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APPROXIMATION PROPERTIES OF

MULTIVARIATE WAVELETS

RONG-QING JIA

Abstract. Wavelets are generated from refinable functions by using multires-
olution analysis. In this paper we investigate the approximation properties of
multivariate refinable functions. We give a characterization for the approxi-
mation order provided by a refinable function in terms of the order of the sum
rules satisfied by the refinement mask. We connect the approximation prop-
erties of a refinable function with the spectral properties of the corresponding
subdivision and transition operators. Finally, we demonstrate that a refinable

function in W k−1
1 (Rs) provides approximation order k.

1. Introduction

We are concerned with functional equations of the form

φ =
∑
α∈Zs

a(α)φ(M · −α),(1.1)

where φ is the unknown function defined on the s-dimensional Euclidean space Rs,
a is a finitely supported sequence on Zs, and M is an s×s integer matrix such that
limn→∞M−n = 0. The equation (1.1) is called a refinement equation, and the
matrix M is called a dilation matrix. Correspondingly, the sequence a is called
the refinement mask. Any function satisfying a refinement equation is called a
refinable function.

If a satisfies ∑
α∈Zs

a(α) = m := | detM |,(1.2)

then it is known that there exists a unique compactly supported distribution φ

satisfying the refinement equation (1.1) subject to the condition φ̂(0) = 1. This
distribution is said to be the normalized solution to the refinement equation with
mask a. This fact was essentially proved by Cavaretta, Dahmen, and Micchelli in
[7, Chap. 5] for the case in which the dilation matrix is 2 times the s× s identity
matrix I. The same proof applies to the general refinement equation (1.1).

Wavelets are generated from refinable functions. In [20], Jia and Micchelli dis-
cussed how to construct multivariate wavelets from refinable functions associated
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with a general dilation matrix. The approximation and smoothness properties of
wavelets are determined by the corresponding refinable functions.

In [9], DeVore, Jawerth, and Popov established a basic theory for nonlinear
approximation by wavelets. In their work, the refinement mask was required to
be nonnegative. In [15], Jia extended their results and, in particular, removed the
restriction of non-negativity of the mask.

Our goal is to characterize the approximation order provided by a refinable
function in terms of the refinement mask. This information is important for our
understanding of wavelet approximation.

Before proceeding further, we introduce some notation. A multi-index is an s-
tuple µ = (µ1, . . . , µs) with its components being nonnegative integers. The length
of µ is |µ| := µ1 + · · · + µs, and the factorial of µ is µ! := µ1! · · ·µs!. For two
multi-indices µ = (µ1, . . . , µs) and ν = (ν1, . . . , νs), we write ν ≤ µ if νj ≤ µj for
j = 1, . . . , s. If ν ≤ µ, then we define(

µ

ν

)
:=

µ!

ν!(µ− ν)!
.

For j = 1, . . . , s, Dj denotes the partial derivative with respect to the jth coordi-
nate. For µ = (µ1, . . . , µs), D

µ is the differential operator Dµ1

1 · · ·Dµs
s . Moreover,

pµ denotes the monomial given by

pµ(x) := xµ1

1 · · ·xµss , x = (x1, . . . , xs) ∈ Rs.

The total degree of pµ is |µ|. For a nonnegative integer k, we denote by Πk the linear
span of {pµ : |µ| ≤ k}. Then Π :=

⋃∞
k=0 Πk is the linear space of all polynomials of

s variables. We agree that Π−1 = {0}.
The Fourier transform of an integrable function f on Rs is defined by

f̂(ξ) =

∫
Rs

f(x)e−ix·ξ dx, ξ ∈ Rs,

where x · ξ denotes the inner product of two vectors x and ξ in Rs. The domain of
the Fourier transform can be naturally extended to include compactly supported
distributions.

We denote by `(Zs) the linear space of all sequences on Zs, and by `0(Zs) the
linear space of all finitely supported sequences on Zs. For α ∈ Zs, we denote by
δα the element in `0(Zs) given by δα(α) = 1 and δα(β) = 0 for all β ∈ Zs \ {α}.
In particular, we write δ for δ0. For j = 1, . . . , s, let ej be the jth coordinate unit
vector. The difference operator ∇j on `(Zs) is defined by ∇ja := a − a(· − ej),
a ∈ `(Zs). For a multi-index µ = (µ1, . . . , µs), ∇µ is the difference operator
∇µ1

1 · · ·∇µs
s .

For a compactly supported distribution φ on Rs and a sequence b ∈ `(Zs), the
semi-convolution of φ with b is defined by

φ∗′b :=
∑
α∈Zs

φ(· − α)b(α).

Let S(φ) denote the linear space {φ∗′b : b ∈ `(Zs)}. We call S(φ) the shift-
invariant space generated by φ. More generally, if Φ is a finite collection of
compactly supported distributions on Rs, then we use S(Φ) to denote the linear
space of all distributions of the form

∑
φ∈Φ φ∗′bφ, where bφ ∈ `(Zs) for φ ∈ Φ.

Here is a brief outline of the paper. In Section 2 we clarify the relationship
between the order of approximation provided by S(φ) and the accuracy of φ, the
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order of the polynomial space contained in S(φ). In Section 3 we introduce the so-
called sum rules and give a characterization for the accuracy of a refinable function
in terms of the order of the sum rules satisfied by the refinement mask. In Section 4,
several examples are provided to illustrate the general theory. Section 5 is devoted
to a study of the subdivision and transition operators and their applications to
approximation properties of refinable functions. Finally, in Section 6, we show that
a refinable function in W k

1 (Rs) associated with an isotropic dilation matrix has
accuracy at least k + 1.

2. Approximation order and polynomial reproducibility

Let φ be a compactly supported function in Lp(Rs) (1 ≤ p ≤ ∞). In this section
we clarify the relationship between the order of approximation provided by S(φ)
and the degree of the polynomial space contained in S(φ). The reader is referred
to [17] for a recent survey on approximation by shift-invariant spaces.

The norm in Lp(Rs) is denoted by ‖·‖p. For an element f ∈ Lp(Rs) and a subset
G of Lp(Rs), the distance from f to G, denoted by distp(f,G), is defined by

distp(f,G) := inf
g∈G

‖f − g‖p.

Let S := S(φ)∩Lp(Rs). For h > 0, let Sh := {g(·/h) : g ∈ S}. For a real number
κ ≥ 0, we say that S(φ) provides approximation order κ if for each sufficiently
smooth function f in Lp(Rs), there exists a constant C > 0 such that

distp(f, S
h) ≤ C hκ ∀h > 0.

We say that S(φ) provides density order κ (see [3]) if for each sufficiently smooth
function f in Lp(Rs),

lim
h→0

distp(f, S
h)/hκ = 0.

