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A CONSTRUCTIVE THEORY OF TRIPLE AND QUINTUPLE

PRODUCT IDENTITIES OF THE SECOND DEGREE

RICHARD BLECKSMITH, JOHN BRILLHART, AND IRVING GERST

Dedicated to the memory of our wonderful friend and colleague, Irving Gerst

Abstract. The groundwork for a theory of quadratic identities involving the
classical triple and quintuple products is layed. The approach is through the
study and use of affine maps that act on indexing lattices associated with the
terms (double sums) in the given identity. The terms of the identity are found
to be connected by the invariant of a ternary quadratic form.

1. Introduction

In this paper we begin to lay the groundwork of a theory of identities whose
terms have the form xn times TiTj , TiQj, and QiQj . Here the letters “Ti, Tj” and
“Qi, Qj” denote respectively one of the four T -functions (derived from the Jacobi
triple product expansion)

T2δ+ε(k, l;x) = T2δ+ε(k, l)
def
=

∞∑
−∞

(−1)δ
n(n+1)

2 +εnxkn
2+ln(1.1)

and one of the four Q-functions (derived from the quintuple product expansion)

Q2δ+ε(k, l;x) = Q2δ+ε(k, l)

def
=

∞∑
−∞

(−1)δ
n(n+1)

2 +εnx
n(3n+1)

2 k
(
x−3nl − (−1)δ+εx(3n+1)l

)
,

(1.2)

where δ, ε ∈ {0, 1}. For simplicity, we write T 2, TQ, and Q2 for TiTj , TiQj, and
QiQj respectively, and refer to identities with terms of this kind as “quadratic”
identities. We also write T (k, l) for T0(k, l).

The main concerns of this theory are the construction and classification of iden-
tities that are quadratic in T and Q and the development of a general method for
proving them. One of the goals of the theory is a complete classification of such
identities and the discovery of multi-parameter formulas from which the identities
in the classes can be derived. In [2, Theorem 1] we gave a formula of sufficient gen-
erality to establish the identities of that paper. It is not as yet clear, however, just
what role that particular formula will play in the general classification problem.
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In this work, we take as our goal the construction of a proof of an identity we
have already given two proofs of, viz.

T (21
2 ,

7
2 )T (3

2 ,
3
2 )− x2T (21

2 ,
21
2 )T (3

2 ,
1
2 ) = 2T1(21, 7)T1(3, 1).(1.3)

Our purpose in giving a third proof of (1.3) is not that (1.3) is of any particular
interest beyond its original use in proving a certain (mod 2) congruence in [1], but
rather that it can be used to explicate the methods and ideas we wish to present
here.

The two earlier proofs of (1.3) employed a general expansion formula to
express the identity as a T 2 equation all of whose terms have the form
xαn T (k1, l1n)T (k2, l2n), where the parameters k1 and k2 are the same for each
term. Such equations are called “balanced” at the particular pair (k1, k2). The
resulting equation, which was balanced at the k-pair (96,672), was then established
by a summation technique called an “expansion of zero.” (See [1] for an explanation
of these techniques and the relevant terminology.)

In Section 2 of this paper, we expand (1.3) into a T 2 equation with 16 terms on
a side, balanced at the smallest possible k-pair (24,168). This 32 term identity is
found to be the sum of four sub-identities, each with four terms on a side. Since
these four T 2 equations are similar, we will develop the ideas of this paper using
only the first of these as a model, proving all four identities in a uniform way in
the last section of the paper.

The initial step toward proving this first identity comes from writing each of its
eight terms as a doubly-indexed sum:

xαT (k1, l1)T (k2, l2) =
∑

(i,j)∈Z2

xk1i
2+k2j

2+l1i+l2j+α.(1.4)

Because each coefficient in such a sum is a 1, the equality between the two sides of
the identity is an assertion that the powers of x on the two sides are the same, so
the right side is merely a re-arrangement of the left. Thus, to find a proof of the
identity is to find its re-arrangement scheme.

In Section 3 we examine the re-arrangement in the first identity by determining
which of the four sums on the right contain the powers of x in each of the four sums
on the left. It becomes clear from this examination that the lattice points (i, j) in
the plane Z2 for a given sum on the left, whose powers of x are in a particular sum
on the right, lie on a lattice, and the four lattices in one plane, that correspond
respectively to the four sums on the right, form a partition of that plane. The
occurrence of such a simple structure as a lattice in the indexing planes permits a
precise description of the re-arrangement as a collection of 1-1 affine maps between
the lattices in the four indexing planes on the two sides of the identity.

Sections 4–6 deal with the general theory used to establish the re-arrangement
schemes. In Section 4 it is proved that if two lattices in Z2 are to be point-wise
associated, a certain affine map with rational coefficients must generally be used.

In Section 5, the nature of an affine map that connects two quadratic polynomials
of the form k1x

2+k2y
2+l1x+l2y+α is derived. (These quadratics are the exponent

polynomials in (1.4) whose pair of coefficients (k1, k2) is the same.) In particular,
it is discovered that the determinant of such a map must be ±1 and the members
of the family of quadratic exponent polynomials that appear in an identity, whose
members are linked by such affine maps, are restricted to having coefficients which
must satisfy a certain invariant.
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Section 6 contains a synthesis of the analyses in Sections 4 and 5. This synthesis
shows how to construct affine maps between the members of the family of exponent
polynomials so as to properly re-arrange the powers of x by point-wise connections
between the respective lattices in Z2. The result of this synthesis is the useful
Theorem 3, which gives three computable conditions under which identities like
the four identities under consideration are true.

The paper ends with Section 7 in which the four identities are proved using
Theorem 3, but not by just applying this theorem to each of the four identities.
Instead, Theorem 3 is used to prove a 3-parameter identity (Theorem 4), which
contains the four identities as special cases.

