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WILSON QUOTIENTS FOR COMPOSITE MODULI

TAKASHI AGOH, KARL DILCHER, AND LADISLAV SKULA

Abstract. An analogue for composite moduli m ≥ 2 of the Wilson quotient
is studied. Various congruences are derived, and the question of when these
quotients are divisible by m is investigated; such an m will be called a “Wilson
number”. It is shown that numbers in certain infinite classes cannot be Wilson
numbers. Eight new Wilson numbers up to 500 million were found.

1. Introduction

One of the most classical and celebrated theorems in number theory is Wilson’s
Theorem (see, e.g. [5] or [11]):

Theorem 1.1 (Wilson’s Theorem). If p is a prime, then

(p− 1)! ≡ −1 (mod p).

It is particularly attractive since, together with its converse due to Lagrange, it
characterizes the primes. Also, it allows us to introduce special quotients which are
integers.

Definition 1.1. Let p be a prime. The quotient

wp :=
(p− 1)! + 1

p

is called the Wilson quotient of p. The prime p is called a Wilson prime if

wp ≡ 0 (mod p).

These objects have been extensively studied (see, e.g., [5], [9], [10], or [11]). The
first two Wilson primes are 5 and 13. Goldberg (1953) discovered the third Wilson
prime 563, and subsequent searches by various authors showed that there are no
other such primes below 5× 108 (see [4], [6], [7], [11], and [12]).

It is the aim of this paper to investigate analogs of the quotients wp for composite
moduli. Our generalization is based on the following classical theorem.
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Theorem 1.2 (Wilson’s Theorem for composite moduli). Let m ≥ 2 be an
integer, and set εm = −1 when m = 2, 4, pα or 2pα, where p is an odd prime and α
a positive integer, and εm = 1 otherwise. Then

m∏
j=1

(j,m)=1

j ≡ εm (mod m).

This theorem was first stated by Gauss who gave an outline of a proof (see [5],
p. 65). Note that εm = −1 if and only if m has a primitive root.

The theorem enables us to introduce generalized Wilson quotients for arbitrary
integers m ≥ 2. Although they have occurred in the literature, they have so far not
been studied in any great detail.

In Section 2 we investigate these quotients and mention some extensions of results
of E. Lehmer [10]. Section 3 is devoted to the composite Wilson numbers. Some
congruences concerning generalized Wilson quotients are derived; they are useful
in the search for Wilson numbers.

In Section 4 we study the values of generalized Wilson quotients mod 3 for
integers 3m and 9m, where m is a squarefree integer ≥ 2 with all prime divisors
congruent to 2 mod 3. Finally, Sections 5 and 6 deal with the actual search for
Wilson numbers.

2. Wilson quotients for composite moduli

On the basis of Theorem 1.2 (Wilson’s Theorem for composite moduli) we will
define the Wilson quotient for arbitrary integers m ≥ 2.

Definition 2.1. Let m ≥ 2 be an integer, and εm be as defined in Theorem 1.2.
Denote

P (m) =
m∏
j=1

(j,m)=1

j.

Then the integer

W (m) =
P (m)− εm

m

is called the generalized Wilson quotient of m.

We will now derive some basic congruences, analogous to the known congruences
for Wilson quotients with prime moduli. First we need another definition.

Definition 2.2. Let a and m ≥ 2 be relatively prime integers. The quotient

q(a,m) =
aφ(m) − 1

m

will be called the Euler quotient of m with base a.

Note that by Euler’s Theorem, this quotient is an integer. It was first studied by
Lerch [9]; for further properties, see [2]. The two quotients just defined are related
by the following fundamental congruence.



WILSON QUOTIENTS FOR COMPOSITE MODULI 845

Proposition 2.1. For integers m ≥ 3 we have

εmφ(m)W (m) ≡
m∑
a=1

(a,m)=1

q(a,m) (mod m).

For m = p (an odd prime) this congruence is due to Lerch [9, (4)].

Proof. Using the definitions of P (m) and the Euler quotients, we have

P (m)φ(m) =

m∏
a=1

(a,m)=1

aφ(m) =

m∏
a=1

(a,m)=1

(1 +mq(a,m))

≡ 1 +m
m∑
a=1

(a,m)=1

q(a,m) (mod m2).

On the other hand, we get

P (m)φ(m) = (εm +mW (m))φ(m)

≡ εφ(m)
m + φ(m)εφ(m)−1

m mW (m) (mod m2)

= 1 + εmφ(m)mW (m) (mod m2),

and the result follows.

Proposition 2.2. For integers m ≥ 3 and t ≥ 1 we have
m∑
a=1

(a,m)=1

atφ(m) ≡ φ(m) + εmtmφ(m)W (m) (mod m2).

Proof. We use the definition of q(a,m),

atφ(m) = (aφ(m))t = (1 +mq(a,m))t ≡ 1 + tmq(a,m) (mod m2)

and sum over the a’s to get
m∑
a=1

(a,m)=1

atφ(m) ≡
m∑
a=1

(a,m)=1

(1 + tmq(a,m)) (mod m2)

= φ(m) + tm

m∑
a=1

(a,m)=1

q(a,m)

≡ φ(m) + εmtmφ(m)W (m) (mod m2)

by Proposition 2.1.

For another expression of the right-hand side in Proposition 2.2 we need the
following result due to Agoh [1, 3.1]. Here and in what follows, Bi denotes the ith
Bernoulli number (in even-index notation).

Proposition 2.3 (Agoh). For positive integers m and n we have

n+1∑
i=1

(
n+ 1
i

)
Hn+1−i(m)mi = (n+ 1)

m∑
a=1

(a,m)=1

an,
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where

Hi(m) =
∏
p|m

(1− pi−1)Bi

(with the product taken over all prime divisors p of m).

Notation. Let t and m be integers, t ≥ 1, m ≥ 3. For 1 ≤ i ≤ tφ(m) + 1 set

Mi =
1

i

(
tφ(m)
i− 1

)
Htφ(m)+1−i(m)mi.