Let k be a positive integer. Suppose S(φ) ⊃ Πk−1. Does S(φ) always provide
approximation order k? The answer is a surprising no. The first counterexample
was given by de Boor and Höllig in [4] by considering bivariate C1-cubics. Their
results can be described in terms of box splines.

For a comprehensive study of box splines, the reader is referred to the book [5]
by de Boor, Höllig, and Riemenschneider. For our purpose, it suffices to consider
the box splines Mr,s,t given by

M̂r,s,t(ξ) =
(1− e−iξ1

iξ1

)r(1− e−iξ2

iξ2

)s(1− e−i(ξ1+ξ2)

i(ξ1 + ξ2)

)t
, ξ = (ξ1, ξ2) ∈ R2,

where r, s, and t are nonnegative integers. It is easily seen that Mr,s,t ∈ L∞(R2) if
and only if min{r + s, s+ t, t+ r} ≥ 1. Let φ1 := M2,1,2 and φ2 := M1,2,2. In [4],
de Boor and Höllig proved that S(φ1, φ2) ⊇ Π3 but S(φ1, φ2) does not provide L∞-
approximation order 4. In fact, the optimal L∞-approximation order provided by
S(φ1, φ2) is 3. In [21], Ron showed that there exists a compactly supported function
ψ in S(φ1, φ2) such that Π3 ⊆ S(ψ). Since S(ψ) ⊆ S(φ1, φ2), the approximation
order provided by S(ψ) is at most 3.

In [6], de Boor and Jia extended the results in [4] in the following way. For
ρ = 1, 2, . . . , let k be an integer such that 2ρ+ 2 ≤ k ≤ 3ρ+ 1. Let

Φ := {Mr,s,t ∈ Cρ(R2) : r + s+ t ≤ k + 2}.
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Then S(Φ) ⊃ Πk, but the optimal Lp-approximation order (1 ≤ p ≤ ∞) provided
by S(Φ) is k, not k + 1.

However, if S(φ) provides approximation order k, then S(φ) contains Πk−1. This

was proved by Jia in [16]. Under the additional condition that φ̂(0) 6= 0, it was
proved by Ron [21] that S(φ) provides L∞-approximation order k if and only if S(φ)
contains Πk−1. In general, we have the following results, which were established in
[16].

Theorem 2.1. Let 1 ≤ p ≤ ∞, and let φ be a compactly supported function in

Lp(Rs) with φ̂(0) 6= 0. For every positive integer k, the following statements are
equivalent:
(a) S(φ) provides approximation order k.
(b) S(φ) provides density order k − 1.
(c) S(φ) contains Πk−1.

(d) Dµφ̂(2πβ) = 0 for all µ with |µ| ≤ k − 1 and all β ∈ Zs \ {0}.
We remark that the implications (a) ⇒ (b) ⇒ (c) ⇒ (d) are valid without the

assumption φ̂(0) 6= 0. Indeed, (a) ⇒ (b) is obvious, (b) ⇒ (c) was proved in [16],
and the implication (c) ⇒ (d) was established in [2].

Suppose φ is the normalized solution of the refinement equation (1.1). If φ lies

in Lp(Rs) for some p, 1 ≤ p ≤ ∞, then Theorem 2.1 applies to φ, because φ̂(0) = 1.
Thus, there are two questions of interest. The first question is how to determine
whether φ lies in Lp(Rs), and the second problem is how to characterize the highest
degree of polynomials contained in S(φ). The first question was discussed by Han
and Jia in [12]. In this paper, we concentrate on the second question. When we
speak of polynomial containment, φ is not required to be an integrable function.
Thus, we say that a compactly supported distribution φ on Rs has accuracy k, if
S(φ) ⊃ Πk−1 (see [13] for the terminology of accuracy).

We point out that the equivalence between (c) and (d) in Theorem 2.1 remains
true for every compactly supported distribution φ on Rs.

If φ is a compactly supported continuous function on Rs, and if φ satisfies con-
dition (d), then it was proved in [14] that

φ∗′p = φ̂(−iD) p ∀ p ∈ Πk−1,(2.1)

where i is the imaginary unit and φ̂(−iD) denotes the differential operator given
by the formal power series ∑

µ≥0

Dµφ̂(0)

µ!
(−iD)µ.

For a given polynomial p, Dµp = 0 if |µ| is sufficiently large. Thus, φ̂(−iD) is
well defined on Π. We indicate that (2.1) is also valid for a compactly supported
distribution φ on Rs satisfying condition (d). To see this, choose a function ρ ∈
C∞c (Rs) such that ρ̂(0) = 1 and Dν ρ̂(0) = 0 for all ν with 0 < |ν| ≤ k − 1. Let
ρn := ρ(·/n)/ns for n = 1, 2, . . . . Then for each n, φn := φ∗ρn, the convolution of
φ with ρn, is a function in C∞c (Rs). Moreover, the sequence (φn)n=1,2,... converges
to φ in the sense that

lim
n→∞〈φn, f〉 = 〈φ, f〉 ∀ f ∈ C∞c (Rs).
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See [1, p. 97] for these facts. Thus, we have φ̂n(ξ) = φ̂(ξ)ρ̂n(ξ) for ξ ∈ Rs. Since
φ satisfies condition (d), by using the Leibniz formula for differentiation, we get

Dµφ̂n(2πβ) = 0 for |µ| ≤ k − 1 and β ∈ Zs \ {0}. Hence (2.1) is applicable to φn
and

φn∗′p = φ̂n(−iD) p ∀ p ∈ Πk−1.

Letting n→∞ in the above equation, we obtain φ∗′p = φ̂(−iD) p for all p ∈ Πk−1.
Consequently, the linear mapping φ∗′ given by p 7→ φ∗′p maps Πk−1 to Πk−1. If,

in addition, φ̂(0) 6= 0, then this mapping is one-to-one, and hence it is onto. This
shows that (d) ⇒ (c) is valid for every compactly supported distribution φ on Rs

with φ̂(0) 6= 0.
Next, we show that (c) ⇒ (d) for every compactly supported distribution φ on

Rs. If φ is a compactly supported continuous function on Rs, this was proved
in [2] and [14]. Let φ be a compactly supported distribution on Rs. For a fixed
element β ∈ Zs \ {0}, choose a function ρ ∈ C∞c (Rs) such that ρ̂(0) 6= 0 and
ρ̂(2πβ) 6= 0. Then the convolution φ∗ρ is a function in C∞c (Rs) and its Fourier

transform is φ̂ρ̂. Note that the mapping ρ∗ given by q 7→ ρ∗q maps Πk−1 to Πk−1.
Since ρ̂(0) 6= 0, this mapping is one-to-one; hence it is onto. Thus, for p ∈ Πk−1,
we can find q ∈ Πk−1 such that p = ρ∗q. Since S(φ) ⊃ Πk−1, there exists some
b ∈ `(Zs) such that q = φ∗′b. It follows that p = ρ∗(φ∗′b) = (ρ∗φ)∗′b. This shows

that S(φ∗ρ) ⊃ Πk−1. By what has been proved, Dµ(φ̂ρ̂)(2πβ) = 0 for all µ with

|µ| ≤ k − 1. Since ρ̂(2πβ) 6= 0, we can write φ̂ = (φ̂ρ̂)(1/ρ̂) in a neighborhood of
2πβ. By applying the Leibniz formula for differentiation to this equation, we obtain

Dµφ̂(2πβ) = 0 for |µ| ≤ k − 1. This shows that (c) ⇒ (d) for every compactly
supported distribution φ on Rs.

