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CONVERGENCE OF A RANDOM WALK METHOD

FOR A PARTIAL DIFFERENTIAL EQUATION

WEIDONG LU

Abstract. A Cauchy problem for a one–dimensional diffusion–reaction equa-
tion is solved on a grid by a random walk method, in which the diffusion part
is solved by random walk of particles, and the (nonlinear) reaction part is
solved via Euler’s polygonal arc method. Unlike in the literature, we do not
assume monotonicity for the initial condition. It is proved that the algorithm
converges and the rate of convergence is of order O(h), where h is the spatial
mesh length.

1. Introduction

In this paper we study the approximating solutions to the following Cauchy
problem,

ut = νuxx + g(t, u), t ∈ [0, T ],(1)

u(0, x) = u0(x), x ∈ [0, l],(2)

u(t, 0) = u(t, l) = 0, t ∈ [0, T ],(3)

by a random walk method, precisely, we use the random fractional method which
was introduced by Chorin [1]. There are three main features that make our results
different from those in the literature. First, we consider the initial–boundary prob-
lem, in fact, if only considering the initial problem, we can’t complete the algorithm
smoothly. Second, we do not assume the monotonicity of u0(x) in x, which is the
main difficulty we have overcome in this paper. By Hald’s method, one can’t obtain
the fact |E(unj − φnj )| ≤Mh without this monotonicity condition. Third, we allow
the t–dependence of reaction term g(t, u), but this is not very important.

Hald [6] proved the convergence of a random walk algorithm for the Cauchy
problem (1)–(2) with g(t, u) = f(u) which is independent of t. Our method is
very similar to his, which allows the creation of the particles and the solution is
constrained on the grid. Puckett [10] proposed an algorithm for the same equation
and proved the convergence of the algorithm for the Kolmogorov equation ut =
νuxx + u(1− u). We note that [6] and [10] had the same monotonicity assumption
on the initial data, and the mass of the particles was not allowed to be negative. But
we will see below that all of those are not necessary. We should mention that Robert
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[12] proved the convergence of a random walk algorithm for the Burgers equation
ut = νuxx + uux. In [10] and [12] the position of the particles is determined by a
grid-free random walk technique. Especially, when they approximated the solution
of ut = νuxx by a random walk method, the Gaussian distributed random variables
were used and u(t, x) was approximated by the total mass of the particles to the
right of the point x. Now, let us explain the fractional method which we are going
to apply. The first step is to approximate the solution of the ordinary differential
equation (regard x as a parameter).

ut = g(t, u),(4)

u(0, x) = u0(x).(5)

The basic idea is to approximate the gradient of the solution by a collection of
particles on a grid. The masses of the particles are determined by solving the above
ordinary differential equation. Note that we will not approximate the solution by
the total mass of a collection of particles on a grid directly because we want the
variance of the computed solution to be small.

The second step is to solve the diffusion equation,

ut = νuxx,(6)

u(0, x) = u0(x).(7)

We simulate the diffusion process by randomly perturbing the position of particles
that generate the numerical solution, according to the correspondence between the
distribution of the position of particles undergoing random walks and the solution
of the diffusion equation (see Chorin [1], Chorin and Marsden [3] and Feller [4] for
more details).

Combining the above two steps, we obtain our approximate solution to (1)–(3).
We show that the expected value of the computed solution tends to the solution
of the partial differential equation and the variance tends to zero. As a matter of
fact, we obtain the rate of convergence for our algorithm to being of order O(h),
where h is the spatial mesh length.

Some similar methods have been developed to solve other problems which contain
diffusion. Chorin [2] developed a random vortex sheet method to solve the Prandtl
boundary layer equation. Convergence proofs for the random walk method in the
absence of boundaries may be found in [5] and [8]. Robert [11] gave some estimates
of the convergence rate for the method. For the problem with boundary conditions
Hald [7] proved the convergence of a random walk method in which particles are
created at the boundary.

2. The method

In this section we will present our random walk algorithm. We consider (1)–(3).
Suppose that ν is a constant (0 < ν < 1), g is a continuously differentiable function
and g(t, 0) = 0 for all t ∈ [0, T ].

First of all, let us introduce some notation. We denote xj = jh, tn = nK, with
0 < h,K < 1 and approximate u by unj = u(tn, xj). We call K the time step
length and h the space mesh length. Now, we present the following random walk
algorithm.
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Step 0. Set

u(tn, 0) = u(tn, l) = 0, n = 0, 1, · · · , T/K.