Note that for i even we have Mi = 0 and since

1

n+ 1

(
n+ 1
i

)
=

1

i

(
n

i− 1

)
for positive integers i, n with i ≤ n+ 1, we get from Proposition 2.3

m∑
a=1

(a,m)=1

atφ(m) =

tφ(m)+1∑
i=1
i odd

Mi.(2.1)

Proposition 2.4. For integers m ≥ 3 and t ≥ 1 we have

εmtmφ(m)W (m) ≡ −φ(m) +M1 +M3 (mod m2)

= −φ(m) +m
∏
p|m

(1 − ptφ(m)−1)Btφ(m)

+
1

3

(
tφ(m)

2

)
m3
∏
p|m

(1− ptφ(m)−3)Btφ(m)−2.

Proof. Let p be a prime dividing m, and 5 ≤ i ≤ tφ(m) + 1, i odd. Let ordpm
denote the highest power of p dividing m. Put ordpm = α, ordpi = β. Then α ≥ 1
and β ≥ 0. We want to show that ordpMi ≥ 2α. We have ordpMi ≥ iα− β − 1. If
β ∈ {0, 1}, then iα − β − 1 ≥ 5α − 2 ≥ 2α. Suppose β ≥ 2. Then p ≥ 3 (because
i is odd) and αi − β − 1− 2α ≥ α(3β − 2)− β − 1 ≥ 3β − (β + 3) > 0. The result
follows.

Next we wish to determine under which conditions the term M3 can be omitted.
We use the following lemma.

Lemma 2.1. Let m ≥ 3 and t ≥ 1 be integers.

(a) If m = 3p1 . . . pk, where p1, . . . , pk are primes ≡ 2 (mod 3) (k ≥ 0), then

ord3M3 = ord3t+ ord3(tφ(m)− 1) + 1.

(b) In all other cases of m and for a prime p | m we have

ordpM3 ≥ 2ordpm.

Proof. It is easy to see that statement (a) is true. Now let p be a prime and
α = ordpm ≥ 1. Then for p 6= 3 we have

ordpM3 ≥ −1 + 3α ≥ 2α.

Let p = 3. If α ≥ 2, then ord3M3 ≥ −2 + 3α ≥ 2α. Suppose now that α = 1; there
exists a prime P such that P ≡ 1 (mod 3) and P | m. Then 3 | φ(m); therefore

ord3
1
3

(
tφ(m)
i− 1

)
≥ 0 and ord3M3 ≥ 3α− 1 = 2α. The result follows.
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Using Lemma 2.1 we get immediately

Proposition 2.5. For integers m ≥ 3 and t ≥ 1 we have M3 6≡ 0 (mod m2) if
and only if m = 3p1 . . . pk (k ≥ 0), where p1, . . . , pk are primes ≡ 2 (mod 3) and
3 - t(tφ(m) − 1).

If we now use Proposition 2.4 with t = 2 and t = 1, subtract the corresponding
congruences and divide by m, we obtain

Corollary 2.1. Let m ≥ 3 be an integer and ord3m 6= 1. Then

εmφ(m)W (m) ≡
∏
p|m

(1− p2φ(m)−1)B2φ(m) −
∏
p|m

(1 − pφ(m)−1)Bφ(m) (mod m).

Remarks. (a) The above congruence can be considered to be the analogue for com-
posite moduli of the congruence

wp ≡ B2(p−1) −Bp−1 (mod p)

for an odd prime p, mentioned by E. Lehmer [10, (25)].
(b) The congruence in Propostion 2.4 for m = p ≥ 5 (p an odd prime) gives us

congruence (24) in the paper [10] of E. Lehmer. (Note that there is a mistake in
this paper: for p = 3, t ≥ 4 with t ≡ 1 (mod 3) congruence (24) in [10] does not
hold; according to Proposition 2.5 we have M3 6≡ 0 (mod 32)).

3. Wilson numbers

As we remarked in the introduction, we have W (p) ≡ 0 (mod p) for p = 5, 13
and 563, but no other such “Wilson prime” was found up to 5 × 108. It is now
natural to ask which composites m satisfy W (m) ≡ 0 (mod m), m ≥ 4. We call
such numbers “Wilson numbers”. The problem is similar to that concerning the
Wieferich numbers (see [2]), but it appears to be more difficult. While the Wieferich
numbers have been completely characterized in [2], no such characterization was
found for the composite Wilson numbers. Moreover, Kloss [8] (1965) lists only one
composite Wilson number up to 32 000, namely 5971 = 7 · 853. Our calculations
confirmed this; we extended the search up to 5 × 108 and found 8 new composite
Wilson numbers. They are listed in Table 1, following the three known Wilson
primes and the number found by Kloss.

The main purpose of this section is to derive a number of congruences for Wilson
quotients, some of which will facilitate the search for further composite Wilson
numbers.

Now let pnm be a given modulus, with p a prime and m and n positive integers,
p - m, n ≥ 2. We use the fact that pnm and pm have the same set of prime divisors.
Now

P (pnm) =

p−1∏
k=0

pn−1m∏
a=1

(a,pm)=1

(kpn−1m+ a)

=

 pn−1m∏
a=1

(a,pm)=1

a

 p−1∏
k=0

pn−1m∏
a=1

(a,pm)=1

(
1 + kpn−1m

1

a

)
,
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Table 1. Wilson numbers ≤ 5× 108

Wilson number Factorization
5 prime
13 prime
563 prime
5971 7 · 853

558771 3 · 19 · 9803
1964215 5 · 11 · 71 · 503
8121909 3 · 139 · 19477
12326713 7 · 1760959
23025711 3 · 1867 · 4111
26921605 5 · 67 · 80363
341569806 2 · 3 · 181 · 409 · 769
399292158 2 · 3 · 17 · 97 · 40357

and therefore

P (pnm) ≡ P (pn−1m)p
p−1∏
k=0

1 + kpn−1m

pn−1m∑
a=1

(a,pm)=1

1

a
+ k2p2n−2m2

∑′ 1

ab

(3.1)

(mod p2nm2),

where the second sum
∑′

ranges over all a, b with 1 ≤ a < b ≤ pn−1m and
(a, pm) = (b, pm) = 1. Since P (pnm) has to be evaluated modulo p2nm2, the
reciprocals are understood as reciprocals modulo p2nm2. So we may write

1

a
≡ aφ(p2nm2)−1 (mod p2nm2), (a, pm) = 1.