2. Expanding identity (1.3) into a balanced T 2
identity

In [1, p. 792], we discussed expanding identity (1.3) into an identity balanced at
(24,168), the smallest possible K-pair one can use for this purpose. (We will use
capital K and L in this section as in the expansion formula in [1]. In what follows,
however, we will use small k and l for the coefficients in the exponent polynomials.)
This pair was not used, however, because the resulting identity could not be proved
using expansions of zero, the method of proof discussed in that paper. Equation
(1.3) was therefore established by expanding to the larger k-pair (96,672). In the
present paper, we will use the minimal K-pair (24,168) to prove the expanded
identity by a re-arrangement method of proof.

Before applying the expansion formula, we must use the Backward Program [1,
p. 790] to determine the possible (k1, k2) pairs and associated parameters [a, b,m]
that expand to K1 = 24, K2 = 168 (or vice versa). The four possibilities (k1, k2)
and their associated parameters [a, b,m] that were output by program Backward
are:

#1 : ( 21
2 ,

3
2 ), [3, 3, 16]; #2 : (21, 3), [1, 1, 8];

#3 : (3, 21), [1, 7, 8] ; #4 : (21, 3), [7, 1, 8].

Since there is only one possibility starting with (21
2 ,

3
2 ), we expand the two terms

on the left side of (1.3) using expansion #1. The double term on the RHS of (1.3)
is expanded as two identical terms, using expansions #2 and #4. Transposing
negative terms to the other side, and canceling 16 matching terms, we obtain the
equation

16∑
i=1

Ai(x) =

16∑
i=1

Bi(x),(2.1)

where the Ai(x) and Bi(x) are listed in Table 1. It is this equation that we must
prove.

If we next compare the powers of x that appear in the A and B series on the
two sides of (2.1), we discover the surprising fact that (2.1) is actually the sum of
four simpler identities, each with four A terms on the left and four B terms on the
right. These sub-identities are listed in Table 2.

That none of these four sub-identities can be split further is due to the fact that
there is no other dependency among the A and B power series. We describe this
characteristic of an identity by the following terminology.

Definition 1. A balanced T 2 identity is called reducible if it can be split into the
sum of two or more balanced T 2 identities. Otherwise, it is called irreducible.
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Table 1. Ai and Bi in equation (2.1).

Ai(x) = xαiT (24, l1i)T (168, l2i) Bi(x) = xαiT (24, l1i)T (168, l2i)

i αi l1i l2i i αi l1i l2i
1 0 1 21 1 0 6 14
2 2 2 42 2 2 9 35
3 3 10 42 3 3 18 14
4 3 17 21 4 3 3 49
5 4 14 42 5 4 21 7
6 7 22 42 6 7 6 70
7 7 13 63 7 9 9 77
8 9 19 63 8 10 18 70
9 16 5 105 9 14 15 91
10 17 11 105 10 14 6 98
11 23 2 126 11 17 18 98
12 24 10 126 12 25 21 119
13 25 14 126 13 28 15 133
14 28 22 126 14 35 6 154
15 32 7 147 15 38 18 154
16 37 23 147 16 38 3 161

Table 2. The four sub-identities.

Identity 1

# α k1 l1 k2 l2 # α′ k1 l′1 k2 l′2

1 0 24 1 168 21 1 0 24 6 168 14
7 7 24 13 168 63 6 7 24 6 168 70
10 17 24 11 168 105 11 17 24 18 168 98
16 37 24 23 168 147 15 38 24 18 168 154

Identity 2 (with multiplier x2 canceled)

# α k1 l1 k2 l2 # α′ k1 l′1 k2 l′2
2 0 24 2 168 42 2 0 24 9 168 35
3 1 24 10 168 42 4 1 24 3 168 49
13 23 24 14 168 126 12 23 24 21 168 119
14 26 24 22 168 126 13 26 24 15 168 133

Identity 3 (with multiplier x3 canceled)

# α k1 l1 k2 l2 # α′ k1 l′1 k2 l′2
4 0 24 17 168 21 3 0 24 18 168 14
8 6 24 19 168 63 8 7 24 18 168 70
9 13 24 5 168 105 10 11 24 6 168 98
15 29 24 7 168 147 14 32 24 6 168 154

Identity 4 (with multiplier x4 canceled)

# α k1 l1 k2 l2 # α′ k1 l′1 k2 l′2
5 0 24 14 168 42 5 0 24 21 168 7
6 3 24 22 168 42 7 5 24 9 168 77
11 19 24 2 168 126 9 10 24 15 168 91
12 20 24 10 168 126 16 34 24 3 168 161
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3. The re-arrangement schemes

In this section we discuss the idea of the re-arrangement scheme of a balanced T 2

identity. We will explain this idea by examining the scheme of the first identity in
Table 2 (equation (3.1)), which is essentially the same as the schemes of the other
three identities in Table 2. This identity is:

A1(x) +A7(x) +A10(x) +A16(x) = B1(x) +B6(x) +B11(x) +B15(x).(3.1)

We begin by writing the eight terms of (3.1) as double sums as in (1.4), so (3.1)
becomes

4∑
r=1

∑
(i,j)∈Z2

xLr(i,j) =

4∑
s=1

∑
(i,j)∈Z2

xRs(i,j),(3.2)

where Lr(i, j) = 24i2 +168j2 + l1ri+ l2rj+αr and Rs(i, j) = 24i2 +168j2 + l′1si+
l′2sj + α′s. Here the lir and lis are respectively li and l′i in Identity 1 in Table 2.
In a few cases we will use the negatives of the values in Table 2, because this gives
greater regularity in the resulting geometric lattice patterns that underlie the re-
arrangements. That such a change is permissible is due to the fact that the indices
i and j run over Z.

In this form, it is clear that the equality in (3.1) is an assertion that a power
xLr(i,j), evaluated at the point (i, j) in the rth indexing plane Z2 on the left, will
be one of the powers xRs(i,j), evaluated at some corresponding point (i′, j′) in the
sth indexing plane Z2 on the right.

It becomes clear after considerable computing that the points (i, j) ∈ Z2 in the
rth indexing plane, at which xLr(i,j) is a term in the sth sum on the right, lie on an
affine lattice, and that the corresponding points (i′, j′) ∈ Z2 lie on an affine lattice
in the sth indexing plane as well.

