (3.10) be-
cause quadrature rule (1.1) integrates constants exactly. Recall that the integrand
f is a sum of its components fu. The term

β−2|u|
∫
Cu

∂|u|ξu
∂xu

∂|u|fu
∂xu

dxu,

that appears above, is the quadrature error for fu. Furthermore, |I(fu)−Q(fu)| ≤
Dp,u(P )Vq,u(f). The error bound∑

u6=∅
Dp,u(P )Vq,u(f)

in (3.10) is independent of β since Dp,u(P ) and Vp,u(f) are themselves independent
of β. The quantity Dp,u(P ) measures how accurately the quadrature rule inte-
grates functions in Xp∗(Cu), that is, functions depending on the coordinates whose
indices are in u only. On the other hand, both Dp(P ) and Vq(f) do depend on
β (see (3.7) and (3.8)). They are weighted averages of the Dp,u(P ) and Vp,u(f),
respectively, where the weight is a power of β. Choosing a larger value of β gives a
higher weight to the Dp,u(P ) with larger |u| and so implies a preference for quadra-
ture rules that accurately integrate the higher order components of the integrand.
Conversely, choosing a smaller value of β implies a preference for quadrature rules
that accurately integrate the lower order components of the integrand. By referring
to the definition of the variation in (3.7) one may see that β−1 plays the role of a
length scale.

If one desires figures of merit for P that are independent of β one can compute
the Dp,u(P ) for all u 6= ∅. However, the number of these Dp,u(P ) is 2s − 1, which
grows exponentially as s increases. An alternative is to compute

Dp,r(P ) ≡
∥∥∥(Dp,u(P ))|u|=r

∥∥∥
p

(1 ≤ r ≤ s).

The quantity Dp,r(P ), which is also independent of β, measures how well the quad-
rature rule integrates r-dimensional components. Also, note that

Dp(P ) =
∥∥∥(βrDp,r(P ))1≤r≤s

∥∥∥
p
.

Hickernell [Hic95] compared the relative merits of several different quasi-random
and random samples using quantities similar to D2,r(P ). It was found that some
s-dimensional samples are good for integrating the lower-dimensional effects, while
others were better for integrating the higher-dimensional effects. For example,
a rectangular grid has relatively small D2,s(P ), but a relatively large D2,1(P ),
compared to other samples.
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Using Lemma 3.2 it is possible to construct the worst-case integrand, ξq. Each
of its components, ξq,u, is defined according to the conditions:

∂|u|ξq,u
∂xu

= β(q−2)|u|/(q−1) sign

(
∂|u|ξu
∂xu

) ∣∣∣∣∂|u|ξu∂xu

∣∣∣∣1/(q−1)

,(3.11a)

Lv(ξq,u) = 0 (∅ ⊂ v ⊆ u).(3.11b)

These conditions insure that the upper bound in each line of (3.10) is attained.

Theorem 3.5. For any f ∈ Xq(C
s) (1 ≤ q ≤ ∞) quadrature rule (1.1) has an

error

|I(f)−Q(f)| = |〈ξ, f〉| ≤ Dp(P )Vq(f) (p−1 + q−1 = 1).

Equality holds for the worst-case integrand ξq given by (3.11) for 1 < q ≤ ∞.

4. Periodic case

The error bounds in the previous two sections make no assumptions about the
periodicity of the integrand, as do error bounds (1.10) and (1.12b). To consider
periodic integrands define

X̃p,t(C
s) ≡

{
f :

∂k|u|f
∂xku

∈ Lp(Cs) and

∫ 1

0

∂k|u|f
∂xku

dxj = 0

∀k ≤ t, ∀j ∈ u, ∀u ⊆ S

}
.

The integer t denotes the degree of periodicity. Note that X̃p,1(C
s) is a subset of

Xp(C
s).