By means of this and the following lemmas we will now evaluate the right-hand
side of congruence (3.1).

Lemma 3.1. If p is a prime and m and n are positive integers with p - m and
n ≥ 2, then

pn−1m∑
a=1

(a,pm)=1

aφ(p2nm2)−1 ≡ 0 (mod p2n−2−δm),

where δ = 0 when p ≥ 5, and δ = 1 for p = 2 or 3.

Proof. We use Proposition 2.3 with n and m replaced by n′ = φ(p2nm2) − 1 and
m′ = pn−1m, respectively. Since n′ is always odd, the first and third terms on
the left-hand side of the congruence in Proposition 2.3 are zero. The second term,
divided by n′ + 1 = φ(p2nm2), is

A =
1

2
n′m′2 ∏

q|m′
q prime

(1− qn
′−2)Bn′−1.

First, let p ≥ 5. Since n′ − 1 6≡ 0 (mod p − 1), Bn′−1 is p-integral by the von

Staudt-Clausen Theorem. Hence A is divisible by p2n−2. Also, since 1 − pn
′−2 is

even and m′Bn′−1 is m′-integral, we have A ≡ 0 (mod m), which proves the lemma
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for p ≥ 5. The same argument holds for p = 3, with the difference that 3Bn′−1 is
3-integral, hence we have δ = 1 in this case. We can deal with p = 2 in a similar
way. Noting that all further terms on the left-hand side in Proposition 2.3 are
divisible by p2n−2m (again by the von Staudt-Clausen Theorem), we see that the
lemma holds.

Lemma 3.2. Let p, m and n be as in Lemma 3.1 and in addition assume that
n ≥ 3 for p = 2 and 3, and m ≥ 3 for p = 2. Then∑ 1

ab
≡ 0 (mod p),

where the summation ranges over all integers a and b with 1 ≤ a < b ≤ pn−1m and
(a, pm) = (b, pm) = 1.

Proof. If p = 2, then all the terms in the sum are odd, and there are
φ(2n−1m)(φ(2n−1m) − 1)/2 of them. But φ(2n−1m) = 2n−2φ(m), where φ(m)
is even. So the number of terms is even for n ≥ 3, which proves the lemma for
p = 2 and n ≥ 3.

For p ≥ 3 we use the identity

2
∑ 1

ab
=

 pn−1m∑
a=1

(a,pm)=1

1

a


2

−
pn−1m∑
a=1

(a,pm)=1

1

a2
.

By Lemma 3.1, the first term on the right-hand side is divisible by p for n ≥ 1. For
the second term we use Proposition 2.3 again, this time with n′ = φ(p2nm2)−2 and
m′ = pn−1m replacing n and m, respectively. Then the first term in the equation
in Proposition 2.3, divided by n′ + 1, becomes

m′ ∏
q|m′

q prime

(1 − qn
′−1)Bn′ .

As in the proof of Lemma 3.2 we see that for p ≥ 5 and n ≥ 2 this term is divisible
by p, while for p = 3 that is true only for n ≥ 3. Finally, we note that all other
terms on the left-hand side of the equation in Proposition 2.3 are divisible by p.
This completes the proof.

Proposition 3.1. Let p be a prime, and m and n positive integers, p - m. Then

W (pnm) ≡W (pn−1m) (mod pn−1m),

provided that 
n ≥ 2 for p ≥ 5,

n ≥ 3 for p = 3,

n ≥ 3 and m ≥ 3 for p = 2.

Proof. By Lemmas 3.1 and 2.2 it is clear that in all three cases the congruence (3.1)
reduces to

P (pnm) ≡ P (pn−1m)p (mod p2n−1m2).
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We note that in all the allowable cases we have εpnm = εpn−1m; we denote this
common value by ε. Now with Definition 3.1 we get

pnmW (pnm) + ε ≡ (pn−1mW (pn−1m) + ε)p

≡ εp + εp−1ppn−1mW (pn−1m)

+ εp−2 p(p− 1)

2
p2n−2m2W (pn−1m)2 (mod p2n−1m2)).

For p ≥ 3, this reduces to

pnmW (pnm) ≡ pnmW (pn−1m) (mod p2n−1m2),

which implies the result. In the case p = 2 we have ε = 1; hence from the above
congruence we obtain

W (2nm) ≡W (2n−1m) + 2n−2mW (2n−1m)2 (mod 2n−1m).(3.2)

We now show that W (4m) is always even for odd m ≥ 3. Indeed, P (4m) can be
written as a product of φ(4m)/4 terms of the form

j(2m− j)(2m+ j)(4m− j) = 16m3j − 4mj2(m+ j) + j4,

for odd j with (m, j) = 1. Since m+ j is even and j4 ≡ 1 (mod 8) for odd j, each
of the terms is ≡ 1 (mod 8) and so is their product, i.e., P (4m) ≡ 1 (mod 8). But
then, W (4m) will be even.

Finally, using induction with (3.2), we see that W (2nm) is even for all n ≥ 2
and all odd m ≥ 3. This shows that the second term on the right-hand side of (3.2)
vanishes (mod 2n−1m), which proves the proposition for p = 2.

In the last proof we saw that W (2nm) is always even for n ≥ 2 and for odd
m ≥ 3. The following lemma deals with the case n = 1.