To summarize, a compactly supported distribution φ on Rs with φ̂(0) 6= 0 pos-

sesses accuracy k if and only if Dµφ̂(2πβ) = 0 for all µ with |µ| ≤ k − 1 and all
β ∈ Zs \ {0}.

3. Characterization of accuracy

The purpose of this section is to give a characterization for the accuracy of a
refinable function in terms of the refinement mask.

For an s × s dilation matrix M , let Γ be a complete set of representatives of
the distinct cosets of Zs/MZs, and let Ω be a complete set of representatives of
the distinct cosets of Zs/MTZs, where MT denotes the transpose of M . Evidently,
#Γ = #Ω = | detM |. Without loss of any generality, we may assume that 0 ∈ Γ
and 0 ∈ Ω.

Suppose a is a finitely supported sequence on Zs satisfying (1.2). Let φ be the
normalized solution of the refinement equation (1.1). Taking Fourier transform of
both sides of (1.1), we obtain

φ̂(ξ) = H((MT )−1ξ) φ̂((MT )−1ξ), ξ ∈ Rs,(3.1)

where

H(ξ) :=
∑
α∈Zs

a(α)e−iα·ξ/m, ξ ∈ Rs.(3.2)

Note that H is a 2π-periodic function and H(0) = 1.
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For a compactly supported distribution φ on Rs, define

N(φ) := {ξ ∈ Rs : φ̂(ξ + 2πβ) = 0 ∀β ∈ Zs}.
If φ is a compactly supported function in Lp(Rs) (1 ≤ p ≤ ∞), then the shifts of φ
are stable if and only if N(φ) is the empty set (see [19]).

Theorem 3.1. Let a be a finitely supported sequence on Zs satisfying (1.2), and
let H be the function given in (3.2). If

DµH
(
2π(MT )−1ω

)
= 0 ∀ω ∈ Ω \ {0} and |µ| ≤ k − 1,(3.3)

then the normalized solution φ of the refinement equation (1.1) has accuracy k.
Conversely, if φ has accuracy k, and if N(φ)∩ (2π(MT )−1Ω) = ∅, then (3.3) holds
true.

Proof. Suppose that (3.3) is satisfied. Since H is 2π-periodic, (3.3) implies

DµH
(
2π(MT )−1β

)
= 0 ∀β ∈ Zs \ (MTZs) and |µ| ≤ k − 1.(3.4)

Let f and g be the functions given by

f(ξ) := H
(
(MT )−1ξ

)
and g(ξ) := φ̂

(
(MT )−1ξ

)
, ξ ∈ Rs.

For |µ| ≤ k − 1 and β ∈ Zs \ {0}, applying the Leibniz formula for differentiation
to (3.1), we obtain

Dµφ̂(2πβ) =
∑
ν≤µ

(
µ

ν

)
Dνf(2πβ)Dµ−νg(2πβ).(3.5)

By using the chain rule, we see that Dνf(2πβ) is a linear combination of terms of
the form DαH(2π(MT )−1β), where α ≤ ν. In light of (3.4), these terms are equal

to 0 if β ∈ Zs \ (MTZs). This shows that Dµφ̂(2πβ) = 0 for β ∈ Zs \ (MTZs).

We shall prove that, for r = 0, 1, . . . , Dµφ̂(2πβ) = 0 for β ∈ ((MT )rZs) \
((MT )r+1Zs). This will be done by induction on r. The case r = 0 was established
above. Suppose r ≥ 1 and our claim has been verified for r−1. Let β ∈ ((MT )rZs)\
((MT )r+1Zs). Then we have (MT )−1β ∈ ((MT )r−1Zs) \ ((MT )rZs). Hence, by

the induction hypothesis, Dµφ̂(2π(MT )−1β) = 0 for |µ| ≤ k − 1. Consequently,
Dµg(2πβ) = 0 for all µ with |µ| ≤ k− 1. This in connection with (3.5) tells us that

Dµφ̂(2πβ) = 0 for |µ| ≤ k − 1, thereby completing the induction procedure. The
sufficiency part of the theorem has been established.

Conversely, suppose φ has accuracy k and N(φ) ∩ (2π(MT )−1Ω) = ∅. Then

Dµφ̂(2πβ) = 0 ∀β ∈ Zs \ {0} and |µ| ≤ k − 1.

Let ω ∈ Ω \ {0}. Since N(φ) ∩ (2π(MT )−1Ω) = ∅, there exists some β ∈ Zs such

that φ̂(γ) 6= 0 for γ := 2πβ + 2π(MT )−1ω. Thus, the following identity is valid for
ξ in a neighborhood of γ:

H(ξ) = φ̂(MT ξ)
[
1/φ̂(ξ)

]
.

Let h be the function given by ξ 7→ φ̂(MT ξ), ξ ∈ Rs. By using the Leibniz formula
for differentiation, we obtain

DµH(γ) =
∑
ν≤µ

(
µ

ν

)
Dνh(γ)Dµ−ν[1/φ̂ ](γ).
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By the chain rule, Dνh(γ) is a linear combination of terms of the form Dαφ̂(MTγ),
where α ≤ ν. Note that

MTγ = MT (2πβ + 2π(MT )−1ω) = 2π(MT )β + 2πω ∈ 2πZs \ {0}.
Hence Dαφ̂(MTγ) = 0 for |α| ≤ k − 1, because φ has accuracy k. Therefore we
obtain DµH(2πβ + 2π(MT )−1ω) = 0 for |µ| ≤ k − 1. But H is 2π-periodic. This
shows that DµH(2π(MT )−1ω) = 0 for all ω ∈ Ω \ {0} and |µ| ≤ k − 1, as desired.
The proof of the theorem is complete.