Definition 2. A 2-dimensional, (affine) lattice is a set of points

L = {x̄ ∈ Z2 : x̄ = n1b̄1 + n2b̄2 + x̄0, ∀ n1, n2 ∈ Z},
where b̄1, b̄2, x̄0 ∈ Z2 and b̄1, b̄2 are linearly independent over Z.

To illustrate such lattices, consider the first sum on the left and the second sum
on the right, which have the exponents L1(i, j) = 24i2 + 168j2 − i + 21j and
R2(i, j) = 24i2 + 168j2 + 6i− 70j+ 7 respectively, with two negative coefficients as
mentioned after (3.2).

We find that the lattice for the first sum is[
x
y

]
= n1

[
1
1

]
+ n2

[
4
0

]
+

[−1
0

]
=

[
1 4
1 0

] [
n1

n2

]
+

[−1
0

]
, ∀ n1, n2 ∈ Z,(3.3)

and the associated lattice for the second sum is[
x′

y′

]
= n1

[−1
1

]
+ n2

[
3
1

]
+

[−1
0

]
=

[−1 3
1 1

] [
n1

n2

]
+

[−1
0

]
.(3.4)

To verify these are corresponding lattices, we note simply that

L1(n1 + 4n2 − 1, n1) = R2(−n1 + 3n2 − 1, n1 + n2)

= 192n2
1 + 384n2

2 + 192n1n2 − 28n1 − 196n2 + 25.
(3.5)
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Lattices such as those in (3.3) and (3.4) and equations similar to (3.5) can be
worked out for the other 15 pairs of exponents in Identity 1. It can also be shown
that the quartets of lattices in the eight indexing planes that are linked in this way
by the sixteen 1-1 lattice maps, consititute a partitioning of the 8 indexing planes.
The other 3 identities in Table 2 can be verified in the same way by finding 48 more
equations like (3.5).

Instead of taking this tedious and unrevealing approach, we will pursue the
present example further and investigate the nature of the direct map that connects

the points

[
x′

y′

]
to

[
x
y

]
. To do this, solve (3.4) for

[
n1

n2

]
and substitute the result

into (3.3). This gives the vector equation[
x′

y′

]
=

1

4

[
3 −7
1 3

] [
x
y

]
+

1

4

[−1
1

]
.(3.6)

The map ψ, defined by

[
x′

y′

]
= ψ

([
x
y

])
= A

[
x
y

]
+ d, where A =

1

4

[
3 −7
1 3

]
and

d̄ =
1

4

[−1
1

]
, can generally be considered as an affine map between two real planes

R2, so that the equality L1(x, y) = R2(x
′, y′) holds between these two-variable, real

polynomials. In general, we call a real, affine map ψ : R2 → R2 of this kind a global
map. The map ψ in (3.6) has the special property that it is also a 1-1 map of the
lattice in (3.3) to the lattice in (3.4).

Not all global maps from Z2 to Z2 send lattices to lattices though. For example,
the simple translation

L1(x, y) = R2

(
x− 7

24
, y +

13

24

)
is a global map from L1 to R2, but one that doesn’t send any integer point to
another integer point.

Global maps with rational coefficients turn out to be crucial to our understanding
of re-arrangement schemes. They show how the quadratic exponent polynomials
relate to each other in a balanced identity. Global maps of the right kind also
allow us to relate quadratic exponent polynomials to the underlying re-arrangement
lattices. In general, we need to have a simple way to find a global map between a
pair of lattices in one of the four planes on the two sides of our identity and, vice
versa, to determine when a global map induces a correspondence between lattices
in the indexing planes.

4. Rational matrices and associated lattice maps

In this short section we prove a theorem about lattices and affine maps between
them. The maps between two lattices in Z2 will ordinarily have rational rather
than integer coefficients.

Theorem 1 (Lattice Mapping Theorem). (a) Let ψ : R2 → R2 be a 1-1 affine map
with rational coefficients. Let K(ψ) = {x̄ ∈ Z2 : ψ(x̄) ∈ Z2}. If K(ψ) 6= ∅, then
K(ψ) and ψ(K(ψ)) are lattices in Z2. (b) Conversely, if L and L′ are lattices of
Z2, then there exists a 1-1 affine map with rational coefficients ψ : R2 → R2 such
that K(ψ) = L and L′ = ψ(L).
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Proof. (a) Let ψ(x̄) = Ax̄ + b̄, where A and b̄ have rational entries. Since K 6= ∅,
there exist x̄0, ȳ0 ∈ Z2 such that ȳ0 = ψ(x̄0) = Ax̄0 + b̄. Subtracting, we get
ψ(x̄) = A(x̄ − x̄0) + ȳ0. Setting x̄′ = x̄ − x̄0, we have ψ(x̄′ + x̄0) = Ax̄′ + ȳ0.
Defining ψ1(x̄

′) = ψ(x̄′ + x̄0)− ȳ0, we have that ψ1(x̄
′) = Ax̄′.

Consider the set K(ψ1) = {x̄′ ∈ Z2 : ψ1(x̄
′) ∈ Z2}. If d = LCM of the

denominators of the entries in A, then
[d
0

]
and

[0
d

]
are linearly independent vectors

in K(ψ1), so K(ψ1) contains at least two distinct vectors. Now, if x̄′1, x̄′2 ∈ K(ψ1),
then for any n1, n2 ∈ Z,

ψ1(n1x̄
′
1 + n2x̄

′
2) = n1ψ1(x̄

′
1) + n2ψ1(x̄

′
2) ∈ Z2,

so K(ψ1) is a lattice in Z2, which implies that K(ψ) = K(ψ1) + x̄0 is a lattice in
Z2. Since ψ1 is a 1-1, linear map, it follows that ψ(K(ψ)) = ψ1(K(ψ1))+ ȳ0 is also
a lattice in Z2.