Lemma 3.3. Let m ≥ 3 be an odd integer. Then W (2m) is odd if and only if m
is a power of a prime.

Proof. P (2m) can be written as a product of φ(2m)/2 terms of the form j(2m−j) =
2mj−j2. Sincem and j are odd, all these terms are≡ 1 (mod 4), and so P (2m) ≡ 1
(mod 4). Now, if m is not a prime power, then ε2m = 1, and we see that W (2m) will
be even. Otherwise, ε2m = −1 and W (2m) = (P (2m) + 1)/2m ≡ 1 (mod 2).

The next result deals with some cases not covered by Proposition 3.1.

Proposition 3.2. The following congruences hold:

(a) For integers n ≥ 4,

W (2n) ≡W (2n−1) (mod 2n−2).

In particular, for all n ≥ 1,

W (2n) ≡ 1 (mod 4).

(b) Let m ≥ 3 be an odd integer. If m is not a power of a prime, then

W (4m) ≡W (2m) (mod 2m).

If m is a power of a prime p, then

W (4m) ≡ −W (2m) (mod m)
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and

W (4m) ≡


0 if p ≡ 1 or 3 (mod 8),

(mod 4)

2 if p ≡ 5 or 7 (mod 8).

(c) For integers m ≥ 1 with 3 - m,

W (9m) ≡W (3m) (mod m).

If in addition m has a prime factor q ≡ 1 (mod 3), then

W (9m) ≡W (3m) (mod 3m).

Proof. (a) We use (3.1) with odd m and p = 2. Lemma 3.1 gives, for n ≥ 2,

P (2nm) ≡ P (2n−1m)2 (mod 2n−2m2).(3.3)

Letting m = 1 and noting ε2n = ε2n−1 = 1 we can deduce the first congruence. By
induction we see W (2n) ≡W (8) ≡ 1 (mod 4) for all n ≥ 3. Also, W (4) = W (2) =
1.

(b) We set n = 2 in (3.3) and let m ≥ 3 be an odd integer. Note that ε2m = εm,
while ε4m = 1 always. Hence (3.3) becomes

4mW (4m) + 1 ≡ (2mW (2m) + εm)2 (mod 4m2),

which gives

W (4m) ≡ εmW (2m) (mod m).

If m is a prime or a power of a prime, then εm = −1 and we immediately get the
assertion. Otherwise εm = 1 and by Lemma 3.3 and the remark preceding it we
have W (4m) ≡W (2m) (mod 2), which shows the first congruence.

Now suppose that m = pn, where n is a positive integer and p an odd prime.
Using Proposition 3.1 we have for p ≥ 5 and n ≥ 2,

W (4pn) ≡W (4p) (mod 4)

and for p = 3, n ≥ 3,

W (4 · 3n) ≡W (4 · 9) ≡ 0 (mod 4).

So we may suppose n = 1, hence m = p. Then

P (4p) =

p−1∏
j=1

j even

(p− j)(p+ j)(3p− j)(3p+ j) =

p−1∏
j=1

j even

(9p4 − 10p2j2 + j4)

≡
p−1∏
j=1

j even

(9 + 6p2j2) (mod 16)

=

(p−1)/2∏
k=1

(9 + 3 · 8p2k2) ≡
(p−1)/2∏
k=1

(9 + 3 · 8k2) (mod 16).

If k is odd, then 9 + 3 · 8k2 ≡ 1 (mod 16) and if k is even, then 9 + 3 · 8k2 ≡ 9
(mod 16), and the third part of (b) follows.

(c) We use (3.1) with p = 3, p - m, and n = 2. Then by Lemma 3.1,

P (9m) ≡ P (3m)3 (mod 9m2).
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Note that ε9m = ε3m for all m ≥ 1. Using this congruence we obtain the first
assertion. Finally, if m has a prime factor q ≡ 1 (mod 3), then Lemmas 3.1 and 3.2
can be improved. Indeed, the Euler factor of A in the proof of Lemma 3.1 is now
divisible by 3 and therefore Lemma 3.1 holds with δ = 0. Similarly, the appropriate
Euler factor in the proof of Lemma 3.2 is divisible by 3. Hence Lemma 3.2 holds
for p = 3 and n ≥ 2, and so does Proposition 3.2 in this case.

Corollary 3.1. (a) If pn is a Wilson number, where p is a prime and n a positive
integer, then pr is a Wilson number for all 1 ≤ r ≤ n.

(b) No prime power pn, where n ≥ 1 and p < 5 × 108, p 6= 5, 13, 563 can be a
Wilson number; 5N , 13N and 563N are not Wilson numbers for any integer
N ≥ 2.

(c) No number of the form 2pn, n ≥ 1 and p an odd prime, can be a Wilson
number.

Proof. (a) For p = 2, this follows from Proposition 3.2 (a). For p = 3, we use
Proposition 3.1 with m = 1 and note that W (9) ≡ 6 (mod 9). For p ≥ 5 we use
again Proposition 3.1.

(b) By direct computation we see that 52, 132 and 5632 are not Wilson numbers.
The rest follows from the fact that W (p) 6≡ 0 (mod p) for p < 5× 108.

(c) This follows directly from Lemma 3.3.

4. Wilson quotients W (3m) and W (9m)

In this section we will refine the results of Proposition 3.2 for certain integers
m and consider the question whether W (3m) or W (9m) can be Wilson numbers.
Recall that by Proposition 3.1 it is (essentially) sufficient to consider squarefree
moduli. Here we will only consider squarefree integers m ≥ 5 with all prime divisors
congruent to 2 modulo 3.

First we need a result which is related to the “inclusion-exclusion principle”. It
can be proved, e.g., by induction on k.

Lemma 4.1. Let C be a finite set of nonzero complex numbers, k ∈ N, and
A1, . . . , Ak ⊆ C. Let K = {1, 2, . . . , k}, and for X ⊆ K put

α(X) =
∏

x (x ∈
⋂
i∈X

Ai).