The inner products and norms for Xp(C
s) are now modified to apply to X̃p,t(C

s).
First we modify the definition of the operator L previously given in (2.5). For any

µ ∈ X̃∞,t([0, 1)) with
∫ 1

0
µ dx = 0 let

L(f) ≡
∫ 1

0

(
f − dtµ

dxt
dtf

dxt

)
dx, M = 1 + β2t

∫ 1

0

(
dtµ

dxt

)2

dx.(4.1)

The components of a function in X̃p,t(C
s) are defined as in Definition 3.1, but

using the new definition of L. The analogous result to Lemma 3.2 for functions
in X̃p,t(C

s) holds. The inner product on X̃2,t(C
s) and the norms on X̃p,t(C

s) are
defined as follows:

〈f, g〉t =
∑
u⊆S

β−2t|u|
∫
Cu

∂t|u|fu
∂xtu

∂t|u|gu
∂xtu

dxu,

|||f |||p,t =

∥∥∥∥∥
(
β−t|u|

∂t|u|fu
∂xtu

)
u⊆S

∥∥∥∥∥
p

.

Here and below we suppress the dependence of some quantities on t for ease of
notation.

The reproducing kernel for X̃2,t(C
s) is denoted η̃ and takes the form:

η̃(x, y) =

s∏
j=1

η̃1(xj , yj),
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where

η̃1(x1, y1) = M + β2t

[
µ(x1) + µ(y1)− (−1)t

(2t)!
B2t({x1 − y1})

]
.

Because η̃1(x1, y1) must be periodic it cannot contain the term B1(x1)B1(y1), which

appears in the definition of η1. Since X̃p,t(C
s) contains only periodic functions, it

follows by (2.1) that

L(η̃1(•, y1)) = 1 ∀y1, f(x) = 〈η̃(•, x), f〉 ∀f ∈ X̃1,t(C
s).

The worst-case integrand in X̃2,t(C
s) is

(4.2a) ξ̃(x) = (I −Q)(η̃(•, x)) =

s∏
j=1

[M + β2tµ(xj)]

− 1

N

∑
z∈P

s∏
j=1

{
M + β2t

[
µ(xj) + µ(zj)− (−1)t

(2t)!
B2t({xj − zj})

]}
,

(4.2b)
∂t|u|ξ̃u
∂xtu

= β2t|u|

∏
j∈u

µ(t)(xj)

.− 1

N

∑
z∈P

∏
j∈u

[
µ(t)(xj)− (−1)t

t!
Bt({xj − zj})

] ,

where µ(t) is the tth derivative of µ. Given ξ̃ it is now possible to generalize Defi-
nition 3.4.

Definition 4.1. For any f ∈ X̃p,t(C
s) the generalized periodic Lp,t-variation is

Ṽp,t(f) ≡ |||f − LS(f)|||p =

∥∥∥∥∥
(
β−t|u|

∂t|u|fu
∂xtu

)
u6=∅

∥∥∥∥∥
p

.

For any finite set P ⊂ Cs the generalized periodic Lp,t-discrepancy is defined as

D̃p,t(P ) ≡ Vp,t(ξ̃) =
∣∣∣∣∣∣∣∣∣ξ̃∣∣∣∣∣∣∣∣∣

p,t
(4.3a)

=

∥∥∥∥∥∥
βt|u|

∏
j∈u

µ(t)(xj)

− 1

N

∑
z∈P

∏
j∈u

[
µ(t)(xj)− (−1)t

t!
Bt({xj − zj})

]


u6=∅

∥∥∥∥∥∥
p

,

(4.3b) [D̃2,t(P )]2 = M s − 2

N

∑
z∈P

s∏
j=1

[M + β2tµ(zj)]

+
1

N2

∑
z,z′∈P

s∏
j=1

{
M + β2t

[
µ(zj) + µ(z′j)−

(−1)t

(2t)!
B2t({zj − z′j})

]}
.
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For s = 1 the formula for D̃2,1(P ) can be simplified even further:

[D̃2,1(P )]2 = β2

 1

12N2
+

1

N

N∑
i=1

z(i) − i

N
− 1

N

N∑
j=1

(
z(j) − j

N

)2
 ,

where the z(i) are again the ordered values of P . From (2.11) it follows that D̃2,1(P )

and D2(P ) have the same minimum value. For D̃2,1(P ) this is obtained for P =
{(i− ν)/N : i = 1, . . . , N} for all 0 < ν ≤ 1, whereas for D2(P ) it is obtained only
for ν = 1/2. In fact, shifting any set of points leaves its periodic Lp-discrepancy
unchanged, that is, for any ν ∈ Cs

D̃p,t({{z + ν} : z ∈ P}) = D̃p,t(P ).

Quadrature for periodic functions has an error bound in terms of the periodic dis-
crepancy and variation. The following theorem is a straightforward generalization
of Theorem 3.5.

Theorem 4.2. For any f ∈ X̃q,t(C
s) (1 ≤ q ≤ ∞) quadrature rule (1.1) has an

error

|I(f)−Q(f)| = |〈ξ̃, f〉| ≤ D̃p,t(P )Ṽq,t(f) (p−1 + q−1 = 1).

Equality holds for the worst-case integrand

∂t|u|ξ̃q,u
∂xtu

= β(q−2)|u|/(q−1) sign

(
∂t|u|ξ̃u
∂xtu

) ∣∣∣∣∣∂t|u|ξ̃u∂xtu

∣∣∣∣∣
1/(q−1)

,

Lv(ξ̃q,u) = 0 (∅ ⊂ v ⊆ u),

for 1 < q ≤ ∞.

The space of periodic integrands X̃p,1(C
s) is a subspace of Xp(C

s) since they

share the same inner product (assuming the same β and same µ ∈ X̃∞,1([0, 1))). For

any f ∈ X̃p,1(C
s) it follows that Ṽp,1(f) = Vp(f), and for any sample P it follows

that D̃p,1(P ) ≤ Dp(P ). The latter assertion follows by applying both Theorems

3.5 and 4.2 to the worst-case integrand ξ̃q:

D̃p,1(P )Ṽq,1(ξ̃q) = |(I −Q)(ξ̃q)| ≤ Dp(P )Vq(ξ̃q) = Dp(P )Ṽq,1(ξ̃q),

for 1 ≤ p <∞. This can be extended to the case p = ∞ by noting that for a fixed
P the discrepancy is a continuous function of p and taking the limit as p→∞.

5. Choices of β and µ

In the previous section it was seen that the error bounds depend on the choices
of β and µ. In this section we show how different choices allow us to recover the
error bounds and figures of merit in (1.4) and (1.12). It will also be shown that in
some sense different values of β and µ give equivalent error bounds.

Recall from (3.8) that the generalized L∞-discrepancy is

D∞(P ) =

∥∥∥∥∥
(
β−|u|

∂|u|ξu
∂xu

)
u6=∅

∥∥∥∥∥
∞
.
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For certain choices of β this formula for the generalized L∞-discrepancy can be
simplified in that one need not consider all u, but only u = S. Taking the limit as
xS−u tends to the origin gives

β−s
∣∣∣∣∂sξS∂xS

∣∣∣∣
xS−u↓(0,...,0)

= βs|µ′(0)|s−|u|
∣∣∣∣∣∣
∏
j∈u

µ′(xj)− 1

N

∑
z∈P

∏
j∈u

[µ′(xj) + xj − 1xj>zj ]

∣∣∣∣∣∣
= |βµ′(0)|s−|u| β−|u|

∣∣∣∣∂|u|ξu∂xu

∣∣∣∣ ,
assuming that µ′ has limiting values as x tends to 0. Thus, the essential supremum
of |β−s∂sξS/∂xS | will be no smaller than that of |β−|u|∂|u|ξu/∂xu| if |βµ′(0)| = 1.
Likewise,

β−s
∣∣∣∣∂sξS∂xS

∣∣∣∣
xS−u↑(1,...,1)

= |βµ′(1)|s−|u| β−|u|
∣∣∣∣∂|u|ξu∂xu

∣∣∣∣ .
Similar results hold for limits of ∂tsξ̃S/∂x

t
S. This leads to the following theorem.