(b) Let L =
{
B
[
n1

n2

]
+ x̄0

}
and L′ =

{
C
[
n1

n2

]
+ ȳ0

}
, where the columns of

B = [b̄1 b̄2] and C = [c̄1 c̄2] are the respective lattice bases. Clearly B−1 exists

and has rational entries. Let A = CB−1 ∈ GL(2,Q). Set z̄0 = ȳ0 −Ax̄0 ∈ Q2 and
let ψ(x̄) = A x̄+ z̄0. Then for each lattice point in L, we have

ψ
(
B
[
n1

n2

]
+ x̄0

)
= A

(
B
[
n1

n2

]
+ x̄0

)
+ z̄0 = C

[
n1

n2

]
+ ȳ0 ∈ L′.

Since det A 6= 0, ψ is 1-1, which proves (b).

Remarks. 1. A simple example in which K(ψ) = ∅ is the map with A = I and

b̄ = 1
2

[
1
1

]
.

2. We have phrased Theorem 1 to be used in only the two-dimensional case and
only where ψ is 1-1. It is clear that more general versions of this theorem hold for
n-dimensional lattices or when ψ is not necessarily 1-1. It is worth noting that even
when ψ : Rn → Rn is not 1-1, a nonempty K(ψ) will nonetheless have dimension
n.
3. When an affine map is given, such as

ψ
([x
y

])
=

1

m

([a b
c d

] [x
y

]
+
[e
f

])
,

where the small letters are integers and m > 0 is the least common denominator
of the component fractions, we can find bases for the lattices L and L′ (see [4]) by
solving the system [

a b
c d

] [
x
y

]
≡
[−e
−f
]

(mod m).(4.1)

The result in the following example, which illustrates Remark 3, will be needed
later in the paper.

Example. Let m be a positive integer. Find all integer points

[
x
y

]
so that

1

m

[
m− 1 1− 2m

1 m− 1

] [
x
y

]
lies in Z2. As in linear algebra, this homogeneous sys-

tem has the particular solution

[
0
0

]
. To find all solutions, reduce the coefficient
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matrix to echelon form, working modulo m:[
m− 1 1− 2m

1 m− 1

]
→
[

1 −1
−1 1

]
→
[
1 −1
0 0

]
.

We thus get the single congruence x ≡ y (mod m), or equivalently, x = y + tm.
Setting n1 = y and n2 = t, we obtain the general solution[

x
y

]
= n1

[
1
1

]
+ n2

[
m
0

]
.(4.2)

5. The global maps

The quadratic polynomials that are the exponents in an irreducible, balanced
T 2 equation form an interesting, close-knit family in that the pair of coefficients of
their quadratic terms is the same throughout the family (“balanced” quadratics)
and the collection of integer values (with repeats) of the quadratics on the left side
of the identity — produced by letting the pair of variables in each quadratic range
over Z2 — is the same as the collection of values produced in the same way on
the right. It seems reasonable under these circumstances to suspect that any two
quadratics in such a family might well be connected by an affine map. The next
theorem gives necessary and sufficient conditions that specify the form of such an
affine map.

Theorem 2 (Global Mapping Theorem). Let L(x, y) = k1x
2 +k2y

2 + l1x+ l2y+α
and R(x, y) = k1x

2 + k2y
2 + l′1x + l′2y + α′ be in R[x, y], where k1, k2 > 0 and

k2 = k k1. If A =

[
a b
c d

]
is a real matrix and

[
e
f

]
is a real vector, then the vector

equation

L

([
x
y

])
= R

(
A

[
x
y

]
+

[
e
f

])
(5.1)

holds if and only if the following six conditions are satisfied:

detA = ε, where ε = ±1,(5.2)

d = εa,(5.3)

b = −εkc,(5.4)

a2 + kc2 = 1,(5.5)

[
e
f

]
= A

 l1
2k1
l2

2k2

−
 l′1

2k1
l′2

2k2

 ,(5.6)

α′ = α+
1

4

[
(l′1)

2 − l21
k1

+
(l′2)

2 − l22
k2

]
.(5.7)

Proof. (=⇒) We have from (5.1) that

k1x
2 + k2y

2 + l1x+ l2y + α = k1(ax+ by + e)2 + k2(cx+ dy + f)2

+ l′1(ax+ by + e) + l′2(cx+ dy + f) + α′.

Equating coefficients of corresponding powers of x and y and canceling common
factors gives

a2 + kc2 = 1,(5.8)



A CONSTRUCTIVE THEORY OF SECOND DEGREE IDENTITIES 805

b2 + kd2 = k,(5.9)

ab+ kcd = 0,(5.10)

l1 = 2k1ae+ 2k2cf + l′1a+ l′2c,(5.11)

and

l2 = 2k1be+ 2k2df + l′1b+ l′2d.(5.12)

If a = 0, then (5.8) – (5.10) give c2 =
1

k
, d = 0, and b2 = k. These values

satisfy (5.2) – (5.5).
Next assume that a 6= 0.

(5.2): Substituting (5.8) – (5.10) in the familiar identity (a2 + kc2)(b2 + kd2) =

(ab+ kcd)2 + k(ad− bc)2 gives k = 02 + k(ad− bc)2 =⇒ detA = ε.
(5.3): Rewriting (5.8) and (5.9) as{

(a2 − 1) + c2k = 0,

b2 + (d2 − 1)k = 0,

we find that ∣∣∣∣a2 − 1 c2

b2 d2 − 1

∣∣∣∣ = 0.

Thus,

a2 + d2 − 1 = a2d2 − b2c2 = (ad− bc)(ad+ bc) = ε(ad+ bc).

Adding 1 = ε(ad− bc) in (5.2) gives d2 + a2 = 2εad, so (d− εa)2 = 0, i.e. d = εa.

(5.4): Substituting (5.3) into (5.10) gives ab+εkac = 0. Since a 6= 0, then b = −εkc.
(5.5): This is equation (5.8).

(5.6): Combine equations (5.11) and (5.12) as

[
l1
l2

]
= 2k1

[
a kc
b kd

] [
e
f

]
+

[
a c
b d

] [
l′1
l′2

]
.