In the rest of this section we shall show that (3.3) is equivalent to saying that,
for all p ∈ Πk−1,∑

β∈Zs
a(Mβ) p(Mβ) =

∑
β∈Zs

a(Mβ + γ) p(Mβ + γ) ∀ γ ∈ Γ.(3.6)

For this purpose, we first establish the following lemma.

Lemma 3.2. The matrix

1√
m

(
ei2πM

−1γ·ω)
γ∈Γ,ω∈Ω

(3.7)

is a unitary one.

Proof. Let γ ∈ Γ\{0}. We claim that there exists some ω′ ∈ Ω such thatM−1γ·ω′ /∈
Z. Any element β ∈ Zs can be represented as MTα+ω for some α ∈ Zs and ω ∈ Ω.
Note that (M−1γ)·(MTα) = γ·α ∈ Z for all α ∈ Zs. Hence M−1γ·ω′ ∈ Z for all
ω′ ∈ Ω implies that M−1γ·β ∈ Z for all β ∈ Zs. In other words, M−1γ ∈ Zs, and
hence γ ∈ MZs, which contradicts the assumption γ ∈ Γ \ {0}. This verifies our
claim.

For a fixed element γ in Γ \ {0}, let

σ :=
∑
ω∈Ω

ei2πM
−1γ·ω.

Choose ω′ ∈ Ω such that M−1γ·ω′ /∈ Z. We have

ei2πM
−1γ·ω′σ =

∑
ω∈Ω

ei2π(M−1γ)·(ω+ω′) =
∑
ω∈Ω

ei2πM
−1γ·ω = σ.

Since ei2πM
−1γ·ω′ 6= 1, it follows that σ = 0. This shows that∑

ω∈Ω

ei2πM
−1γ·ω = 0 ∀ γ ∈ Γ \ {0}.(3.8)

Similarly, we can prove that∑
γ∈Γ

ei2πM
−1γ·ω = 0 ∀ω ∈ Ω \ {0}.(3.9)

Finally, the matrix in (3.7) is unitary if and only if for every pair of elements
γ, γ′ ∈ Γ,

1

m

∑
ω∈Ω

ei2πM
−1(γ−γ′)·ω =

{
1 if γ = γ′,
0 if γ 6= γ′.

For γ = γ′, this comes from the fact #Ω = m; for γ 6= γ′, this follows from (3.8).
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Lemma 3.3. Let a be a finitely supported sequence satisfying (1.2), and let H be
the function given in (3.2). Then the following two conditions are equivalent for
every polynomial p:
(a) p(iD)H(2π(MT )−1ω) = 0 for all ω ∈ Ω \ {0}.
(b)

∑
β∈Zs a(Mβ) p(Mβ) =

∑
β∈Zs a(Mβ + γ) p(Mβ + γ) for all γ ∈ Γ.

Proof. By (3.2) we have

mp(iD)H(ξ) =
∑
α∈Zs

a(α)p(α)e−iα·ξ , ξ ∈ Rs.

An element α ∈ Zs can be written uniquely as Mβ + γ with β ∈ Zs and γ ∈ Γ.
Observe that, for ξ := 2π(MT )−1ω,

−iα·ξ = −i(Mβ + γ)·2π(MT )−1ω = −i 2πβ·ω − i 2πγ·(MT )−1ω.

Hence we have

mp(iD)H(2π(MT )−1ω) =
∑
γ∈Γ

b(γ)e−i2πγ·(M
T )−1ω,(3.10)

where

b(γ) :=
∑
β∈Zs

a(Mβ + γ) p(Mβ + γ).

Condition (b) says that b(γ) = b(0) for all γ ∈ Γ. Hence by (3.9) we deduce from
(3.10) that

mp(iD)H(2π(MT )−1ω) = b(0)
∑
γ∈Γ

e−i2πγ·(M
T )−1ω = 0

for all ω ∈ Ω \ {0}. This shows that (b) ⇒ (a).
Conversely, (3.10) tells us that condition (a) implies∑

γ∈Γ

b(γ)e−i2πM
−1γ·ω = 0 ∀ω ∈ Ω \ {0}.

Let η be an element of Γ. Then it follows that∑
ω∈Ω

ei2πM
−1η·ω∑

γ∈Γ

b(γ)e−i2πM
−1γ·ω =

∑
γ∈Γ

b(γ).

On the other hand,∑
ω∈Ω

ei2πM
−1η·ω∑

γ∈Γ

b(γ)e−i2πM
−1γ·ω =

∑
γ∈Γ

b(γ)
∑
ω∈Ω

ei2πM
−1(η−γ)·ω = mb(η),

since
∑

ω∈Ω e
i2πM−1(η−γ)·ω = 0 for γ 6= η, by Lemma 3.2. This shows mb(η) =∑

γ∈Γ b(γ). Therefore b(η) = b(0) for all η ∈ Γ. In other words, (a) implies

(b).

If an element a ∈ `0(Zs) satisfies (3.6) for all p ∈ Πk−1, then we say that a
satisfies the sum rules of order k. The results of this section can be summarized
as follows: If the refinement mask a satisfies the sum rules of order k, then the
normalized solution φ of the refinement equation with mask a has accuracy k.
Conversely, if φ has accuracy k, and if N(φ) ∩ (2π(MT )−1Ω) = ∅, then a satisfies
the sum rules of order k.



APPROXIMATION PROPERTIES OF MULTIVARIATE WAVELETS 655

4. Examples

In this section we give several examples to illustrate the general theory.
The symbol of a sequence a ∈ `0(Zs) is the Laurent polynomial ã(z) given by

ã(z) :=
∑
α∈Zs

a(α)zα, z ∈ (C \ {0})s,

where zα := zα1
1 · · · zαss for z = (z1, . . . , zs) ∈ Cs and α = (α1, . . . , αs) ∈ Zs. If a

is supported on [0, N ]s for some positive integer N , then ã(z) is a polynomial of z.
In the univariate case (s = 1), if a satisfies the sum rules of order k, then ã(z)

is divisible by (1 + z)k (see, e.g., [8]). In the multivariate case (s > 1), this is no
longer true.

Example 4.1. Let s = 2 and M = 2I, where I is the 2× 2 identity matrix. Let a
be the sequence on Z2 given by its symbol

ã(z) := z2
1 + z2 + z1z2 + z1z

2
2 .

Then a satisfies the sum rules of order 1. But the polynomial ã(z) is irreducible.

It is easy to verify that a satisfies the sum rules of order 1. Let us show that
ã(z) is irreducible. Suppose to the contrary that ã(z) is reducible. Then ã(z) can
be factored as

ã(z) = f(z)g(z),

where f and g are polynomials of (total) degree at least 1. Since the degree of ã(z)
is 3, the degree of either f or g is 1. Suppose the degree of f is 1 and

f(z1, z2) = λz1 + µz2 + ν,

where λ, µ, ν are complex numbers and either λ 6= 0 or µ 6= 0. If λ 6= 0, then for all
z2 ∈ C, f(−(µz2 + ν)/λ, z2) = 0, and so

ã
(−(µz2 + ν)/λ, z2

)
= 0 ∀ z2 ∈ C.