Theorem 5.1. If either limx↓0 β|µ′(x)| or limx↑1 β|µ′(x)| is 1, then

D∞(P ) =

∥∥∥∥∥∥
s∏

j=1

µ′(xj)− 1

N

∑
z∈P

s∏
j=1

[µ′(xj) + xj − 1xj>zj ]

∥∥∥∥∥∥
∞

.

For any positive integer t if limx↓0 βt|µ(t)(x)| or limx↑1 βt|µ(t)(x)| is 1, then

D̃∞,t(P ) =

∥∥∥∥∥∥
s∏

j=1

µ(t)(xj)− 1

N

∑
z∈P

s∏
j=1

[
µ(t)(xj)− (−1)t

t!
Bt({xj − zj})

]∥∥∥∥∥∥
∞

.

In the following subsections we consider four specific choices of µ and β and give
the corresponding formulas for the generalized discrepancy and variation. These
examples yield the star discrepancy (1.6) and Pα (1.8) as well as two new discrep-
ancies.

5.1. Star discrepancy. To recover the Lp-star discrepancy defined in (1.6) choose

µ(x) =
1

6
− x2

2
, µ′(x) = −x, β−1 = |µ′(1)| = 1, M =

4

3
.

This implies that Lu(f) = f |xu=(1,...,1), and that the variation is defined as follows:

Vp(f) =

∥∥∥∥∥∥
(
∂|u|f
∂xu

∣∣∣∣
xS−u=(1,...,1)

)
u6=∅

∥∥∥∥∥∥
p

.

The formulas for the discrepancy from (3.8) and (3.9) are

∂|u|ξu
∂xu

=
∏
j∈u

−xj − 1

N

∑
z∈P

∏
j∈u

(−1xj>zj ) = (−1)|u|
{

Vol([0, xu))− |Pu ∩ [0, xu)|
N

}
,
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Dp(P ) =

∥∥∥∥∥
( |Pu ∩ [0, xu)|

N
−Vol([0, xu))

)
u6=∅

∥∥∥∥∥
p

,(5.1a)

D∞(P ) =

∥∥∥∥ |P ∩ [0, x)|
N

−Vol([0, x))

∥∥∥∥
∞
,(5.1b)

[D2(P )]2 =

(
4

3

)s
− 2

N

∑
z∈P

s∏
j=1

(
3− z2

j

2

)
+

1

N2

∑
z,z′∈P

s∏
j=1

[
2−max(zj , z

′
j)
]
,

(5.1c)

where we have applied Theorem 5.1. The error bound in Theorem 3.5 for this
choice of µ and β is the generalization of the Koksma-Hlawka inequality (1.5).

As remarked in the introduction the Lp-star discrepancy is often defined as

Dp,S(P ) =

∥∥∥∥ |P ∩ [0, x)|
N

−Vol([0, x))

∥∥∥∥
p

,(5.2)

and this figure of merit has been used to compare different quasirandom samples
(e.g. [MC94]). It is true that for the choice of µ and β above D∞(P ) = D∞,S(P )
because of Theorem 5.1. However, for all other values of p

Dp(P ) =

∑
u6=∅

[Dp,u(P )]p


1/p

> Dp,S(P ).

Specifically, we may compare the above formula for D2(P ) with the following for-
mula given by [War72]:

[D2,S(P )]2 =

(
1

3

)s

− 2

N

∑
z∈P

s∏
j=1

(
1− z2

j

2

)
+

1

N2

∑
z,z′∈P

s∏
j=1

[1−max(zj , z
′
j)].