Then

∏
x(x ∈ C −

k⋃
i=1

Ai) =
∏
X⊆K

α(X)(−1)|X| .

Note that as usual |X | denotes the number of elements of the set X , and con-
cerning the empty set ∅ we let

∏
x∈∅ x = 1 and

⋂
i∈∅Ai = C by convention. We

introduce the following notation. For a nonnegative integer h put

Q1(h) =

{
2 if h is even

5 if h is odd
≡ 2(−1)h (mod 9), and Q2(h) = −1.
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Lemma 4.2. Let h be a nonnegative integer and p1, . . . , ph be primes, pj ≡ 2
(mod 3), j = 1, . . . , h. Denote N = p1 · · · · · ph. Then for u ∈ {1, 2},∏

1≤x≤3uN
3-x

x ≡ Qu(h)(−1)η (mod 3u+1),

where

η =

{
0 if 2 6∈ {p1, . . . , ph},
1 if 2 ∈ {p1, . . . , ph}.

(If h = 0, then {p1, . . . , ph} = ∅ by convention, and N = 1.)

Proof. We write N = w + 3U , where U ≥ 0 is an integer and w = 1 or w = 2 (if
h = 0, p1 · · · · · ph is understood to be 1). It is obvious that h is even if and only if
w = 1. Also, if 2 6∈ {p1, . . . , ph}, then h is even if and only if U is even; in the case
2 ∈ {p1, . . . , ph} h is even if and only if U is odd. Now we have

Π1 =
∏

1≤x≤3N
3-x

x = 1 · 2 · 4 · 5 · 7 · 8 · · · · · (9U + 1)D1(w),

where D1(w) is an integer satisfying

D1(w) ≡
{

2

2 · 4 · 5 (mod 9)
if w = 1,
if w = 2,

≡ 2w (mod 9),

hence

Π1 ≡ (−1)U2w ≡ Q1(h)(−1)η (mod 9).

Similarly

Π2 =
∏

1≤x≤9N
3-x

x = (1 · 2 · 4 · 5 · · · · · 26) · · · · · (27U + 1)D2(w),

where the integer D2(w) satisfies

D2(w) ≡
{

2 · 4 · 5 · 7 · 8
2 · 4 · 5 · 7 · · · · · 17

≡ (−1)w (mod 27).

Therefore

Π2 ≡ (−1)UD2(w) ≡ Q2(h)(−1)η (mod 27).

For the remainder of this section we assume that k ≥ 1 is an integer, p1, . . . , pk
are different primes, pi ≡ 2 (mod 3) for each 1 ≤ i ≤ k, m = p1 · · · · · pk, K =
{1, 2, . . . , k}, and for X ⊆ K

π(X) =
∏
i∈X

pi, π(∅) = 1,

η(X) =

{
0 if 2 6∈ {pi : i ∈ K −X},
1 if 2 ∈ {pi : i ∈ K −X}.
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Lemma 4.3. Let j ∈ K be fixed. Then∑
j∈X⊆K

m

π(X)
(−1)|X| ≡ 2 (mod 3).

Proof. Suppose j ∈ K. Then

∑
j∈X⊆K

m

π(X)
(−1)|X| =

∑
Y⊆K−{j}

π(Y )(−1)k−|Y | ≡ −
k−1∑
r=0

(
k − 1
r

)
2r(−1)k−1−r

= −(2− 1)k−1 ≡ 2 (mod 3).

Lemma 4.4. ∑
X⊆K

η(X)(−1)|X| =

{
1 if k = 1 and p1 = 2,

0 otherwise.

Proof. If 2 6∈ {pi : i ∈ K}, then η(X) = 0 for each X ⊆ K. Suppose now that
2 = pj for some j ∈ K. Then

∑
X⊆K

η(X)(−1)|X| =
∑

j∈K−X
(−1)|X| =

k−1∑
r=0

(
k − 1
r

)
(−1)r =

{
1 for k = 1,

0 for k ≥ 2.

Lemma 4.5. ∏
X⊆K

Qu(k − |X |)(−1)|X| ≡
{

7 (mod 9) for u = 1,

1 (mod 27) for u = 2.

Proof. By definition of the Qu(h) we have∏
X⊆K

Q1(k − |X |)(−1)|X| ≡ 2(−1)k2k ≡ 7 (mod 9)

since (−1)k2k ≡ 4 (mod 6), and∏
X⊆K

Q2(k − |X |)(−1)|X| =
∏
X⊆K

(−1)(−1)|X| = (−1)

∑
X⊆K

(−1)|X|

= 1.

Theorem 4.1. Let m, k be integers, m ≥ 5, k ≥ 1, p1, . . . , pk distinct primes ≡ 2
(mod 3), and m = p1 · · · · · pk. Then

P (3m) ≡ 7p 4
1 · · · · · p 4

k (mod 9),

P (9m) ≡ p 12
1 · · · · · p 12

k (mod 27).

Proof. Let u ∈ {1, 2}, Cu = {1 ≤ x ≤ 3um : 3 - x}, Au
i = {x ∈ Cu : pi|x} for

i ∈ K, δu = P (3um) =
∏
x(x ∈ Cu −⋃k

i=1 A
u
i ), αu(X) =

∏
x(x ∈ ⋂i∈X Au

i ) for
X ⊆ K. By Lemma 4.1 we have

δu =
∏
X⊆K

αu(X)(−1)|X| .
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Suppose X ⊆ K. Then x ∈ ⋂i∈X Au
i if and only if there exists an integer y,

1 ≤ y ≤ 3um/π(X), 3 - y, such that x = π(X)y. Since the number of such y equals
2 · 3u−1m/π(X), we have by Lemma 4.2

αu(X) ≡ π(X)2·3
u−1m/π(X)Qu(k − |X |)(−1)η(X) (mod 3u+1).

