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CHECKING THE ODD GOLDBACH CONJECTURE UP TO 1020

YANNICK SAOUTER

Abstract. Vinogradov’s theorem states that any sufficiently large odd integer
is the sum of three prime numbers. This theorem allows us to suppose the
conjecture that this is true for all odd integers. In this paper, we describe the
implementation of an algorithm which allowed us to check this conjecture up
to 1020.

1. Introduction

Goldbach stated in 1742 that every even integer greater than 2 is the sum of two
prime numbers. This problem is now known as the Goldbach conjecture. This is
still unsolved and the closest related results are that: (i) there exists an integer S
such that every integer is the sum of at most S primes [6], and (ii) every sufficiently
large even integer may be written as the sum of a prime number and of the product
of at most two prime numbers [3]. On the other hand, this conjecture has been
numerically verified up to 4 × 1011 [7]. This conjecture, if true, would also imply
the following property: every odd number greater than or equal to 7 is the sum
of three prime numbers. This latter conjecture seems easier to deal with and it
gives some results. For instance, Vinogradov [8] proved that it is true for all integer

values greater than 3315

. This bound was then reduced to 1043000. In this paper we
investigate this conjecture numerically and prove it to be true for all integers less
than 1020.

2. Principle of the algorithm

Because of the huge size of the set of odd integers considered, systematic verifi-
cation for all integers is impossible. But it is in fact possible to use partial results
of the Goldbach conjecture. Indeed if N is an odd integer, p a prime number and
N−p is the sum of two prime numbers, then N is obviously the sum of three prime
numbers. Then by virtue of the results of [7], if N is odd and if there is a prime
number p such that N − p < 4.1011, then N is the sum of three prime numbers. So
our algorithm just amounts to exhibiting a sequence of increasing prime numbers
pi, 0 ≤ i ≤ P , such that p0 < 4.1011, pi+1 − pi < 4.1011 for all 0 ≤ i ≤ P − 1 and
pP > 1020. The problem then is to have an efficient prime certificate. Indeed we
need at least 250.106 prime numbers. If we use for instance Morain’s prover ECPP
[1], we see that numbers of 20 decimal digits are certified in approximately 1 second
on Sun stations. Thus with forty machines (the number we used) the verification
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would have lasted more than two months. The next section describes the technique
we used to avoid this problem.

3. Prime certificate

The prime certificate we used was an implementation of Theorem 5 of [2].

Lemma 1. Let N = RF+1 be an odd integer where the entire factorization of F is
known, F is even and gcd(R,F ) = 1. We suppose that there exists an integer a such
that aN−1 ≡ 1 (mod N) and, for all prime factors pi of F , gcd(a(N−1)/pi−1, N) =
1. We pose then R = 2Fs+ r with 0 ≤ r < 2F . We suppose N < 2F 3, then N is
a prime number if and only if either s = 0 or r2 − 8s is not a perfect square.

In practice, if we directly use this criterion on any integer N possible, we need
to factorize N − 1 to a sufficient part of it. Although it is quite feasible for 20 digit
numbers, it would have slowed down the algorithm a great deal. So we decided to
search for prime numbers of a special form:

Theorem 1. Let N = 222.R + 1 with N < 1020 and R odd. Suppose that there
exists an integer a such that a(N−1)/2 ≡ −1 (mod N). Then N is prime if and
only if either s = 0 or r2 − 8s is not a perfect square, r and s defined as above.

Proof. Application of the previous lemma. Firstly we have indeed 2.(222)3 > 1020 ≥
N . If a(N−1)/2 ≡ −1 (mod N), then a(N−1) ≡ 1 (mod N) and

gcd(a(N−1)/2 − 1, N) = gcd((a(N−1)/2 + 1)− 2, N) = gcd(2, N) = 1.

Hence the result follows from Lemma 1.

Now we have:

Lemma 2. Let N be a prime number of the form 10.k + 3. Then 5(N−1)/2 ≡ −1
(mod N).