The terms inside each of the three products in the formula for [D2,S(P )]2 are one
less than the corresponding terms in the formula for [D2(P )]2. Because D2(P )
appears in a quadrature error (Theorem 3.5), whereas D2,S(P ) does not, we prefer
the former as a figure of merit. Moreover, for a uniform simple random sample, P ,

E{[D2(P )]2} =

[(
3

2

)s
−
(

4

3

)s]/
N =

(
4

3

)s [(
9

8

)s
− 1

]/
N,

E{[D2,S(P )]2} =

[(
1

2

)s

−
(

1

3

)s]/
N,

(see [MC94]). As a figure of merit E{[D2,S(P )]2} becomes smaller for a random
sample simply by increasing the dimension. This is undesirable.

5.2. A centered discrepancy. The discrepancy in the previous section is an-
chored to the origin because the interval [0, x) appears in its definition. Also,
there is reference to (1, . . . , 1), since it appears in the formula for the variation.
Now we define a discrepancy and variation that refer to the center of the cube,
(1/2, . . . , 1/2). This discrepancy and variation are invariant under reflections of P
about any plane xj = 1/2.

It is useful to introduce some notation describing the vertices of the cube. Let
As denote the set of 2s vertices of the cube Cs, that is,

As ≡ {a ∈ Rs : aj = 0, 1 ∀j}.
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The planes passing through any point x parallel to the faces of the cube Cs can
be thought of as dividing it into 2s intervals, each containing the points between x
and a vertex a:

J(a, x) = {y ∈ Cs : min(aj , xj) ≤ yj < max(aj , xj) ∀j}.
The set of 2|u| vertices of the cube Cu is denoted Au, which is the projection of As

into Ru. The projections of the intervals J(a, x) into Ru are denoted J(au, xu).
Also, for any vertex au ∈ Au, let

σ(au) ≡
∑
j∈u

aj (mod 2).

In this way one can differentiate even (σ(au) = 0) and odd (σ(au) = 1) vertices.
The centered discrepancy comes from the following choices of µ and β:

µ(x) = −1

2
B2({x− 1/2}), µ′(x) = −x+ 1x>1/2, β−1 = 1, M =

13

12
,

which implies that Lu(f) = f |xu=(1/2,...,1/2), and

Vp(f) =

∥∥∥∥∥∥
(
∂|u|f
∂xu

∣∣∣∣
xS−u=(1/2,...,1/2)

)
u6=∅

∥∥∥∥∥∥
p

.

Let a(x) denote the unique vertex of Cs which is closest to x, that is, a(x) is the
unique vertex such that x ∈ J(a(x), (1/2, . . . , 1/2)). Then

∂|u|ξu
∂xu

=
∏
j∈u

(−xj + 1x>1/2)−
1

N

∑
z∈P

∏
j∈u

(1xj>1/2 − 1xj>zj)

= (−1)|u|+σ(a(x)u)

{
Vol(J(au(x), xu))− |Pu ∩ J(au(x), xu)|

N

}
.

The formula for the discrepancy can be written as

Dp(P ) =

∥∥∥∥∥
( |Pu ∩ J(au(x), xu)|

N
−Vol(J(au(x), xu))

)
u6=∅

∥∥∥∥∥
p

,

[D2(P )]2 =

(
13

12

)s
− 2

N

∑
z∈P

s∏
j=1

(
1 +

1

2
|zj − 1/2| − 1

2
|zj − 1/2|2

)

+
1

N2

∑
z,z′∈P

s∏
j=1

[
1 +

1

2
|zj − 1/2|+ 1

2
|z′j − 1/2| − 1

2
|zj − z′j |

]
.

This formula is similar to that for the star discrepancy (5.1), except the origin is
replaced by a(x), the vertex of the cube closest to the point x. In contrast to the
star discrepancy, replacing xj by 1−xj for any j leaves the centered discrepancy and
variation unchanged. Unfortunately, Theorem 5.1 cannot be invoked to simplify the
formula for D∞(P ) because µ′(0) = µ′(1) = 0. The next discrepancy has both the
desired invariance and a simplified formula for D∞(P ).
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5.3. A symmetric discrepancy. In the previous two cases Luf and the variation
referred to the function value at a single point. However, below we choose µ so that
Luf is an average of the function values over the vertices of the cube. Let

µ(x) = −1

2
B2(x), µ′(x) = −x+ 1/2,

β−1 = |µ′(0)| = |µ′(1)| = 1/2, M =
4

3
.