Using Lemma 4.3 we get∏
X⊆K

π(X)(2·3
u−1m/π(X))(−1)|X| ≡ π(K)4·3

u−1

(mod 3u+1).

Lemmas 4.4 and 4.5 now complete the proof.

Corollary 4.1. Let a = #{1 ≤ i ≤ k : pi ≡ 2 (mod 9)}, b = #{1 ≤ i ≤ k : pi ≡ 5
(mod 9)}. Then

P (3m) ≡ 7a+14b (mod 9),

P (9m) ≡ 19a10b (mod 27).

From this we will determineW (3m) andW (9m) (mod 3). Since 72 ≡ 4 (mod 9),
73 ≡ 1 (mod 9) and 102 ≡ 19 (mod 27), 103 ≡ 1 (mod 27), the values P (3m)
(mod 9) and P (9m) (mod 27) depend on the values of a and b mod 3. In fact,
we have
P (3m) ≡ 7 (mod 9), P (9m) ≡ 1 (mod 27) when b ≡ a (mod 3),
P (3m) ≡ 1 (mod 9), P (9m) ≡ 10 (mod 27) when b ≡ a+ 1 (mod 3),
P (3m) ≡ 4 (mod 9), P (9m) ≡ 19 (mod 27) when b ≡ a+ 2 (mod 3).

Now since mW (3m) =
(
P (3m)− 1

)
/3 and mW (9m) =

(
P (9m)− 1

)
/9, we have

mW (3m) ≡ 2 (mod 3),mW (9m) ≡ 0 (mod 3) when b ≡ a (mod 3),
mW (3m) ≡ 0 (mod 3),mW (9m) ≡ 1 (mod 3) when b ≡ a+ 1 (mod 3),
mW (3m) ≡ 1 (mod 3),mW (9m) ≡ 2 (mod 3) when b ≡ a+ 2 (mod 3).

With this last list, and observing that W (6) = 1, W (18) = 4727 ≡ 2 (mod 3), we
get

Theorem 4.2. Let m ≥ 2 be a squarefree integer with all prime factors congruent
to 2 (mod 3), and a and b be as in Corollary 4.1. Then

(a) W (3m) 6≡ W (9m) (mod 3). In particular, 3m and 9m cannot be simultane-
ously Wilson numbers.

(b) W (3m), with b ≡ a or b ≡ a+ 2 (mod 3), is never a Wilson number.
(c) W (9m), with b ≡ a+ 1 or b ≡ a+ 2 (mod 3), is never a Wilson number.

Finally in this section, we determine W (9p) (mod 9), where p is a prime, p ≡ 2
(mod 3). In fact, since we are interested in finding Wilson numbers, we may restrict
our attention to p ≡ 8 (mod 9) (since necessarily a = b = 0; see Theorem 4.2 (c))
or, which amounts to the same, p ≡ −1 (mod 18).

Theorem 4.3. Let p be a prime, p ≡ −1 (mod 18). Then

W (9p) ≡


0 (mod 9) if p ≡ 35 (mod 54),

3 (mod 9) if p ≡ 17 (mod 54),

6 (mod 9) if p ≡ −1 (mod 54).
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Proof. We have, with J := 3j + 1,

P (9p) =

3p−1∏
j=1

(j,3p)=1

j(3p+ j)(6p+ j)

=

p−1∏′

j=0

J(3p− J)(3p+ J)(6p− J)(6p+ J)(9p− J)

=

p−1∏′

j=0

{
[9pJ − J2][9p2 − J2][36p2 − J2]

}
,

where
∏′

indicates that the term belonging to j = (2p− 1)/3 is omitted from the
product. We now expand the last expression and use the facts that p ≡ −1 (mod 9)
and 27j3 ≡ 27j (mod 81). Then

P (9p) ≡
p−1∏′

j=0

{
45(3j + 1)4 − 9(3j + 1)5 − (3j + 1)6

}
≡

p−1∏′

j=0

{
35 + 9j + 27j2

}
(mod 81).

The complete product (i.e., including the term for j = (2p− 1)/3) is congruent to

35p + 35p−1
[
9
(p− 1)p

2
+ 27

(p− 1)p(2p− 1)

6

]
= 35p + 35p−19(p− 1)p2

≡ 35p−1(35− 18) = 17 · 35p−1 (mod 81)

since p ≡ −1 (mod 9). Now since 3518 ≡ 1 (mod 81), we obtain in all three cases
35p−1 ≡ 3516 ≡ −8 (mod 81), thus the product is congruent to −8 · 17 ≡ 26
(mod 81). Next we consider the omitted term for j = (2p− 1)/3 which turns out
to be 35 − 6p + 12p2 ≡ 26, −1, or 53 (mod 81) for p ≡ 8, −10, or −1 (mod 27),
respectively. Hence

P (9p) ≡


26/26 ≡ 1 (mod 81) for p ≡ 8 (mod 27),

26/(−1) ≡ 55 (mod 81) for p ≡ −10 (mod 27),

26/53 ≡ 28 (mod 81) for p ≡ −1 (mod 27).

With W (9p) =
(
P (9p)− 1

)
/9p ≡ (P (9p)− 1

)
/(−9) (mod 9) we finally obtain the

assertion.

An immediate consequence of the last two theorems is the following

Corollary 4.2. Let p be a prime, p ≡ 2 (mod 3). Then a necessary condition for
9p to be a Wilson number is that p ≡ 35 (mod 54).

5. Some congruences involving Fermat quotients

Proposition 2.1. exhibits a close connection between the generalized Wilson
quotients and the Euler quotients (which are in fact generalized Fermat quotients)
modulo composite integers m. In this section we will derive congruences connecting
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W (m) with Fermat quotients of prime moduli, and derive some easy consequences.
These proved to be particularly helpful in the search for Wilson numbers.