Step 1. Set n = 0 and

u0
j = u(0, xj) = u0(xj), j = 0, 1, · · · , l/h.

Step 2. Define

vnj = unj + Kg(tn, u
n
j ), j = 0, 1, · · · , l/h.

Step 3. Compute the following numerical differentiation:

ξn0 = ξnl/h = 0,

ξnj = ξ(tn, xj) =
vnj − vnj+1

h
, j = 1, · · · , l/h− 1.

Step 4. Let α = K2, (thus, 0 < α < 1). We choose a positive integer Nj such that

Nj − 1 <
|hξnj |
α

≤ Nj .

At xj we place Nj particles with mass knj =
hξnj
Nj

for each.

Step 5. We let the particles randomly walk following such a rule:

For each particle at the place xj , we associate it with a random variable X taking
values −1,0,1 with probabilities ν

2 , 1− ν and ν
2 , respectively.

If X = 1, the particle jumps to xj+1 from xj ; if X = −1, then the particle jumps
to xj−1 from xj ; otherwise the particle still stays at xj .

Step 6. Let

hLn+1
j =

Nj−1∑
`=1

I1(X
(j−1)
` )knj−1 +

Nj∑
`=1

I0(X
(j)
` )knj

+

Nj+1∑
`=1

I−1(X
(j+1)
` )knj+1,

(8)

un+1
j =

∑
`≥j

hLn+1
` ,(9)

where j = 1, · · · , l/h− 1 and X
(j)
` denotes the random variable corresponding to

the `-th particle at xj , Ii(x) is the indicator function, Ii(x) = 1 if x = i and 0

otherwise. Clearly, hLn+1
j is the total number of particles at xj after the random

walk, which consists of three parts: The particles moving from xj−1, the particles

moving from xj+1, and the particles staying at xj . Note that un+1
j is the total mass

of the particles to the right of the point xj .

Step 7. If nK ≤ T , then n := n + 1 and go to Step 2, continues the same process,
where T is the given time.
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In fact, in the above procedure, Steps 2–3 represent a reaction process via which
the total mass of particles at point xj is changed and it provides the initial state
for the later diffusion process. In Step 4, we split the particles into smaller ones.
This will be helpful in estimating the variance of unj , which is essential in proving
the convergence of the algorithm. Steps 4–5 represent a diffusion process which
redistributes the particles by means of random walk. This essentially approximates
(6).

3. Main result and its proof

In this section we give the main result and its proof. Let us state our main result.

Theorem. Assume that g and u0 are continuously differentiable functions, and
that g(t, 0) = 0 for all t ∈ [0, T ]. Let 0 < h,K < 1, with K

h2 = 1
2 . Then there exists

a constant M independent of h and K, such that

|E(unj )− u(tn, xj)| ≤Mh, j = 0, 1, 2, · · · , l/h− 1.

V ar(unj ) ≤Mh, 1 ≤ n ≤ T/K,

where unj is the computed solution given by the previous section.

Our main idea is to prove that the computed solution converges to a difference
scheme of the partial differential equation (1)-(3). At first we give the following
lemma.

Lemma 1. Let unj , v
n
j be defined as in the algorithm. Then they satisfy the follow-

ing relations:

E(un+1
j ) =

ν

2
E(vnj+1) + (1− ν)E(vnj ) +

ν

2
E(vnj−1),(10)

V ar(un+1
j ) ≤ (1 + 3K)[

ν

2
V ar(vnj+1) + (1− ν)V ar(vnj ) +

ν

2
V ar(vnj−1)]

+ 10Kν(E|vnj−1 − vnj |+ E|vnj − vnj+1|),
(11)

E(vnj ) = E(unj ) + Kg(tn, E(unj )) + KMn
j V ar(u

n
j ),(12)

V ar(vnj ) ≤ (1 + KM)V ar(unj ),(13)

where j = 1, · · · , l/h− 1, M is an absolute constant, and |Mn
j | ≤ M for all j and

n.