If µ 6= 0, then ã(−(µz2+ν)/λ, z2) is a polynomial of z2 of degree 3 with −µ/λ being
its leading coefficient. Hence µ = 0. But it is also impossible that ã(−ν/λ, z2) = 0
for all z2 ∈ C. Thus, we must have λ = 0, and hence ã(z1,−ν/µ) = 0 for all z1 ∈ C.
However, ã(z1,−ν/µ) is a polynomial of z1 of degree 2 with 1 being its leading
coefficient. This contradiction shows that ã(z) is irreducible.

Let a be the sequence given as above, and let φ be the normalized solution of
the refinement equation

φ =
∑
α∈Z2

a(α)φ(2 · −α).

Then φ lies in L2(R2). This can be verified by using the results in [12]. Let b be
the element in `0(Z2) given by its symbol

b̃(z) := |ã(z)|2/4 for |z1| = 1 and |z2| = 1.

We have

4 b̃(z) = 4 + z1 + z−1
1 + z2 + z−1

2 + z1z2 + z−1
1 z−1

2

+ z1z
−1
2 + z−1

1 z2 + z1z
−2
2 + z−1

1 z2
2 + z2

1z
−1
2 + z−2

1 z2.
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Let B be the linear operator on `0(Z2) given by

Bv(α) :=
∑
β∈Z2

b(2α− β) v(β), α ∈ Z2,

where v ∈ `0(Z2). Let W be the B-invariant subspace generated by −δ−e1 +2δ−δe1
and −δ−e2 +2δ− δe2 . Then the spectral radius ρ of the linear operator B|W is 3/4.
Since ρ < 1, by [12, Theorems 3.3 and 4.1], the subdivision scheme associated with
a is L2-convergent. Therefore, φ ∈ L2(R2) and the shifts of φ are orthonormal (see
[11]). We conclude that the optimal order of approximation provided by S(φ) is 1.

If the refinement mask a satisfies the sum rules of order k, then the normalized
solution φ of the refinement equation with mask a has accuracy k. However, if
the condition N(φ) ∩ (2π(MT )−1Ω) = ∅ is not satisfied, then φ could have higher
accuracy. For instance, the function φ on R given by φ(x) = 1/2 for 0 ≤ x < 2 and
φ(x) = 0 for x ∈ R \ [0, 2) satisfies the refinement equation

φ =
∑
α∈Z

a(α)φ(2 · −α),

where the symbol of the mask a is ã(z) = 1 + z2. Then a does not satisfy the sum
rules of order 1. But φ has accuracy 1, and S(φ) provides L∞-approximation order
1. The following is an example in the two-dimensional case.

Example 4.2. Let φ be the Zwart-Powell element defined by its Fourier transform

φ̂(ξ1, ξ2) := g(ξ1) g(ξ2) g(ξ1 + ξ2) g(−ξ1 + ξ2), (ξ1, ξ2) ∈ R2,

where g is the function on R given by ξ 7→ (1− e−iξ)/(iξ), ξ ∈ R. Then φ is a com-
pactly supported continuous function on R2 and S(φ) provides L∞-approximation
order 3. On the other hand, φ is refinable but the corresponding mask does not
satisfy the sum rules of order 3.

For the first statement the reader is referred to [5, p. 72]. Let us verify the second
statement. From [5, p. 140] we know that the Zwart-Powell element φ is refinable
and the corresponding mask a is given by a(α) = 0 for α ∈ Z2 \ [−1, 2]× [0, 3] and

(
a(α1, α2)

)
−1≤α1≤2,0≤α2≤3

=
1

4


0 1 1 0
1 2 2 1
1 2 2 1
0 1 1 0

 .

Evidently, the mask a satisfies the sum rules of order 2, but a does not satisfy the
sum rules of order 3. Note that (π, π) ∈ N(φ) in this case.

Example 4.3. Let M be the matrix(
1 −1
1 1

)
,

and let a be the sequence on Z2 such that a(α) = 0 for α ∈ Z2 \ [−2, 2]2 and

(
a(α1, α2)

)
−2≤α1,α2≤2

=
1

32


0 −1 0 −1 0

−1 0 10 0 −1
0 10 32 10 0

−1 0 10 0 −1
0 −1 0 −1 0

 .
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Let φ be the normalized solution of the refinement equation (1.1) with mask a and
dilation matrix M given as above. Then φ is a compactly supported continuous
function on R2, and the optimal approximation order provided by S(φ) is 4.

Let us verify that a satisfies the sum rules of order 4. We observe that α =
(α1, α2) lies in MZ2 if and only if α1 + α2 is an even integer. Hence the sum rule
for a polynomial p of two variables reads as follows:∑

α1+α2∈2Z
p(α)a(α) =

∑
β1+β2 /∈2Z

p(β)a(β),

that is,

32 p(0, 0) = 10
∑

|α1|+|α2|=1

p(α1, α2)−
∑

|α1|+|α2|=3

p(α1, α2).

We can easily verify that this condition is satisfied for all p ∈ Π3, but it is not
satisfied for the monomial p given by p(x1, x2) = x2

1x
2
2, (x1, x2) ∈ R2. Therefore

the refinement mask a satisfies the sum rules of order 4, but not of order 5.
In the present case, Ω := {(0, 0), (1, 0)} is a complete set of representatives of

the distinct cosets of Z2/MTZ2. We have 2π(MT )−1Ω = {(0, 0), (π, π)}. Since

φ̂(0, 0) = 1, in order to verify the condition N(φ) ∩ (2π(MT )−1Ω) = ∅, it suffices

to show that φ̂(π, π) 6= 0. For this purpose, we observe that

φ̂(ξ) =

∞∏
k=1

H
(
(MT )−kξ

)
, ξ ∈ R2,

where

H(ξ) =
[
32 + 20(cos ξ1 + cos ξ2)− 4 cos (2ξ1 + ξ2)− 4 cos (ξ1 + 2ξ2)

]
/64,

ξ = (ξ1, ξ2) ∈ R2.

We have (MT )−1(π, π)T = (0, π)T and H(0, π) > 0. Suppose

(η1, η2)
T = (MT )−k(π, π)T

for some integer k ≥ 2. Then |η1| ≤ π/2 and |η2| ≤ π/2, so H(η1, η2) > 0. It

follows that φ̂(π, π) 6= 0. Consequently, the exact accuracy of φ is 4.
By using the methods in [12], we can easily prove that the subdivision scheme

associated with mask a and dilation matrix M converges uniformly. Consequently,
φ is a continuous function. We conclude that the optimal approximation order
provided by S(φ) is 4.

