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EXCEPTIONAL UNITS IN A FAMILY OF

QUARTIC NUMBER FIELDS

G. NIKLASCH AND N.P. SMART

Abstract. We determine all exceptional units among the elements of cer-
tain groups of units in quartic number fields. These groups arise from a one-
parameter family of polynomials with two real roots.

1. Introduction

There has been much interest in exceptional units over recent years—partly for
their own sake, see for instance [2], [5], and [6], and partly because they arise when
solving diophantine equations of various classical types. For instance 2-term unit
equations arise in the algorithm of Tzanakis and de Weger for solving Thue and
Thue-Mahler equations, see [15] and [16], and in the work of Smart on solving dis-
criminant form equations, [13]. In recent years a number of authors have considered
solving parametrized families of diophantine equations, see [14], [7], [11] and [8]. For
any given number field the algorithm in [12] can be used in principle to determine
all the exceptional units within the field. Treating a parametric family of fields in
this way requires a method for controlling the fundamental units; however, it is
quite feasible to investigate exceptional units in a parametrized family of equation
orders, as we will show.

Up to isomorphism, only finitely many number fields of unit rank zero or one
contain exceptional units which do not come from a proper subfield, and Nagell
determined all of these in a series of papers in the late 1960s, [9]. In [10] the
first author suggested an approach for finding all exceptional units in parametrized
families of number fields of unit rank at least two. Here we shall discuss one such
family in detail, intending to provide an example on which the investigation of other
families can be modeled, as well as to illustrate the power of recent estimates for
linear forms in logarithms.

Recall that a unit ε of a commutative ring with 1 is exceptional if 1 − ε is also
a unit; in other words, if there exists a unit ε′ such that

ε+ ε′ = 1.

In our case, the underlying rings will be monogenic subrings R = Z[θ] of the rings of
integers OK of certain number fields K = Q(θ), and the units ε will be taken from
an explicitly presented subgroup of the group of units R∗, whereas ε′ will a priori
live in R∗. We can test whether ε is exceptional by checking whether the absolute
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norm |NK/Q(ε− 1)| equals 1, norms always being taken from K to Q. Specifically,
consider the family of polynomials

fa(x) = x4 + ax3 + x2 + ax− 1

where a ∈ Z>0. Note that these polynomials are invariant under the joint substitu-
tion (x, a) 7→ (−x,−a), so it is no loss of generality to exclude the values a < 0, and
that they are irreducible because their reductions modulo 2 and 3 are incompatible
with linear and with quadratic factors, respectively. The discriminant of fa is

−4a6 − 47a4 − 112a2 − 400 ,

hence always negative. Thus each fa has two real roots and a pair of complex roots.
Let θ denote any root of fa in abstracto and let R, K be as above, the dependence
on a being understood. The full unit group O∗

K is the direct product of {±1} with
a free abelian group of rank 2.

As explained in [10, section 4.5], our family is one of several for which η1 = θ−1

and η2 = θ2 + 1 are always units of R. Thus we have, for each a ≥ 1, the trivial
exceptional units, namely

θ2 + 1, −θ2, θ2/(1 + θ2) and their inverses.

Recall, e. g. from [6, section 2], that the group H of order 6 of fractional linear
transformations generated by ω 7→ 1/ω and ω 7→ 1−ω acts on the exceptional units
of any ring. Let G be the subgroup of units of O∗

K generated by {−1, η1, η2}. We
shall see shortly that it is of finite index in O∗

K when a ≥ 1. (This is not true when
a = 0, and this is one reason why we have excluded that case; it will be treated on
another occasion in the context of quartic fields of mixed signature with a quadratic
subfield.)

Our principal result is:

Theorem. For a ≥ 2, there are no nontrivial exceptional units in G. For a = 1,
there are only two nontrivial H-orbits of exceptional units, represented by η−1

1 +1 =
η1η

−1
2 and by η−1

1 η3
2.

Remark. For a = 1, and for many other values of a including all a < 4000, we have
checked that G = O∗

K . A number-geometric argument will show that at any rate
G = R∗, essentially because a nontrivial coset of G in R∗ would contain elements
whose absolute discriminants are smaller than 4a6. This argument depends on K
not having a quadratic subfield. We omit the details since we will not use this
anywhere.

Outline of this paper. After a short preparatory section exploiting the action
of H, our first substantial task will be to determine small intervals containing the
logarithms of the generating units (more precisely, of the absolute values of their
real and complex embeddings). This is easier when a is large, and we will often treat
the smallest values 1 ≤ a ≤ 5 separately. In section 4, we prove two inequalities
involving the exponents b1, b2 of θ = η−1

1 and η2 occurring in a putative nontrivial
exceptional unit from G. The “gap inequality” says that the exponents must be of
very disparate sizes and thus, since they are integers and (as we shall see) neither
of them is zero, one of them must be very large. This implies that our candidate
must have an embedding extremely close to 1, the “diophantine approximation
inequality”. Using the latter, we can then replace the crude first version of the gap
inequality with a sharp one. In section 5, we confront our inequalities with a recent
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lower bound on linear forms in two logarithms from [4], obtaining explicit upper
bounds on a and on the exponents bj . Section 6 is devoted to describing the (small)
amount of machine computation needed to exclude any nontrivial solutions in the
remaining range. The whole approach is based on ideas introduced by Thomas [14]
and refined by Mignotte [7].