Proof. In what follows, M represents a generic constant (independent of h,K etc.),
which could be different from line to line.
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We first prove (10). From the definition, we have

un+1
j =

∑
`≥j

hLn+1
`

=
∑
`≥j

{
N`−1∑
i=1

I1(X
(`−1)
i )kn`−1 +

N∑̀
i=1

I0(X
(`)
i )kn` +

N`+1∑
i=1

I−1(X
(`+1)
i )kn`+1}

=
∑

`1+1≥j

N`1∑
i=1

I1(X
(`1)
i )kn`1 +

∑
`1≥j

N`1∑
i=1

I0(X
(`1)
i )kn`1 +

∑
`1−1≥j

N`1∑
i=1

I−1(X
(`1)
i )kn`1

=

Nj−1∑
i=1

I1(X
(j−1)
i )knj−1 −

Nj∑
i=1

I−1(X
(j)
i )knj

+
∑
`1≥j

N`1∑
i=1

[(I1(X
(`1)
i ) + I0(X

(`1)
i ) + I−1(X

(`1)
i )]kn`1

=

Nj−1∑
i=1

I1(X
(j−1)
i )knj−1 −

Nj∑
i=1

I−1(X
(j)
i )knj +

∑
`≥j

hξn`

= vnj +

Nj−1∑
`=1

I1(X
(j−1)
` )knj−1 −

Nj∑
`=1

I−1(X
(j)
` )knj ,

(14)

where the second term on the right is the total mass of particles moving from xj−1

to xj , and the third term is the total mass of particles moving from xj to xj−1.
Thus (14) can be written in the following form:

un+1
j =

ν

2
vnj+1 + (1 − ν)vnj +

ν

2
vnj−1 + D+

j−1 + D−
j + D0

j ,(15)

where

D−
j =

Nj∑
`=1

1

Nj
[I−1(X

(j)
` )− E(I−1(X

(j)
` ))](vnj − vnj+1),

D0
j =

Nj∑
`=1

1

Nj
[I0(X

(j)
` )− E(I0(X

(j)
` ))](vnj − vnj+1),

D+
j =

Nj∑
`=1

1

Nj
[I1(X

(j)
` )− E(I1(X

(j)
` ))](vnj − vnj+1).

Now we compute E(D−
j ), E(D0

j ), E(D+
j ) and estimate V ar(D−

j ), V ar(D0
j ),

V ar(D+
j ), separately. Here E(D), V ar(D) are the expected value and the vari-

ance of the random variable D, respectively.

Let Yj = vnj − vnj+1 and Z` = I1(X
(j)
` )− E(I1(X

(j)
` )). We assume that Yj takes

values y1, y2, . . . , ym with probabilities p1, p2, . . . , pm, and the corresponding values
of Nj are n1, n2, . . . , nm, respectively. Then, we have

D+
j =

m∑
i=1

1

ni
(Z1 + Z2 + · · · + Zni)yiIyi(Yj),
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where Iy(Yj) is the indicator function that Iy(Yj) = 1 if Yj = y and 0 otherwise.
Note that Yj and Zi, i = 1, 2, . . . , are independent. Consequently,

E(D+
j ) =

m∑
i=1

yi
ni

ni∑
`=1

E(Z`)pi = 0.

Similarly E(D−
j ) = E(D0

j ) = 0. Thus, we can conclude from (15) that

E(un+1
j ) =

ν

2
E(vnj−1) + (1− ν)E(vnj ) +

ν

2
E(vnj+1)

This completes the proof of (10).

Next, we prove (11). Note that

V ar(D+
j ) =

m∑
i=1

(
yi
ni

)2 ni∑
`=1

V ar(Z`)pi =

m∑
i=1

(
yi
ni

)2

ni
ν

2
(1− ν

2
)pi

≤ αν

2

m∑
i=1

|yi|pi =
αν

2
E|vnj − vnj+1|.

(16)

Here, we note that by Step 4, yi
ni

≤ α. Similarly, we have

V ar(D−
j ) ≤ αν

2
E|vnj − vnj+1|,(17)

V ar(D0
j ) ≤ ανE|vnj − vnj+1|.(18)

From (15), it follows that

V ar(un+1
j ) = V ar(V ) + V ar(D+

j−1) + V ar(D−
j ) + V ar(D0

j )

+ 2Cov(V,D+
j−1) + 2Cov(V,D−

j ) + 2Cov(V,D0
j )

+ 2Cov(D+
j−1, D

−
j ) + 2Cov(D+

j−1, D
0
j ) + 2Cov(D−

j , D
0
j ),

(19)

where V = ν
2v

n
j+1 + (1− ν)vnj + ν

2v
n
j−1.