Multiplying by

[
a b/k
c d/k

]
gives

A

[
l1
l2/k

]
=

[
a b/k
c d/k

] [
l1
l2

]
= 2k1

[
a b/k
c d/k

] [
a kc
b kd

] [
e
f

]
+

[
a b/k
c d/k

] [
a c
b d

] [
l′1
l′2

]
= 2k1 I

[
e
f

]
+

[
1 0
0 1/k

] [
l′1
l′2

]
,

using (5.3) – (5.5). This implies (5.6).
(5.7): Putting

[
x
y

]
=

− l1
2k1

− l2
2k2


into (5.1) and using (5.6) gives

L


− l1

2k1

− l2
2k2


 = R

A
− l1

2k1

− l2
2k2

+

[
e
f

] = R


− l′1

2k1

− l′2
2k2


 .
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It follows from the definitions of L and R in Theorem 2 that

k1
l21

4k2
1

+ k2
l22

4k2
2

+ l1
−l1
2k1

+ l2
−l2
2k2

+ α = k1
(l′1)

2

4k2
1

+ k2
(l′2)

2

4k2
2

+ l′1
−l′1
2k1

+ l′2
−l′2
2k2

+ α′,

which implies (5.7).

(⇐=) Let a and c be any real solutions of (5.5) and set A =

[
a −εkc
c εa

]
, where

ε ∈ {−1, 1}. Suppose that

[
e
f

]
is given by (5.6) and that (5.7) holds. A routine

calculation shows that (5.1) is satisfied.

Note that (5.7) can be rewritten as

k1l
2
2 + k2l

2
1 − 4k1k2α = k1(l

′
2)

2 + k2(l
′
1)

2 − 4k1k2α
′.(5.13)

This suggests the following definition.

Definition 3. Let f(x, y) = k1x
2 + k2y

2 + l1x+ l2y+α. Then define the invariant
I of f to be,

I(f) = k1l
2
2 + k2l

2
1 − 4k1k2α.(5.14)

Equation (5.13) asserts that I(L) = I(R).
It is worth noting that two quadratic polynomials f(x, y) and g(x, y) are affinely

related as in (5.1) if and only if I(f) = I(g). To see this, observe that (5.1) =⇒
(5.7) ⇐⇒ (5.13) ⇐⇒ I(f) = I(g). On the other hand, I(f) = I(g) ⇐⇒ (5.7). We
can take A = I and use (5.6) to define e and f , which then implies that (5.1) holds.

That such an invariant appears here and takes the form it does is not surprising.
Write f(x, y) in homogeneous form:

f(x, y, z) = z2f
(x
z
,
y

z

)
= k1x

2 + k2y
2 + αz2 + l1xz + l2yz.(5.15)

In general, if

f̃(x, y, z) = a11x
2 + a22y

2 + a33z
2 + a12xy + a13xz + a23yz = [x y z] Ã

xy
z

 ,
where

Ã =

a11
a12

2
a13

2
a12

2 a22
a23

2
a13

2
a23

2 a33

 ,
then it is well-known that det Ã is an invariant. In fact, it is the only fundamental
algebraic invariant [3, p. 15]. When f̃(x, y, z) = f(x, y, z) in (5.15), determinant Ã
becomes ∣∣∣∣∣∣

k1 0 l1
2

0 k2
l2
2

l1
2

l2
2 α

∣∣∣∣∣∣ = αk1k2 − k2
l21
4
− k1

l22
4

= −1

4
I(f).(5.16)

Note that I(f) = 10752 for all the quadratics f in the four identities in Table 2, if
the powers of x are not canceled.
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Remarks. 1. Observe that k is not required to be an integer in Theorem 2.
2. We have shown in Theorem 2 that if the quadratic exponents are linked by

affine maps as in (5.1), then certain conditions must hold. A basic question remains,
however, which we put as an (unproved) conjecture:

Conjecture. Any pair of quadratic exponents in an irreducible, balanced T 2 iden-
tity is connected by a global map.

6. Connecting global maps with lattices

Our goal in this section is to find lattices L and L′ for L(x, y) and R(x, y) in
Theorem 2 such that to each lattice point (i, j) ∈ L there corresponds exactly one
lattice point (i′, j′) ∈ L′ such that L(i, j) = R(i′, j′). In other words, we wish to
find basis vectors b̄1, b̄2, c̄1, c̄2 and displacement vectors ḡ and ḡ′ such that

L(n1b̄1 + n2b̄2 + ḡ) = R(n1c̄1 + n2c̄2 + ḡ′), ∀ n1, n2 ∈ Z.

(It is convenient to use the same coordinates (n1, n2) for the two lattices.) To find

the desired vectors, we employ the matrix A =

[
a −εkc
c εa

]
with rational entries.

Now set a =
δ

m
and c =

γ

m
, where m is the least common denominator of a and c.

Then,

A =
1

m
Â =

1

m

[
δ −εkγ
γ εδ

]
,(6.1)

where the integers δ and γ satisfy δ2 + kγ2 = m2.

Next consider the affine map with rational coefficients ψ
([
x
y

])
= A

[
x
y

]
+
[
e
f

]
,

where e and f are computed in (5.6). By Theorem 1, ψ maps a lattice L onto a

lattice L′ if and only if there is a single point

[
g
h

]
∈ L ⊂ Z2 such that[

g′

h′

]
= ψ

([
g
h

])
= A

[
g
h

]
+

[
e
f

]
∈ L′ ⊂ Z2.(6.2)

While A has entries with common denominator m, (5.6) shows that e and f have
denominators 2k1 and 2k2 respectively. In order for (6.2) to hold, the rationals e
and f must each reduce to a fraction with denominator m.