Theorem 5.1. Let p be an odd prime and m > 2 an integer not divisible by p.
Then

−mW (pm) ≡W (p)φ(m) +
∑
r|m

qp(r)
φ(m)

r − 1
(mod p),(5.1)

where the sum is taken over all primes r that divide m.

Proof. Let f(p, n) denote the product of all integers between 1 and pn that are not
divisible by p. Then for d | m, the product of the integers between 1 and pm that
are divisible by d and relatively prime to p is f(p,m/d)d(p−1)m/d. Hence Lemma
4.1 gives

P (pm) =
∏
d|m

(f(p,m/d)d(p−1)m/d)µ(d).(5.2)

First we note that f(p, n) ≡ P (p)n (mod p2); this follows from an argument similar
to that around (3.1). Therefore∏

d|m
f(p,m/d)µ(d) ≡

∏
d|m

P (p)µ(d)m/d = P (p)φ(m) (mod p2),(5.3)

by a well-known relation between the functions µ(n) and φ(n). Next we use the
identity ∏

d|m
dµ(d)m/d =

∏
r|m

r−φ(m)/(r−1),(5.4)

where the right-hand product is taken over all primes r dividing m. To show this,
we fix a prime divisor r of m and write m = rαm′, with (m′, r) = 1. Let N be the
highest power of r dividing the left-hand side of (5.4). Since µ(d) = 0 when r2 | d,
we have

N =
∑
d|m
r|d

µ(d)
m

d
=
∑
d|m

µ(d)
m

d
−
∑
d|m
r-d

µ(d)
m

d

= φ(m) − rα
∑
d|m′

µ(d)
m′

d

= φ(m) − rαφ(m′) = φ(m)
−1

r − 1
,

where the last equality follows from the basic properties of the φ-function. This
proves (5.4).

Now, (5.2)–(5.4) and the definitions of the Wilson and Fermat quotients give

P (pm) ≡ (−1 + pW (p))φ(m)
∏
r|m

(1 + pqp(r))
−φ(m)/(r−1) (mod p2).
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Using the fact that (1 + pqp(r))
−1 ≡ 1− pqp(r) (mod p2), we get

P (pm) ≡ (1− pW (p)φ(m))
∏
r|m

(
1− pqp(r)

φ(m)

r − 1

)

≡ 1− pW (p)φ(m)− p
∑
r|m

qp(r)
φ(m)

r − 1
(mod p2).

Subtracting 1 and dividing by −p, we obtain (5.1).

The following immediate consequences will be useful in the search for Wilson
numbers.

Corollary 5.1. Let p and r be two distinct odd primes. Then

(a) −rW (pr) ≡ (r − 1)W (p) + qp(r) (mod p);
(b) −2W (4p) ≡W (p) + qp(2) (mod p);
(c) −3W (9p) ≡ 2W (p) + qp(3) (mod p) (p 6= 3).

Corollary 5.2. (a) Let p ≡ 1 or 3 (mod 8). Then 4p is a Wilson number if and
only if qp(2) +W (p) ≡ 0 (mod p).

(b) Let p ≡ 35 (mod 54). Then 9p is a Wilson number if and only if qp(3) +
2W (p) ≡ 0 (mod p).

Proof. By Corollary 5.1, the “only if” is clear in both cases. On the other hand,
W (4p) ≡ 0 (mod 4) by Proposition 3.2(b) and W (9p) ≡ 0 (mod 9) by Theorem
4.3. This, combined with Corollary 5.1, proves the other direction in both cases.

Corollary 5.3. Let p, r, and s be distinct primes, p > 2. Then

−rsW (prs) ≡ (r − 1)(s− 1)W (p) + (s− 1)qp(r) + (r − 1)qp(s) (mod p).

6. Remarks on computation

In this last section we will make some remarks concerning computations or, to be
more specific, the search for further composite Wilson numbers. First we summarize
relevant results from Sections 3 and 4.

If 2 - m and 3 - m, then by Proposition 3.1 we know that if m is a Wilson number,
then the product m′ of all distinct prime factors of m is also a Wilson number.
Hence it suffices to consider squarefree numbers of this kind. By Corollary 3.1(b)
we need not consider primes if m ≤ 5× 108.

If 2 | m and m has two or more distinct odd prime divisors, then by Proposition
3.2(b) and Proposition 3.1 it suffices again to consider the product m′ of all distinct
prime factors of m.

If 2 | m and m has exactly one other prime factor, then by Corollary 3.1(c) and
Proposition 3.1 we may restrict our attention to m = 4p, p ≥ 5. (Note that by
Proposition 3.1 the cases m = 4 · 3 and m = 4 · 32 need to be considered separately;
but W (12) ≡ −4 (mod 12) and W (36) ≡ 16 (mod 36)). Now by Proposition
3.2(b), W (4p) ≡ 2 (mod 4) if p ≡ 5 or 7 (mod 8); hence we may restrict our
attention to the case m = 4p with p ≡ 1 or 3 (mod 8).

If 3 | m and m has a prime factor q ≡ 1 (mod 3), then by Proposition 3.2(c)
(2nd part) and Proposition 3.1 it suffices again to consider the squarefree number
m′, the product of all distinct prime divisors of m.

If 3 | m and all other prime factors of m are ≡ 2 (mod 3), then in addition to the
squarefree number of the preceding paragraph we must consider the number 9m′′,



WILSON QUOTIENTS FOR COMPOSITE MODULI 859

where m′′ is the product of all the other prime factors. But by Theorem 4.2 we may
restrict our attention to the cases where the number of prime divisors ≡ 2 (mod 9)
of m′′ is congruent (modulo 3) to the number of prime divisors ≡ 5 (mod 9) of m′′:

In summary, we need only check the following numbers m:

– squarefree numbers with two or more prime factors.
– numbers of the form 4p, where p ≥ 11 is a prime, p ≡ 1 or 3 (mod 8).
– numbers of the form 9m′′, where the prime factors of m′′ are all ≡ 2 (mod 3)

and the number of prime divisors ≡ 2 (mod 9) is congruent (mod 3) to the
number of prime divisors ≡ 5 (mod 9).