The notation for the vertices introduced above is used. Furthermore, let Je(xu)
and Jo(xu) be the unions of the even and odd intervals, respectively, that is

Je(xu) =
⋃

σ(au)=0

J(au, xu), Jo(xu) =
⋃

σ(au)=1

J(au, xu).

One may show that

Vol (Je(xu)) =
1

2
+

1

2

∏
j∈u

(2xj − 1), Vol (Jo(xu)) =
1

2
− 1

2

∏
j∈u

(2xj − 1),

which will be used below.
The linear operator Lu is defined as an average of the function values over the

vertices in Au:

Lu(f) =
1

2|u|
∑

au∈Au

f |xu=au
,

and the variation is defined as

Vp(f) =
1

2s

∥∥∥∥∥∥
 ∑

aS−u∈AS−u

∂|u|f
∂xu

∣∣∣∣
xS−u=aS−u


u6=∅

∥∥∥∥∥∥ .
The symmetric discrepancy is defined as follows:

∂|u|ξu
∂xu

= 22|u|

∏
j∈u

(1/2− xj)− 1

N

∑
z∈P

∏
j∈u

(1/2− 1xj>zj )


= 2|u|

∏
j∈u

(1− 2xj)− 1

N

∑
z∈P

∏
j∈u

sign(zj − xj)


= (−2)|u|

{
2Vol (Je(xu))− 1

− 1

N
[|Pu ∩ Je(xu)| − |Pu ∩ Jo(xu)|]

}
= 2(−2)|u|

{
Vol (Je(xu))− |Pu ∩ Je(xu)|

N

}
= −2(−2)|u|

{
Vol (Jo(xu))− |Pu ∩ Jo(xu)|

N

}
,
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Dp(P ) = 2

∥∥∥∥∥
( |Pu ∩ Je(xu)|

N
−Vol (Je(xu))

)
u6=∅

∥∥∥∥∥
p

,

D∞(P ) = 2

∥∥∥∥ |P ∩ Je(x)|
N

−Vol (Je(x))

∥∥∥∥
∞
,

[D2(P )]2 =

(
4

3

)s
− 2

N

∑
z∈P

s∏
j=1

(
1 + 2zj − 2z2

j

)
+

2s

N2

∑
z,z′∈P

s∏
j=1

(1 − |zj − z′j|),

where we have applied Theorem 5.1. Comparing this formula to that for the star
discrepancy, the single rectangular solid [0, x) appearing in (5.1) has been replaced
by a union of rectangular solids Je(x).

5.4. Pα and its generalizations. As the final example let µ(x) = 0 so M = 1. For
arbitrary β the error bound coefficients c and c̃ in (1.11) correspond to D2(P ) and

D̃2,1(P ), respectively. The error bounds (1.12) are the same as those in Theorems
3.5 and 4.2. For β = 2π it follows from (1.8) and (4.3a) that

P2t = [D̃2,t(P )]2

for any positive integer t.
As one can see from the examples above the discrepancy and the variation, as

well as the operator L and the norms depend inherently on β and µ. Although the
choice of β and µ is important, it can be shown that different choices are equivalent
in a certain sense to be made precise below. For i = 1, 2 let βi and µi denote two
different choices of β and µ, respectively. Furthermore let the superscript (i) denote
the dependence of other pertinent quantities on this choice. The following theorem
gives the relationship between the different discrepancies and variations defined by
βi and µi.

Theorem 5.2. For any positive β1 and β2 and any µ1 and µ2 satisfying condition
(2.4) let

∆p = ‖µ′2 − µ′1‖p, dp = ‖(1,∆p)‖p,
K(p, β1, β2, µ1, µ2) = dsq max

k=1,s

∥∥β2(1, (dqβ1)
−1)
∥∥k
p
, p−1 + q−1 = 1.