We make two observations. The first is that k = 7 divides every l2 and l′2
in Table 2. We will assume from now on that k divides l2 and l′2 and we write

l2 = kl̂2 and l′2 = kl̂′2. The second observation is that T (k,−l) = T (k, l), so we
can arbitrarily change the signs of l1, l2, l

′
1, and l′2, if we choose. Thus, to try to

make (6.2) hold, we must find ε1, ε2, ε
′
1, ε

′
2 ∈ {−1, 1}, so that

Â

[
ε1l1
ε2 l̂2

]
≡ m

[
ε′1l

′
1

ε′2 l̂′2

]
(mod 2k1).(6.3)

When this condition is satisfied, we can write[
e
f

]
=

1

2k1

(
1

m
Â

[
ε1l1
ε2l2

]
−
[
ε′1l

′
1

ε′2l
′
2

])
=

1

m

[
ê

f̂

]
,(6.4)
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where ê, f̂ ∈ Z2. Our rational map ψ is now

ψ

([
x
y

])
=

1

m

(
Â

[
x
y

]
+

[
ê

f̂

])
.

We can next examine the system mod m as in (4.1) to see if we obtain a solution

of (6.2). When we do, we can find an integral matrix B and a vector

[
g
h

]
∈ Z2

such that ψ
(
B

[
n1

n2

]
+

[
g
h

])
∈ Z2, for each

[
n1

n2

]
∈ Z2. Thus, both the matrix

C = [cij ] = AB and the vector

[
g′

h′

]
in (6.2) have integer entries. This produces

the two desired lattices, using the columns of the matrices B and C as the basis
vectors:

L :

[
i
j

]
= n1

[
b11
b21

]
+ n2

[
b12
b22

]
+

[
g
h

]
(6.5)

and

L′ :

[
i′

j′

]
= n1

[
c11
c21

]
+ n2

[
c12
c22

]
+

[
g′

h′

]
,(6.6)

so we have

L
(
n1

[
b11
b21

]
+ n2

[
b12
b22

]
+

[
g
h

])
= R

(
n1

[
c11
c21

]
+ n2

[
c12
c22

]
+

[
g′

h′

])
.

Before we prove the main theorem (Theorem 3), which deals with identities
having the re-arrangement pattern of the identities in Table 2, we will construct a
particular global map, related to Identity 1, by choosing a specific solution to (6.2).
This will be used in Section 8 where we prove the four identities in Table 2.

When k is an odd integer, we take m =
k + 1

2
, δ =

k − 1

2
= m − 1, γ = 1,

and ε = 1. For these values, δ2 +γ2 = m2, so the matrix A given in (6.1) is a global
map. By (4.2), the homogeneous system

Â

[
x
y

]
=

[
m− 1 1− 2m

1 m− 1

] [
x
y

]
≡
[
0
0

]
(mod m)

has the general solution

[
x
y

]
= n1

[
1
1

]
+ n2

[
m
0

]
. Thus, we have

B =

[
1 m
1 0

]
and C = AB =

[−1 m− 1
1 1

]
.(6.7)

The next lemma gives a simple test for determining whether the affine map

A

[
x
y

]
+

[
e
f

]
maps a point in Z2 to a point in Z2.

Lemma 1. Given two balanced quadratic polynomials L(x, y) = k1x
2+k2y

2+ l1x+

kl̂2y + α and R(x, y) = k1x
2 + k2y

2 + l′1x + kl̂′2y + α′, where k1, k2 ∈ Z+ and

k =
k2

k1
is an odd integer. Let A=

1

m

[
m− 1 1− 2m

1 m− 1

]
, where m =

k + 1

2
. Assume

for some choice of signs ε1, ε2, ε
′
1, ε

′
2 ∈ {1,−1} that[

1 −1
1 m− 1

] [
ε1l1
ε2 l̂2

]
≡
[
1 1
0 m

] [
ε′1l

′
1

ε′2 l̂′2

]
(mod 2k1).(6.8)
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Then for e, f defined in (6.4),

[
g
h

]
=

[
me
0

]
is a vector in Z2 such that A

[
g
h

]
+[

e
f

]
∈ Z2.

Proof. To simplify notation, write l̄ =

[
ε1l1
ε2 l̂2

]
and l̄′ =

[
ε′1l

′
1

ε′2 l̂
′
2

]
. Multiplying (6.8)

by

[
m −1
0 1

]
, we have that[

m− 1 1− 2m
1 m− 1

]
l̄ ≡

[
m 0
0 m

]
l̄′ =⇒

[
m− 1 1− 2m

1 m− 1

]
l̄ ≡ ml̄′ (mod 2k1),

which is condition (6.3). This implies by (6.4) that

e =
ê

m
and f =

f̂

m
,(6.9)

where ê, f̂ ∈ Z.

We now turn our attention to finding a vector

[
g
h

]
so that A

[
g
h

]
+

[
e
f

]
is an

integer. Since all the fractions of this affine map have denominator m, this means
we must solve the congruence

Â

[
g
h

]
≡ −

[
ê

f̂

]
(mod m).(6.10)

The augmented matrix for this system reduces (mod m) as follows:[
m− 1

1
1− 2m
m− 1

∣∣∣∣−ê−f̂
]
→
[
m− 1
m

1− 2m
−m

∣∣∣∣ −ê
−ê− f̂

]
→
[
1
0

−1
m

∣∣∣∣ ê

ê+ f̂

]
.

(6.11)

Thus, the second congruence drops out if and only if ê+ f̂ ≡ 0 (mod m). Since by
(6.4) and (6.9),[

ê

f̂

]
=

1

2k1
(Â l̄ −ml̄′) =

1

2k1

([
m− 1 1− 2m

1 m− 1

]
l̄ −

[
m 0
0 m

]
l̄′
)
,

then on adding the first row to the second row, we see the second row is

ê+ f̂ =
1

2k1

(
[m −m]l̄ − [m m]l̄′

)
=

m

2k1

(
[1 −1]l̄ − [1 1]l̄′

)
.

By the condition in the first row of (6.8), 2k1 divides [1 −1]l̄−[1 1]l̄′, so ê+ f̂ ≡ 0
(mod m), and the system (6.10) is consistent. The first congruence in the reduced
augmented matrix in (6.11) is

[1 −1]

[
g
h

]
≡ ê (mod m),

which clearly has the particular solution

[
g
h

]
=

[
ê
0

]
=

[
me
0

]
.