Since Cov(V,D) ≤√V ar(V )
√
V ar(D), we see that (note (16))

2Cov(V,D+
j−1) ≤ 2

√
V ar(V )

√
αν

2
E|vnj−1 − vnj |

≤
√

α

2

(
V ar(V ) + νE|vnj−1 − vnj |

)
.

Similarly,

2Cov(V,D−
j ) ≤

√
α

2

(
V ar(V ) + νE|vnj − vnj+1|

)
,

2Cov(V,D0
j ) ≤

√
α
(
V ar(V ) + νE|vnj − vnj+1|

)
,

also,

2Cov(D+
j−1, D

−
j ) ≤ αν

2
(E|vnj−1 − vnj | + E|vnj − vnj+1|),

2Cov(D+
j−1, D

0
j ) ≤

αν√
2
(E|vnj−1 − vnj | + E|vnj − vnj+1|),

2Cov(D−
j , D

0
j ) ≤

√
2αν(E|vnj − vnj+1|).
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Hence, (19) becomes

V ar(un+1
j ) ≤ (1 + 3

√
α)V ar(V ) + (2αν +

√
αν)E|vnj−1 − vnj |

+ (5αν + 2
√
αν)E|vnj − vnj+1|.

Since α = K2 and K < 1, we have

V ar(un+1
j ) ≤ (1 + 3K)V ar(V ) + 10Kν(E|vnj−1 − vnj | + E|vnj − vnj+1|)

≤ (1 + 3K)[
ν

2
V ar(vnj+1) + (1− ν)V ar(vnj ) +

ν

2
V ar(vnj−1)]

+ 10Kν(E|vnj−1 − vnj | + E|vnj − vnj+1|).
This completes the proof of (11).

Finally, we prove (12) and (13). From Step 2, it follows that

E(vnj ) = E(unj ) + KE[g(tn, u
n
j )],(20)

V ar(vnj ) = V ar(unj ) + 2KCov(unj , g(tn, u
n
j )) + K2V ar(g(tn, u

n
j )).(21)

Let unj take values u1,u2,· · · ,um with probabilities p1, p2, · · · ,pm and denote

µ = E(unj ) =
∑

rurpr. Then we have

E(g(tn, u
n
j )) =

∑
r

[g(tn, µ) + g′(tn, µ)(ur − µ)

+
1

2
g′′(tn, µ+ θr(ur − µ))(ur − µ)2]pr

= g(tn, E(unj )) + Mn
j V ar(u

n
j ),

where Mn
j = 1

2g
′′(tn, µ+ θr(ur − µ)) is bounded. Further,

Cov(unj , g(tn, u
n
j )) = E{(unj − µ)[g(tn, u

n
j )− Eg(tn, u

n
j )]}

=
∑
r

(ur − µ)[g′(tn, µ + θr(ur − µ))(ur − µ)− θ
M

2
V ar(unj )]pr

≤MV ar(unj ).

V ar(g(tn, u
n
j )) = E(g2(tn, u

n
j ))− [E(g(tn, u

n
j ))]2

= g2(tn, E(unj )) + M̃n
j V ar(u

n
j )

− [g(tn, E(unj )) + Mn
j V ar(u

n
j )]2

≤MV ar(unj ).

Combining the above two results with (20)–(21), we arrive at

E(vnj ) = E(unj ) + Kg(tn, E(unj )) + Mn
j V ar(u

n
j ),

V ar(vnj ) ≤ (1 + KM)V ar(unj ),

for some constant M. This completes the proof of Lemma 1.

Proof of the theorem. Substituting (13) into (11), we have

V ar(un+1
j ) ≤ (1 + KM)[

ν

2
V ar(unj+1) + (1− ν)V ar(unj ) +

ν

2
V ar(unj−1)]

+ 10Kν(E|vnj−1 − vnj |+ E|vnj − vnj+1|).
(22)
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From Step 2, it follows that

vnj−1 − vnj = unj−1 − unj + K[g(tn, u
n
j−1)− g(tn, u

n
j )].

According to the mean value theorem, there exists a constant M such that

|vnj−1 − vnj | ≤ (1 + KM)|unj−1 − unj |.(23)

Substituting (23) into (22) gives

V ar(un+1
j ) ≤ (1 + KM)[

ν

2
V ar(unj+1) + (1− ν)V ar(unj ) +

ν

2
V ar(unj−1)]

+ 10Kν(1 + KM)[E|unj−1 − unj |+ E|unj − unj+1].
(24)

Next, from (8) and (9) and Step 4, it follows that

E|un+1
j−1 − un+1

j | = E|hLn+1
j−1 | ≤ E|

Nj−2∑
`=1

1

Nj−2
I1(X

(j−2)
` )hξnj−2|

+ E|
Nj−1∑
`=1

1

Nj−1
I0(X

(j−1)
` )hξnj−1| + E|

Nj∑
`=1

1

Nj
I−1(X

(j)
` )hξnj |.