In the actual search, we found it advantageous to do the following separate
calculations.

1. All squarefree integers with at least two different prime factors, excluding
integers of the form 2p (which can never be a Wilson number), 3p, 5p, 7p, as well
as 6p, 10p, and 14p, where p is a prime.

The given squarefree number n is factored, and then the right-hand side of (5.1)
is evaluated, where the smallest odd prime factor of n is used as initial p. If this
expression is 6≡ 0 (mod p), n cannot be a Wilson number. However, if it is divisible
by p, then the next larger prime factor of n is used as new p, and so on, until
the expression in question is 6≡ 0 (mod p). If it is divisible by p for all odd prime
factors p of n, then n has to be a Wilson number (recall that W (2m) ≡ 0 (mod 2)
whenever m is composite).

Since the Wilson quotient W (p) is the most expensive part to compute, all values
of W (p) (mod p) for p < 105 were stored for easy look-up, while for p > 105, W (p)
(mod p) was computed using a program made available to us by Richard Crandall
who had also developed the underlying algorithm; for detailed descriptions, see [3]
or [4],

2. Numbers of the form 9m′′, with m′′ as defined earlier in this section. Excluded
from this calculation were those m′′ that are of the form p and 2p (p prime). The
mechanics of the calculation are similar to part 1.

3. All the remaining cases, namely numbers of the form 3p, 4p, 5p, 6p, 7p, 9p, 10p,
14p, and 18p, for primes p, were treated separately from cases 1 and 2. Here, W (p)
was computed only once and the value was used for all these cases, as described
below.

(a) First we consider the cases rp, with r ∈ {3, 5, 7}. We use Corollary 5.1(a)
with the roles of r and p interchanged, and we observe that W (3) = 1, W (5) = 0,
and W (7) ≡ 5 (mod 7). Also, qr(p) (mod r) depends on p (mod r2) and is easily
computed. (It is also easy to see that qr(p) (mod r) takes on each of the values
0, 1, . . . , r − 1 exactly r − 1 times as p traverses a reduced residue system modulo
r2. This follows, e.g., from the congruence

qr(ar + b) ≡ qr(b)− a

b
(mod r),

where p = ar + b, 1 ≤ b ≤ r − 1; see [9]). This leaves r − 1 residue classes modulo
r2 for p to be checked, namely those for which W (pr) ≡ 0 (mod r). These are
recorded in Table 2, along with the right-hand side of the corresponding congruence
of Corollary 5.1(a).
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Table 2. Small multiples of large primes

n p ≡ to compute (mod p)
3p 1, 5 (mod 9) 2W (p) + qp(3)
4p 1, 3 (mod 8) W (p) + qp(2)
5p 1, 7, 18, 24 (mod 25) 4W (p) + qp(5)
6p 1, 2 (mod 9) 2W (p) + 2qp(2) + qp(3)
7p 1, 2, 20, 33, 45, 46 (mod 49) 6W (p) + qp(7)
9p 8 (mod 27) 2W (p) + qp(3)
10p 1, 4, 8, 12 (mod 25) 4W (p) + 4qp(2) + qp(5)
14p 1, 18, 19, 30, 31, 48 (mod 49) 6W (p) + 6qp(2) + qp(7)
18p 5 (mod 9) 2W (p) + 2qp(2) + qp(3)

(b) The cases 2rp, with r ∈ {3, 5, 7} are treated similarly. Corollary 5.3 with
s = 2 and with the roles of p and r reversed gives

−2pW (2rp) ≡ (p− 1) (W (r) + qr(2)) + qr(p) (mod r).(6.1)

We note that q3(2) = 1, q5(2) = 3, and q7(2) ≡ 2 (mod 7), and we record in Table 2
the residue classes for p (mod r2) for which (6.1) is ≡ 0 (mod r), along with the
corresponding right-hand side of the congruence in Corollary 5.3.

(c) The cases 4p and 9p. These are dealt with in Corollary 5.2; they are also
summarized in Table 2.

(d) Finally we note that by Theorem 4.2(c), 18p cannot be a Wilson number
unless p ≡ 5 (mod 9). Also, Theorem 5.1 gives

−6W (18p) ≡ 2W (p) + 2qp(2) + qp(3) (mod p);

this provides the last entry of Table 2.
For each prime p occurring in the second column of Table 2, the expressions in

the third column of Table 2 were computed. We actually recorded all those cases
for which the expressions were less than 1000 in absolute value, in order to get some
output and opportunities to check the calculations.

As rp reached 5×108 (for r ∈ {3, 4, 5, 6, 7, 9, 10, 14, 18}), the corresponding rows
in Table 2 were removed from consideration, until for 108 < p < 1.25× 108, W (p)
needs to be computed only for p ≡ 1, 3 (mod 8) and p ≡ 1, 5 (mod 9), and for
1.25× 108 < p < 5/3× 108 we need W (p) only for p ≡ 1, 5 (mod 9).

The computations were done at Dalhousie University on a network of 8–10
SPARCstations of varying speeds. Cases 1 and 2 were quickly dealt with: One
processor was able to search an interval of length approximately 13 million (near
5×108) in 24 hours. Case 3, however, was substantially slower, due to the necessity
of computing W (p) for rather large primes p; near 108, the fastest machine took 24
hours to search through the relevant primes in an interval of length approximately
460,000.

To conclude, we mention that a rough heuristic argument suggests that the
expected number of Wilson numbers below a given limit N should be approximately
(6/π2) logN . Thus, for N = 5×108 we get 12.18, while exactly 12 Wilson numbers
(including the 3 Wilson primes) have been found. This argument is based on the
unproven assumption that the values of W (m) are uniformly distributed modulo
m, and on the well-known fact that the proportion of square-free numbers among
all positive integers is asymptotically 6/π2.
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