In determining how various lattices fit together, the following lemma is useful.
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Lemma 2. Assume the hypothesis of Lemma 1. Let

[
m1

n1

]
,

[
m2

n2

]
∈ Z2 be such that[

m′
1

n′1

]
= A

[
m1

n1

]
+

[
e
f

]
and

[
m′

2

n′2

]
= A

[
m2

n2

]
+

[
e
f

]
are in Z2. Then m′

1+n
′
1 ≡ m′

2+n
′
2

(mod m).

Proof. Subtracting the two vector equations gives[
m′

1 −m′
2

n′1 − n′2

]
= A

[
m1 −m2

n1 − n2

]
=

1

m

[
m− 1 1− 2m

1 m− 1

] [
m1 −m2

n1 − n2

]
.

Multiplying this equation by the elementary matrix

[
1 0
1 1

]
and equating the second

components gives

m′
1 −m′

2 + n′1 − n′2 =
1

m
[m −m]

[
m1 −m2

n1 − n2

]
= m1 −m2 − (n1 − n2),

so

(m′
1 + n′1)− (m′

2 + n′2) = (m1 − n1)− (m2 − n2).(6.12)

On the other hand, in the first equation, since by hypothesis and (6.9)

A

[
m1

n1

]
+

[
e
f

]
=

1

m

[
m− 1 1− 2m

1 m− 1

] [
m1

n1

]
+

1

m

[
ê

f̂

]
∈ Z2,

we have that the first component is an integer, which is to say (m − 1)m1 +
(1 − 2m)n1 + ê ≡ 0 (mod m), or reducing, m1 − n1 ≡ ê (mod m). Using the
second equation, we find in a similar way that m2−n2 ≡ ê (mod m). Subtracting,
we obtain that (m1 − n1) − (m2 − n2) ≡ 0 (mod m). Combining this with (6.12)
completes the proof.

Theorem 3. Given:

(a) k1, k2 ∈ Z+, where k =
k2

k1
is an odd integer,

(b) A =
1

m

[
m− 1 1− 2m

1 m− 1

]
, where m =

k + 1

2
,

(c) Two families of quadratic polynomials in Z[x, y]:

Lr(x, y) = k1x
2 + k2y

2 + l1rx+ kl̂2ry + αr, 1 ≤ r ≤ m,

and

Rs(x, y) = k1x
2 + k2y

2 + l′1sx+ kl̂′2sy + α′s, 1 ≤ s ≤ m.

Assume the following three conditions are satisfied:
I. Invariant Condition.

I(Lr) = I(Rs), 1 ≤ r, s ≤ m;(6.13)

II. Lattice Condition. For some choice of ε1r, ε2r, ε
′
1s, ε

′
2s ∈ {−1, 1},[

1 −1
1 m− 1

] [
ε1rl1r
ε2r l̂2r

]
≡
[
1 1
0 m

] [
ε′1sl′1s
ε′2sl̂

′
2s

]
(mod 2k1), 1 ≤ r, s ≤ m;(6.14)

and
III. Synthesis Condition. For the same choice of ε’s as in Condition II, and

r, s, 1 ≤ r, s ≤ m, the sets

{mer1, . . . ,merm} and {g′1s + h′1s, . . . , g
′
ms + h′ms}(6.15)
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are complete residue systems modulo m, where[
ers
frs

]
=

1

2k1

(
A

[
ε1rl1r
ε2r l̂2r

]
−
[
ε′1sl′1s
ε′2s l̂

′
2s

])
(6.16)

and [
g′rs
h′rs

]
= A

[
mers

0

]
+

[
ers
frs

]
.(6.17)

Then
m∑
r=1

xαrT (k1, l1r)T (k2, kl̂2r) =

m∑
s=1

xα
′
sT (k1, l

′
1s)T (k2, kl̂

′
2s).(6.18)

Proof. Using Theorem 2, we first show that ψrs

([
x
y

])
= A

[
x
y

]
+

[
ers
frs

]
is a global

map such that Lr

([x
y

])
= Rs

(
ψrs

([x
y

]))
for the matrix A in (b) and the vec-

tor

[
ers
frs

]
in (6.16). That conditions (5.2) – (5.5) hold follows readily from ex-

amining A in (b). Condition (5.6) is (6.16), with the factor k = k2/k1 can-
celed, and condition (5.7) is equivalent to the invariant condition (6.13). Ac-

cording to Lemma 1, condition II guarantees that

[
grs
hrs

]
=

[
mers

0

]
is a vector

in Z2 such that

[
g′rs
h′rs

]
= ψrs

([
grs
hrs

])
is in Z2. By Theorem 1, the set of points

{x̄ ∈ Z2 : ψrs(x̄) ∈ Z2} forms a lattice Lrs whose image under ψrs is also a lattice
L′rs. We have worked out the general bases for the lattices Lrs and L′rs in (6.5)

and (6.6), where B =

[
b11 b12
b21 b22

]
=

[
1 m
1 0

]
and C =

[
c11 c12
c21 c22

]
=

[−1 m− 1
1 1

]
in (6.7), so that

Lr

(
n1

[
1
1

]
+ n2

[
m
0

]
+

[
grs
hrs

])
= Rs

(
n1

[−1
1

]
+ n2

[
m− 1

1

]
+

[
g′rs
h′rs

])
.(6.19)

To complete the proof we must show that for each r, the m lattices Lr1, . . . ,Lrm
form a partition of the rth indexing plane on the left and for each s, the m lat-
tices L′1s, . . . ,L′ms form a partition of the sth indexing plane on the right. Let

H =
{
n1

[
1
1

]
+ n2

[
m
0

]
: n1, n2 ∈ Z

}
be the Z-module generated by the vectors[

b11
b21

]
=

[
1
1

]
and

[
b12
b22

]
=

[
m
0

]
. It is clear that each coset of H has the form

H +

[
ti
0

]
where the integers ti range over a complete residue system modulo m.