For all finite samples P and all f ∈ Xp the generalized Lp-variations and discrep-
ancies associated with the βi, µi (i = 1, 2) are related as follows:

V (1)
p (f) ≤ K(p, β1, β2, µ1, µ2)V

(2)
p (f),

D(1)
p (P ) ≤ K(q, β2, β1, µ2, µ1)D

(2)
p (P ),

where p−1+q−1 = 1. Furthermore, if the µi ∈ X̃∞,t([0, 1)), then for all f ∈ X̃p,t the
generalized periodic Lp-variations and discrepancies associated with the βi, µi (i =
1, 2) are related as follows:

Ṽ
(1)
p,t (f) ≤ K(p, βt1, β

t
2, µ

(t−1)
1 , µ

(t−1)
2 )Ṽ

(2)
p,t (f),

D̃
(1)
p,t (P ) ≤ K(q, βt2, β

t
1, µ

(t−1)
2 , µ

(t−1)
1 )D̃

(2)
p,t (P ).

Proof. Let L(i) denote the operator L associated with µi, and let f
(i)
u denote the

component of f associated with µi. It follows that for any u ⊆ S the mixed partial
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derivative of the component f
(1)
u can be written in terms of mixed partial derivatives

of the components f
(2)
v for v ⊇ u by (3.5):

∂|u|f (1)
u

∂xu
= L

(1)
S−u

∂|u|f
∂xu

=
∑

u⊆v⊆S
(L

(1)
v−u − L

(2)
v−u)L

(2)
S−v

∂|u|f
∂xu

=
∑

u⊆v⊆S

∫
Cv−u

 ∏
j∈v−u

µ′2(xj)− µ′1(xj)

 ∂|v|f (2)
v

∂xv
dxv−u.

For p−1 + q−1 = 1 one may apply Hölder’s inequality to the sum of integrals over
Cv−u. This yields∣∣∣∣∣∂|u|f (1)

u

∂xu

∣∣∣∣∣ ≤
∥∥∥∥∥∥
 ∏

j∈v−u
µ′2(xj)− µ′1(xj)


u⊆v⊆S

∥∥∥∥∥∥
q

∥∥∥∥∥∥
(
∂|v|f (2)

v

∂xv

)
u⊆v⊆S

∥∥∥∥∥∥
p

≤ ds−|u|q

∥∥∥∥∥∥
(
∂|v|f (2)

v

∂xv

)
u⊆v⊆S

∥∥∥∥∥∥
p

,

where dq was defined in the statement of this theorem. Substituting this inequality
into the formula for the variation leads to the desired bound:

V (1)
p (f) =

∥∥∥∥∥∥
(
β
−|u|
1

∂|u|f (1)
u

∂xu

)
u6=∅

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥∥
β−|u|1 ds−|u|q

∥∥∥∥∥∥
(
∂|v|f (2)

v

∂xv

)
u⊆v⊆S

∥∥∥∥∥∥
p


u6=∅

∥∥∥∥∥∥∥
p

= dsq

∥∥∥∥∥∥
 ∑

∅⊂u⊆v
β
−|u|
1 d−|u|q

 ∂|v|f (2)
v

∂xv


v 6=∅

∥∥∥∥∥∥
p

≤ dsq

∥∥∥∥∥∥
([

1 + β−1
1 d−1

q

]|v| ∂|v|f (2)
v

∂xv

)
v 6=∅

∥∥∥∥∥∥
p

≤ dsq max
1≤k≤s

[1 + β−1
1 d−1

q ]kβk2

∥∥∥∥∥∥
(
β
−|v|
2

∂|v|f (2)
v

∂xv

)
v 6=∅

∥∥∥∥∥∥
p

= K(p, β1, β2, µ1, µ2)V
(2)
p (f).