(25)

We estimate the right hand side term by term. Let us consider the first term.
Let hξnj−2 take values y1, y2, · · · , ym with probabilities p1, p2, · · · , pm and the cor-
responding values of Nj−2 be n1, n2, · · · , nm. Thus, we conclude that

E|
Nj−2∑
`=1

1

Nj−2
I1(X

(j−2)
` )hξnj−2| = E|

m∑
i=1

ni∑
`=1

yi
ni
I1(X

(j−2)
` )Iyi(hξ

n
j−2)|

≤
m∑
i=1

ni∑
`=1

|yi|
ni

E|I1(X(j−2)
` )Iyi(hξ

n
j−2)|

=
m∑
i=1

ni∑
`=1

|yi|
ni

ν

2
pi =

ν

2
E|hξnj−2|,

where we have used the fact that X
(j−2)
` is independent of hξnj−2 and E(I1(X

(j−2)
` ))

= ν
2 . Similarly, we can estimate the last two terms on the right hand side of (25),

E|
Nj−1∑
`=1

1

Nj−1
I0(X

(j−1)
` )hξnj−1| ≤ (1− ν)E|hξnj−1|,

E|
Nj∑
`=1

1

Nj
I−1(X

(j)
` )hξnj | ≤

ν

2
E|hξnj |.

Combining (23) with the above, we obtain,

E|un+1
j−1 − un+1

j | ≤ ν

2
E|hξnj−2| + (1− ν)E|hξnj−1| +

ν

2
E|hξnj |

=
ν

2
E|vnj−2 − vnj−1| + (1− ν)E|vnj−1 − vnj |+

ν

2
E|vnj − vnj+1|

≤ (1 + KM)
{ν

2
E|unj−2 − unj−1|+ (1− ν)E|unj−1 − unj |

+
ν

2
E|unj − unj+1|

}
.

(26)
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Now, let

δn = max
j

V ar(unj ),

and

ηn = max
j

E|unj−1 − unj |.

Combining (24) and (26), we have

δn+1 ≤ (1 + MK)δn + 20Kν(1 + KM)ηn,(27)

ηn+1 ≤ (1 + KM)ηn.(28)

From these two inequalities and recalling the fact that nK ≤ T , δ0 = 0, η0 ≤ 2hC
(C = max |u′0|), we conclude that

δn+1 ≤ (1 + KM)δn + 20Kν(1 + KM)nη0

≤ (1 + KM)δn + C1Kη0

= (1 + KM)2δn−1 + (1 + KM)C1Kη0 + C1Kη0

≤ · · · ≤ (eMT − 1)
C1

M
2hC = Mh,

(29)

where the constant is M independent of K,h. Combining (10), (12) and (29), we
arrive at

E(un+1
j ) =

ν

2
E(unj+1) + (1 − ν)E(unj ) +

ν

2
E(unj−1)

+ K[
ν

2
g(tn, E(unj+1)) + (1− ν)g(tn, E(unj )) +

ν

2
g(tn, E(unj−1))]

+ KMMn
j h.

(30)

According to [9], the solution of the following difference scheme

Φn+1
j =

ν

2
Φn
j+1 + (1− ν)Φn

j +
ν

2
Φn
j−1

+ K[
ν

2
g(tn,Φ

n
j+1) + (1 − ν)g(tn,Φ

n
j ) +

ν

2
g(tn,Φ

n
j−1)],

(31)

satisfies that

|Φn
j − u(tn, xj)| ≤ C3K + C4νh

2.

Let σn = maxj |E(unj )− Φn
j |, From (30) and (31), it can be easily found that

σn+1 ≤ σn + KMσn + KMh

≤ (1 + KM)σn−1 + (1 + KM)KMh+ KMh ≤ · · · ≤Mh,

where we have used the fact that Mn
j is uniform bounded for all n, j. Hence,

|E(unj )− Φn
j | ≤Mh.

The above yields

|E(unj − u(tn, xj)| ≤Mh+ C3h+ C4νh
2 ≤Mh,

for some constant M . This completes the proof.
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