5. The subdivision and transition operators

We introduce two linear operators associated with a refinement equation. One
is the subdivision operator, and the other is the transition operator. When the
dilation matrix M is 2 times the identity matrix, the spectral properties of the
subdivision and transition operators were studied in [10] and [18]. In this section,
we extend the study to the case in which M is a general dilation matrix.

Let X and Y be two linear spaces, and T a linear mapping from X to Y . The
kernel of T , denoted by ker (T ), is the subspace of X consisting of all x ∈ X such
that Tx = 0.
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Let a be an element in `0(Zs) and let M be a dilation matrix. The subdivision
operator Sa is the linear operator on `(Zs) defined by

Sau(α) :=
∑
β∈Zs

a(α −Mβ)u(β), α ∈ Zs,

where u ∈ `(Zs). The transition operator Ta is the linear operator on `0(Zs)
defined by

Tav(α) :=
∑
β∈Zs

a(Mα− β)v(β), α ∈ Zs,

where v ∈ `0(Zs).
The following theorem shows that the subdivision operator Sa and the transition

operator Ta have the same nonzero eigenvalues. We use I and I0 to denote the
identity mapping on `(Zs) and `0(Zs), respectively.

Theorem 5.1. The transition operator Ta has only finitely many nonzero eigen-
values. For σ ∈ C \ {0}, the linear spaces ker (Sa − σI) and ker (Ta − σI0) have
the same dimension. In particular, σ is an eigenvalue of Sa if and only if it is an
eigenvalue of Ta.

Proof. For N = 1, 2, . . . , let EN denote the cube [−N,N ]s. Choose N such that
EN−1 contains supp a := {α ∈ Zs : a(α) 6= 0}. Let K :=

∑∞
n=1M

−nEN . In
other words, x belongs to K if and only if x =

∑∞
n=1M

−nyn for some sequence
of elements yn ∈ EN . Let `(K) denote the linear space of all (finite) sequences on
K ∩ Zs. Consider the linear mapping A on `(K) given by

Av(α) :=
∑

β∈K∩Zs
a(Mα− β)v(β), α ∈ K ∩ Zs,

where v ∈ `(K). The dual mapping A′ of A is given by

A′u(β) :=
∑

α∈K∩Zs
u(α)a(Mα− β), β ∈ K ∩ Zs,

where u ∈ `(K). Let IK denote the identity mapping on `(K). Since `(K) is finite
dimensional, we have

dim
(
ker (A− σIK)

)
= dim

(
ker (A′ − σIK)

)
.

Thus, in order to establish the theorem, it suffices to prove the following two rela-
tions:

dim
(
ker (Ta − σI0)

)
= dim

(
ker (A− σIK)

)
(5.1)

and

dim
(
ker (Sa − σI)

)
= dim

(
ker (A′ − σIK)

)
.(5.2)

For this purpose, we introduce the sets Kj (j = 0, 1, . . . ) as follows:

Kj := M j−1E1 + · · ·+ E1 +K.

In particular, K0 = K. Evidently, Kj ⊆ Kj+1 for j = 0, 1, . . . , and Rs =
⋃∞
j=0Kj.

Moreover,

M−1(Kj + supp a) ⊆ Kj−1, j = 1, 2, . . . .(5.3)
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Indeed, we have M−1K +M−1EN = K, and hence

M−1(Kj + supp a) ⊆M j−2E1 + · · ·+ E1 +M−1E1 +M−1K +M−1EN−1

⊆ Kj−1.

Suppose σ 6= 0 and v ∈ ker (Ta − σI0). Then supp v ⊆ Kj for some j ≥ 1. We
observe that Tav(α) 6= 0 implies Mα− β ∈ supp a for some β ∈ Kj. It follows that
α ∈M−1(supp a+Kj) ⊆ Kj−1, by (5.3). In other words, supp (Tav) ⊆ Kj−1. Using
this relation repeatedly, we obtain supp (T j

av) ⊆ K. But v = Tav/σ = (T j
av)/σ

j .
Therefore, supp v ⊆ K, and v|K∩Zs belongs to ker (A − σIK). This shows that
the restriction mapping P : v 7→ v|K∩Zs maps ker (Ta − σI0) to ker (A − σIK).
Moreover, v|K∩Zs = 0 implies v = 0. So P is one-to-one. Let us show that P is also
onto. Suppose Aw = σw for some w ∈ `(K). Define v(α) := w(α) for α ∈ K ∩ Zs

and v(α) := 0 for α ∈ Zs \K. Then Tav = σv. Thus, P is one-to-one and onto,
thereby establishing (5.1).

In order to prove (5.2), we consider the mapping Q : u 7→ u∗|K∩Zs , where u∗ is
the sequence given by u∗(α) := u(−α), α ∈ Zs. Suppose u ∈ ker (Sa − σI). Then

u(α) =
1

σ

∑
β∈Zs

a(α−Mβ)u(β), α ∈ Zs.

It follows that

u∗(α) =
1

σ

∑
β∈Zs

u∗(β)a(Mβ − α), α ∈ Zs.

For α ∈ Kj (j ≥ 1), a(Mβ − α) 6= 0 only if β ∈M−1(supp a+Kj) ⊆ Kj−1. Hence

u∗(α) =
1

σ

∑
β∈Kj−1∩Zs

u∗(β)a(Mβ − α) for α ∈ Kj ∩ Zs.(5.4)

This shows that u∗|K∩Zs belongs to ker (A′− σIK). Thus, Q maps ker (Sa− σI) to
ker (A′ − σIK). Moreover, if u∗(α) = 0 for α ∈ K ∩ Zs, then it follows from (5.4)
that u∗(α) = 0 for α ∈ Kj ∩ Zs, j = 1, 2, . . . . But Rs =

⋃∞
j=1Kj ; hence u∗(α) = 0

for all α ∈ Zs. Thus, the mapping Q is one-to-one. It is also onto. Indeed, if
w ∈ ker(A′ − σIK), then

w(α) =
1

σ

∑
β∈K∩Zs

w(β)a(Mβ − α), α ∈ K ∩ Zs.

For α ∈ K ∩ Zs, let u∗(α) := w(α); for α ∈ (Kj \ Kj−1) ∩ Zs (j = 1, 2, . . . ), let
u∗(α) be determined recursively by (5.4). Then u ∈ ker (Sa − σI) and Qu = w.
Thus, Q is one-to-one and onto, so that (5.2) is valid. The proof of the theorem is
complete.