Proof. By application of Euler’s criterion and quadratic reciprocity law, we have
5(N−1)/2 ≡ ( 5

N ) = (N5 ) = (3
5 ) = −1 (mod N), since 3 is a nonquadratic residue

modulo 5.

We then obviously have:

Theorem 2. Let N = 222.R + 1 with N < 1020, N ≡ 3 (mod 10) and R odd.
Suppose that 5(N−1)/2 ≡ −1 (mod N). Then N is prime if and only if either s = 0
or r2 − 8s is not a perfect square, r and s defined as above.

The least prime number of the forms 222.R+ 1, with R odd, and 10.k+ 3 at the
same time is equal to 138412033 = 33×222+1. You may note that if you increment
or decrement any such number with a multiple of 10.222, then this number will still
be of the desired form (with the exception of the fact that it is not necessarily a
prime number).

Then our algorithm was the following:

(1) Let p0 = 138412033.
(2) If pi is a prime number according to Theorem 2, increment i by one and set

pi+1 to pi plus 95360.222 and go on with step 2.
(3) If pi is not a prime number decrement pi by 10.222 and go on to step 2.
(4) Repeat while pi < 1020.
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The nominal value 95360.222 is in fact the largest multiple of 10.222 smaller than
4.1011. Then if the latter algorithm ends, the odd Goldbach conjecture is true up
to 1020. You may note that the converse is false.

4. Implementations and results

The algorithm was not in fact implemented exactly this way. First, before apply-
ing Theorem 2, a partial sieving was effected to discard the numbers having small
divisors. The sieve used the first ten prime numbers and was very efficient: a great
part of the remaining integers proved to be prime and thus it is quite clear that a
larger sieve might have slowed down the algorithm.

The second difference is that the research area was split into 40 subparts and dis-
tributed in parallel on 40 Sun stations. The code was written using the GMP multi-
precision library [5] and the computations took approximately four days. The first
prime of the sequence was 138412033 and the last one was 100000000209366024193.
Table 1 gives the first 100 values k, giving the prime numbers N = 5.223.k+1258213
used in the derivation.

Table 1. First 100 prime numbers

3 9537 19059 28575 38107

47622 57147 66651 76182 85713

95230 104764 114297 123819 133347

142879 152415 161950 171471 181003

190501 200022 209541 219066 228594

238104 247624 257157 266683 276219

285727 295258 304785 314305 323839

333355 342882 352405 361941 371467

381000 390522 400048 409575 419098

428604 438132 447663 457194 466710

476242 485761 495291 504813 514347

523878 533397 542932 552466 561991

571519 581038 590565 600090 609625

619159 628675 638196 647704 657232

666751 676285 685821 695353 704887

714405 723936 733452 742983 752485

761989 771520 781054 790588 800116

809623 819151 828679 838198 847726

857232 866748 876268 885804 895333

904851 914377 923910 933445 942973

5. Conclusion

This method can clearly be adapted for computing bounds in problems involving
four or more prime numbers. However, reaching the bound of 1043000 encountered
in Vinogradov’s theorem seems practically unfeasible. But under the assumption
of generalized Riemann hypothesis, it has been proved [9] that this bound can
be lowered to 3.2 × 1049. Such a bound is much more practicable and using the
method described above, it should be possible to reach this bound for at most 7
prime numbers in quite a reasonable amount of time and whence to establish the
property in its generality under Riemann’s hypothesis. It is also conceivable that
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more powerful computational resources could also permit to reach this bound for 6
or maybe 5 prime numbers only.
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7. Late note

During the year 1996, Zinoviev [10] proved under the assumption of the Gener-
alized Riemann Hypothesis, that any odd number greater than 1020 is the sum of
three prime numbers. Thus the current work fills the gap of the remaining cases.
It has also to be quoted that Deshouillers et al. [4], also performed a complete
verification, by checking the binary Goldbach conjecture up to 1.615× 1012, which
allows to deduce the truth of the odd Goldbach conjecture up to 1020 by a theorem
of Schoenfeld, again, under the assumption of the GRH.
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E-mail address: Yannick.Saouter@irit.fr