Hence, [Z2 : H ] = m. Each lattice Lrs is the coset H +

[
grs
hrs

]
= H +

[
mers

0

]
.

The first synthesis condition (6.15) guarantees that the m cosets Lr1, . . . ,Lrm are
distinct and hence form a partition of the rth indexing plane Z2. In the same way,
we examine the lattices L′rs on the right. These are all cosets of the Z-module

H ′ =
{
n1

[−1
1

]
+ n2

[
m− 1

1

]
: n1, n2 ∈ Z

}
. As before, it is easy to see that

[Z2 : H ′] = m. Since each lattice L′rs = ψrs(Lrs), it follows from Lemma 2 that
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for each

[
x′

y′

]
in L′rs, the sum x′ + y′ is congruent to g′rs + h′rs modulo m. Thus,

the lattices L′1s, . . . ,L′ms are all distinct, since the sum of the coordinates of their
coset representatives g′1s + h′1s, . . . , g′ms + h′ms are distinct (mod m) by the second
synthesis condition (6.15). Thus, these m lattices partition the sth indexing plane
Z2 on the right.

Note. In Theorem 3, the invariant condition guarantees that the quadratic expo-
nents Lr(x, y) and Rs(x, y) are affinely related by the function ψrs. Also, the lattice
condition produces the 1-1 re-arrangement correspondence in (6.19), using the lat-
tices Lrs and L′rs derived from the global map ψrs. Finally, the two synthesis
conditions show that these lattices fit together exactly to fill out their planes.

7. A general parametric identity

In Theorem 3, we have an effective means for proving the four identities in Table
2. Rather than doing this directly, we will use Theorem 3 to prove a 3-parameter
identity which contains each of the four identities as a special case.

Theorem 4. Let k1, k2 ∈ Z+ such that k =
k2

k1
≥ 3 is an odd integer. Let m =

k + 1

2
and suppose m | 2k1. If e, f ∈ 1

2Z such that e+ f ∈ Z, then

m∑
n=1

xαnT (k1, l1n)T (k2, l2n)) =
m∑
n=1

xαnT (k1, l
′
1n)T (k2, l

′
2n),(7.1)

where αn =
2k1

m
n2 + 2en,

l1n =
2k1

m
n+ e + f,

l2n = k
(2k1

m
n+ e

)
− f,

and


l′1n =

2k1

m
n+ e− f,

l′2n = k
(2k1

m
n+ e

)
+ f.

(7.2)

Proof. We will verify the hypotheses of Theorem 3. Part (a) is clearly satisfied. In

part (b), we have A =
1

m

[
m− 1 −(2m− 1)

1 m− 1

]
. The two quadratic families in part

(c) of Theorem 3 are Lr and Rs. It is straightforward using (5.14) and the five
formulas in (7.2) to verify that I(Lr) = I(Rs) = 2mk1(ke

2 +f2) for the m different
Lr’s and Rs’s. This verifies the Invariant Condition.

Trying various possibilities for the signs, we find that we must take ε1r = ε2r =
ε′2s = 1 and ε′1s = −1 for 1 ≤ r, s ≤ m. Inserting these values into (6.14), we find
that[

1 −1
1 m− 1

] [
2k1

m r + e+ f
2k1

m r + e− f
k

]
=

[ f(k+1)
k

2k1r +me+ mf
k

]
≡
[ f(k+1)

k

2k1s+me+ mf
k

]
=

[
1 1
0 m

] [−(2k1

m s+ e− f)
2k1

m s+ e+ f
k

]
(mod 2k1).

This verifies the lattice condition in Theorem 3.
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Table 3

r α k1 l1 k2 l2 s α′ k1 l′1 k2 l′2
1 17 24 11 168 105 1 17 24 18 168 98
2 37 24 23 168 147 2 38 24 18 168 154
3 7 24 13 168 63 3 7 24 6 168 70
4 0 24 1 168 21 4 0 24 6 168 14

It remains to verify the synthesis condition. An elaborate, but straightforward,
calculation in 3(b) and (6.18) with much simplification, gives that[

ers
frs

]
=

1

2k1

{
1

m

[
m− 1 −(2m− 1)

1 m− 1

] [ 2k1

m r + e+ f
2k1

m r + e− f
2m−1

]
−
[−(2k1

m s+ e− f)
2k1

m s+ e+ f
2m−1

]}
=

1

m

[
s− r
r − s

]
.

From this we calculate[
g′rs
h′rs

]
=

1

m

[
m− 1 −(2m− 1)

1 m− 1

][
m
s− r

m
0

]
+

1

m

[
s− r
r − s

]
=

[
s− r

0

]
.

Since mers = s− r = g′rs+h′rs, it is clear the synthesis condition (6.15) holds. This
completes the proof.

We return to the four identities in Table 2. Consider Identity 1, where k1 = 24,

k2 = 168, k = 7, and m = 4. The global matrix is A =
1

4

[
3 −7
1 3

]
. Theorem 4

now specializes to

4∑
n=1

x12n2+2enT (24, 12n+ e+ f)T (168, 84n+ 7e− f)

=

4∑
n=1

x12n2+2enT (24, 12n+ e− f)T (168, 84n+ 7e+ f).

(7.3)

Putting (e, f) = (5
2 ,

7
2 ) in (7.3) and reducing the T -functions as in [1, p. 780], we

obtain Identity 1, with terms in Table 3 in an order different from that of Table 2.
We can establish Identities 2-4 in Table 2 in a similar way by using the parameters

(e, f) = (11
2 ,− 7

2 ), (1
2 ,

35
2 ), and (7

2 ,
35
2 ) respectively.

We conclude this work by mentioning that the special form of Theorem 3 re-
lates to its use in deriving Theorem 4, which was designed to prove identities
whose re-arrangement scheme is that of the identities in Table 2. There are other
re-arrangement schemes for balanced quadratic identities that are much more com-
plicated than the type we dealt with here. To prove these, however, will require a
more general theorem. We will examine these matters in another paper.
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