A sequence u on Zs is called a polynomial sequence if there exists a polynomial
p such that u(α) = p(α) for all α ∈ Zs. The degree of u is the same as the degree
of p. For a nonnegative integer k, let Pk be the linear space of all polynomial
sequences of degree at most k, and let

Vk :=
{
v ∈ `0(Zs) :

∑
α∈Zs

p(α)v(α) = 0 ∀ p ∈ Πk

}
.
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For u ∈ `(Zs) and v ∈ `0(Zs), we define

〈u, v〉 :=
∑
α∈Zs

u(α)v(α).

Theorem 5.2. Let M be an s × s dilation matrix and Ω a complete set of repre-
sentatives of the distinct cosets of Zs/MTZs. For any a ∈ `0(Zs), the following
statements are equivalent:
(a) The sequence a satisfies the sum rules of order k + 1.
(b) Vk is invariant under the transition operator Ta.
(c) Pk is invariant under the subdivision operator Sa.
(d) DµH(2π(MT )−1ω) = 0 for all |µ| ≤ k and all ω ∈ Ω \ {0}.
Proof. (a) ⇒ (b): Let p ∈ Πk and v ∈ Vk. We have∑

α∈Zs
p(α)Tav(α) =

∑
β∈Zs

[∑
α∈Zs

p(α)a(Mα− β)
]
v(β).

Let q(x) := p(M−1x), x ∈ Rs. Then p(x) = q(Mx), x ∈ Rs. By Taylor’s formula,
we have

q(Mα) = q(Mα− β + β) =
∑
|µ|≤k

qµ(Mα− β)βµ,

where qµ := Dµq/µ! ∈ Πk. Hence∑
α∈Zs

p(α)a(Mα− β) =
∑
α∈Zs

q(Mα)a(Mα− β) =
∑
|µ|≤k

cµβ
µ,

where

cµ :=
∑
α∈Zs

qµ(Mα− β)a(Mα− β)

is independent of β, by condition (a). Thus, we obtain∑
α∈Zs

p(α)Tav(α) =
∑
|µ|≤k

cµ
∑
β∈Zs

βµv(β) = 0,

because v ∈ Vk. This shows that Tav ∈ Vk for v ∈ Vk. In other words, Vk is
invariant under Ta.

(b) ⇒ (c): Suppose p ∈ Pk. We wish to show that u := Sap lies in Pk. We claim
that 〈u, v〉 = 0 for all v ∈ Vk. Indeed,

〈u, v〉 =
∑
α∈Zs

u(α)v(α) =
∑
α∈Zs

∑
β∈Zs

a(α−Mβ)p(β)v(α)

=
∑
β∈Zs

p(−β)
∑
α∈Zs

a(Mβ − α)v(−α) =
∑
β∈Zs

p(−β)w(β),

where w := Tav
∗ with v∗ given by v∗(α) = v(−α), α ∈ Zs. Since Vk is invariant

under Ta and v∗ ∈ Vk, we have w ∈ Vk. It follows that

〈u, v〉 =
∑
β∈Zs

p(−β)w(β) = 0.

For a multi-index µ with |µ| = k + 1, we have ∇µδα ∈ Vk for all α ∈ Zs. Hence
〈u,∇µδα〉 = 0. In other words, ∇µu(α) = 0 for all α ∈ Zs and |µ| = k + 1. This
shows that u is a polynomial sequence of degree at most k.
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(c) ⇒ (a): For p ∈ Πk, let q(γ) :=
∑

β∈Zs a(Mβ + γ) p(Mβ + γ) for γ ∈ Zs. We
claim that q is a polynomial sequence. Indeed, by using Taylor’s formula, we have

p(Mβ + γ) =
∑
|µ|≤k

tµ(Mβ)γµ,

where tµ := Dµp/µ!. Set qµ(β) := tµ(−Mβ) for β ∈ Zs. Then for γ ∈ Zs,

q(γ) =
∑
β∈Zs

a(Mβ + γ) p(Mβ + γ)

=
∑
β∈Zs

∑
|µ|≤k

a(γ +Mβ) qµ(−β)γµ =
∑
|µ|≤k

(Saqµ)(γ) γµ.

Note that qµ is a polynomial sequence of degree at most k. By condition (c), Saqµ
is a polynomial sequence; hence so is q. We observe that q(γ +Mη) = q(γ) for all
η ∈ Zs and γ ∈ Zs, that is, q is a constant sequence on the lattice γ+MZs for each
γ ∈ Zs. Hence q itself must be a constant sequence. This verifies condition (a).

Finally, the equivalence between (a) and (d) was proved in Lemma 3.3.

We remark that the equivalence between (c) and (d) was proved in [7, p. 98] for
the case when the dilation matrix M is 2 times the identity matrix.

6. Smoothness and approximation order

In this section we discuss the relationship between approximation and smooth-
ness properties of a refinable function.

Suppose φ satisfies the refinement equation (1.1) with the dilation matrix M
being 2 times the identity matrix. It was proved by Jia in [18] that φ ∈ W k

1 (Rs)

and φ̂(0) 6= 0 imply that Πk ⊂ S(φ) and S(φ) provides approximation order k + 1.
This result improves an earlier result of Cavaretta, Dahmen, and Micchelli about
polynomial reproducibility of smooth refinable functions (see [7, p. 158]).

The above results can be extended to the case in which the dilation matrix is
isotropic. LetM be an s×smatrix with its entries in C. We say thatM is isotropic
if M is similar to a diagonal matrix diag {λ1, . . . , λs} with |λ1| = · · · = |λs|. For
example, for a, b ∈ R, the matrix (

a −b
b a

)
is isotropic. Obviously, a matrix M is isotropic if and only if its transpose MT is
isotropic.

Lemma 6.1. Let M be an isotropic matrix with spectral radius σ. For any vec-
tor norm ‖ · ‖ on Rs, there exist two positive constants C1 and C2 such that the
inequalities

C1σ
n‖v‖ ≤ ‖Mnv‖ ≤ C2σ

n‖v‖
hold true for every positive integer n and every vector v ∈ Rs.

Proof. Since M is isotropic, we can find a basis {v1, . . . , vs} for Cs such that Mvj =
λjvj with |λ1| = · · · = |λs| = σ. Recall that two norms on a finite-dimensional linear
space are equivalent. Hence there exist two positive constants C1 and C2 such that

C1

s∑
j=1

|aj | ≤ ‖v‖ ≤ C2

s∑
j=1

|aj | for v =

s∑
j=1

ajvj .
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But for v =
∑s

j=1 ajvj we have Mnv =
∑s

j=1 ajλ
n
j vj . It follows that

‖Mnv‖ ≤ C2

s∑
j=1

|ajλnj | = C2σ
n

s∑
j=1

|aj | ≤ C2C
−1
1 σn‖v‖

and

‖Mnv‖ ≥ C1

s∑
j=1

|ajλnj | = C1σ
n

s∑
j=1

|aj | ≥ C1C
−1
2 σn‖v‖.