The inequalities for the discrepancy follow by considering the inequalities for the

variation and ξ
(1)
q , the worst-case integrand (3.11) under β1 and µ1. For 1 ≤ p <∞

and p−1 + q−1 = 1 it follows that

D(1)
p (P )V (1)

q (ξ(1)
q ) = |I(ξ(1)

q )−Q(ξ(1)
q )| ≤ D(2)

p (P )V (2)
q (ξ(1)

q )

≤ D(2)
p (P )K(q, β2, β1, µ2, µ1)V

(1)
q (ξ(1)

q ).

There is no worst-case integrand for q = 1 (p = ∞). The inequality in this case
can be obtained by observing that the discrepancy is a continuous function of p
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and taking the limit as p tends to infinity. The proof for the periodic case follows
similarly.

The inequalities obtained above are not the tightest possible. For example,
K(p, β1, β1, µ1, µ1) > 1. However, they are among the simplest the author has
found.

Theorem 5.2 gives an equivalence among different discrepancies, that is, a low
discrepancy sample for one particular choice of µ and β cannot have too high a
discrepancy for another choice of µ and β. However, this does not imply that the
choice of µ and β are unimportant. The better sample under one type of discrepancy
may not be the better sample under a different type.

6. Discussion and conclusion

A number of figures of merit for quasi-random points appear in the literature for
quadrature and the related field of experimental design. For an extensive list see
[FW94, Chapters 1 and 5] and [FH95]. One might prefer a figure of merit, D(P ),
to have the following desirable qualities:

1. D(P ) should arise from an error bound (for quadrature, function approxima-
tion, or some other relevant application).

2. Projections of P into a lower-dimensional space should not increase D(P ).
3. D(P ) should be easy to compute.
4. D(P ) should have an intuitive interpretation.
5. D(P ) should be invariant under certain transformations of P , such as reflec-

tions about the plane xj = 1/2 and permutations of the coordinates.

The generalized Lp-discrepancy derived here satisfies the first two criteria. How-
ever, the traditional Lp-star discrepancy (5.2) does not satisfy them unless p = ∞.
Thus, we prefer the definition of star discrepancy given by (5.1).

The easiest generalized Lp-discrepancy to compute is the case p = 2, since it
involves at worst a double sum (see (3.9) and (4.3b)) that requires O(N2) operations
to evaluate. In fact Heinrich [Hei96] gives an algorithm for the L2-star discrepancy
that requires only O(N(logN)s) operations. For µ = 0 the generalized periodic
L2-discrepancy can be reduced to a single sum for lattice rules, thus requiring only
O(N) operations. Some might prefer to use the generalized L∞-discrepancy as a
figure of merit because it makes the weakest assumption on the integrands. In
this case choosing β and µ so that Theorem 5.1 can be applied will simplify the
calculation.

The star, centered and symmetric discrepancies can all be interpreted in terms of
the relative proportion of points lying in subsets of the integration domain. For Pα
and its generalizations we have not yet found a geometric interpretation, however,
the decomposition of the the integrand f into a sum of fu corresponds to the
analysis of variance (ANOVA) decomposition, which is very popular in statistics.

It has been shown [Woź91, MC94] that the traditional L2-star discrepancy gives
the mean square quadrature error for a Brownian sheet which is zero on all faces of
the cube xj = 1. If one relaxes this condition so that the values of the integrand on
these faces are themselves generalized Brownian sheets, then mean square quadra-
ture error is the L2-star discrepancy defined here (Caflisch, private communication
and [MC94]).
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The star discrepancy is not invariant under reflections of P about planes xj =
1/2. The other three figures of merit in Section 5 do have this quality. All figures
of merit considered in this paper are invariant to permutations of the coordinates.

For lattice integration rules, the speed at which one can compute Pα makes it a
very attractive figure of merit. However, for general quadrature rules the symmetric
discrepancy has much to commend it. Although not backed by the weight of history,
it satisfies all the above criteria whereas the star discrepancy does not.
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