This completes the proof of the lemma.

Lemma 6.2. Let M be an isotropic matrix with spectral radius σ. For an infinitely
differentiable function f on Rs, let

fn(ξ) := f
(
(MT )nξ

)
, ξ ∈ Rs, n = 0, 1, 2, . . . .

Then, for each positive integer r, there exists a positive constant C depending only
on r and the matrix M such that

max
|µ|=r

∣∣Dµfn(ξ)
∣∣ ≤ C σrn max

|ν|=r

∣∣Dνf
(
(MT )nξ

)∣∣ ∀ ξ ∈ Rs.(6.1)

Proof. Let B = (bpq)1≤p,q≤s be the matrix (MT )n. By the chain rule, for j =
1, . . . , s, we have

Djfn(ξ) = (b1jD1 + · · ·+ bsjDs)f
(
(MT )nξ

)
, ξ ∈ Rs.

Hence, for a multi-index µ = (µ1, . . . , µs) with |µ| = r,

Dµfn(ξ) =

s∏
j=1

D
µj
j fn(ξ) =

s∏
j=1

(b1jD1 + · · ·+ bsjDs)
µjf

(
(MT )nξ

)
, ξ ∈ Rs.

By Lemma 6.1, there exists a constant C1 > 0 depending only on the matrix M
such that |bpq| ≤ C1σ

n for all p, q. We may express
∏s

j=1(b1jD1 + · · ·+ bsjDs)
µj as∑

|ν|=r cνD
ν , where each cν is a linear combination of products of r factors of the

bpq’s. Hence there exists a positive constant C depending only on r and the matrix
M such that |cν | ≤ Cσrn for all |ν| = r. This proves (6.1).

Now we are in a position to establish the main result of this section.

Theorem 6.3. Suppose M is an s × s isotropic dilation matrix, and a is an ele-
ment in `0(Zs) satisfying (1.2). Let φ be the normalized solution of the refinement
equation (1.1). If φ ∈ W k

1 (Rs), then Πk ⊂ S(φ) and S(φ) provides approximation
order k + 1.

Proof. Since φ̂(0) = 1, in order to prove S(φ) ⊃ Πk, it suffices to show that for
|µ| ≤ k,

Dµφ̂(2πβ) = 0 ∀β ∈ Zs \ {0}.(6.2)

The proof proceeds with induction on |µ|, the length of µ.
Let H be the function given in (3.2). A repeated application of (3.1) yields that,

for n = 1, 2, . . . ,

φ̂(ξ) =

[ n∏
j=1

H
(
(MT )−jξ

)]
φ̂
(
(MT )−nξ

)
, ξ ∈ Rs.
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It follows that

φ̂
(
(MT )nξ

)
= hn(ξ)φ̂(ξ), ξ ∈ Rs,(6.3)

where hn(ξ) :=
∏n

j=1H
(
(MT )j−1ξ

)
. Note that H is 2π-periodic and H(0) = 1.

Thus, we have

φ̂
(
2π(MT )nβ

)
=

[ n∏
j=1

H
(
2π(MT )j−1β

)]
φ̂(2βπ) = φ̂(2βπ), β ∈ Zs.

If φ ∈ L1(Rs), then by the Riemann-Lebesgue lemma we obtain

φ̂(2βπ) = lim
n→∞ φ̂

(
2π(MT )nβ

)
= 0 ∀β ∈ Zs \ {0}.

This establishes (6.2) for µ = 0.
Let 0 < r ≤ k. Assume that (6.2) has been proved for |µ| < r. We wish to

establish (6.2) for |µ| = r. For this purpose, we deduce from (6.3) that

φ̂(ξ) = fn(ξ)
[
1/hn(ξ)

]
, ξ ∈ Rs,

where fn(ξ) := φ̂((MT )nξ), ξ ∈ Rs. By using the Leibniz formula for differentiation,
we get

Dµφ̂(ξ) =
∑
ν≤µ

(
µ

ν

)
Dνfn(ξ)Dµ−ν [1/hn](ξ), ξ ∈ Rs.(6.4)

But, for β ∈ Zs \ {0} and |ν| < r, we have Dνfn(2πβ) = 0, by the induction
hypothesis. When ν = µ, we have [1/hn](2πβ) = 1. Hence it follows from (6.4)
that

Dµφ̂(2πβ) = Dµfn(2πβ), β ∈ Zs \ {0}.(6.5)

By Lemma 6.2, we have∣∣Dµfn(2πβ)
∣∣ ≤ C σrn max

|ν|=r

∣∣Dν φ̂
(
(MT )n2πβ

)∣∣, β ∈ Zs \ {0},(6.6)

where C > 0 is a constant independent of n.
In what follows, we use vj to denote the jth coordinate of a vector v in Rs. For a

multi-index ν = (ν1, . . . , νs), let φν be the function given by φν(x) = (−ix)νφ(x),

x ∈ Rs. Then Dν φ̂ = φ̂ν and(
(−iDj)

rφν
)̂

(ξ) = ξrjD
ν φ̂(ξ), ξ = (ξ1, . . . , ξs) ∈ Rs.

Since φ ∈W k
1 (Rs), we have (−iDj)

rφν ∈ L1(Rs). Thus, by the Riemann-Lebesgue
lemma, we obtain

lim
n→∞

(
(MT )nβ

)r
j
Dν φ̂

(
2π(MT )nβ

)
= 0 for β ∈ Zs \ {0}.

This is true for j = 1, . . . , s; hence it follows that

lim
n→∞ ‖(MT )nβ‖rDν φ̂

(
2π(MT )nβ

)
= 0 for β ∈ Zs \ {0},

where ‖ · ‖ is a vector norm on Rs. By Lemma 6.1, there exists a positive constant
C1 > 0 independent of n such that

C1σ
n‖β‖ ≤ ‖(MT )nβ‖.
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Therefore

lim
n→∞ σnrDν φ̂

(
2π(MT )nβ) = 0 for β ∈ Zs \ {0}.

This in connection with (6.5) and (6.6) tells us that Dµφ̂(2πβ) = 0 for |µ| = r and
β ∈ Zs \ {0}. The proof of the theorem is complete.

Recall that Ω is a complete set of representatives of the distinct cosets of
Zs/MTZs. Thus, as a consequence of Theorem 6.3, we conclude that if the nor-
malized solution φ of the refinement equation (1.1) lies in W k

1 (Rs), and if N(φ) ∩
(2π(MT )−1Ω) = ∅, then the refinement mask a satisfies all the conditions in The-
orem 5.2.
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