Computer-aided formula manipulations and computations were performed by
the second author using LiDIA on a Silicon Graphics R5000 Workstation and,
independently, by the first author using PARI/GP 1.39.13 on an IntelP100 system
under Linux.

2. Preparatory steps

We keep the notations introduced above, and fix embeddings of K into C rep-
resenting the real and complex places as follows: The first sends θ to the real root
of fa between 0 and 1, the second to the real root between −a − 1 and −a, and
the third to the complex root of positive imaginary part. For elements α ∈ K and
k ∈ {1, 2, 3}, let α(k) denote the image of α under the k-th embedding.

Suppose that G contains a nontrivial exceptional unit ω. Since we are free to
replace ω by one of its images under H, we may assume that ω(1) ∈ ]1, 2[. Since

η
(1)
1 and η

(1)
2 are positive, we have the ansatz

ω = θb1ηb22 = η−b1
1 ηb22

with unknown integer exponents b1, b2 distinct from (0, 0) and (0, 1).
The importance of this step lies in the fact that it allows us to work with the

linear form

Λ1 = logω(1) = b2 log η
(1)
2 − b1 log η

(1)
1(1)

in two logarithms of real algebraic numbers, instead of with a linear form in three
logarithms of complex algebraic numbers, the third being a logarithm πi of −1, as
would have been the case if we had chosen an ω close to 1 at the complex place. For
linear forms in two logarithms like Λ1, the lower bounds offered by transcendence
theory are considerably sharper than for three or more logarithms. As we shall see,
moving ω into the vicinity of 1 at the first real place is sufficient to keep it away
from 1 at the other two places. Note that this does not generalize to fields of larger
unit rank, but it is always possible, using H, to move an exceptional unit away
from 1 (more precisely, to move it out of the subset |z − 1| < 1, <z > 1/2 of C) at
two prescribed places.

Note for future reference the a priori bounds

0 < Λ1 < log 2 .(2)

Lemma 1. There are no nontrivial solutions with b1 = 0.

Proof. We need rough estimates for each of the embeddings of η2; they give a taste
of what will follow in the next section.

When a = 1, we find 1.269 < η
(1)
2 < 1.270 and η

(2)
2 > 2.665, whereas |η(3)

2 | < 0.55.

Thus (ηb22 − 1)(1) > 0.610 for b2 ≥ 2, as well as |(ηb22 − 1)(3)| > 0.6975 and so

NK/Q(ηb22 − 1) > 1.81 if b2 ≥ 2. Hence the lemma follows in the case a = 1.
Now suppose a > 1. The minimal polynomial of η2 is

ga(x) = x4 − (a2+2)x3 + (a2−1)x2 + 2x+ 1 .
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Its value at x = a2 + 1 is

−2a4 − 2a2 + 1

which is negative for all a ≥ 1, hence η
(2)
2 > a2 + 1. Furthermore, ga(1 + a−2/2) is

positive for a ≥ 2, showing that η
(1)
2 − 1 > 1/2a2. Since η2 is a unit,

|η(3)
2 |2 = (η

(1)
2 η

(2)
2 )−1 < 1/a2 ≤ 1/4

when a ≥ 2, and we conclude in this case that for all integers b2 ≥ 2,

NK/Q(ηb22 − 1) = (ηb22 − 1)(1) · (ηb22 − 1)(2) · |(ηb22 − 1)(3)|2

> ((1/a2 + 1)b2 − 1) · ((a2 + 1)b2 − 1) · (3/4)2

≥ (9/16) a2b2−2 > 1 .

Hence ηb22 − 1 does not have norm one and so ηb22 can never be an exceptional
unit.

3. Brackets for the logarithms of the generator units

Using a formal Newton-Raphson iteration, it is easy to obtain series expansions
in powers of a−1 for the real roots of fa and of ga, and then, by splitting them into
a dominant factor and a series starting with 1, to deduce series expansions of their
logarithms. The following lemma shows that initial pieces of the series belonging to
the first real place are well suited for bounding the corresponding logarithms from
both sides.

Lemma 2. Consider the two series expansions

S1 = 2a−2 − 7a−4 +
113

3
a−6 − 485

2
a−8 +

8612

5
a−10 − 78095

6
a−12 +

718577

7
a−14 ,

S2 = a−2 − 9

2
a−4 +

79

3
a−6 − 705

4
a−8 +

6396

5
a−10 − 19597

2
a−12 +

545917

7
a−14 .

For 0 ≤ k ≤ 7 and j ∈ {1, 2}, let Sk
j denote the result of truncating Sj after the

term proportional to a−2k; in particular, S0
j = 0. Then, for all a ≥ 3,

sgn
(
log η(1)

1 − (log a + Sk
1 )
)

= sgn
(
log η(1)

2 − Sk
2

)
= (−1)k .

Proof. It is easily checked that 0 ≤ Sk
j < 1 for all a, j, k under consideration.

Therefore the value of exp(−Sk
j ) is sandwiched between every pair of successive

partial sums Ek,n
j =

∑n
`=0 (−Sk

j )`/`! of the exponential series. To prove the lemma,

compute Ek,k+1
j as a Laurent polynomial (rational linear combination of finitely

many powers of a), substitute (aEk,k+1
1 )−1 into fa and Ek,k+1

2 into ga, and examine
the signs of the resulting expressions, which turn out to be the right ones for
all a ≥ 3.

(A computer algebra package is indispensable here, and instead of substituting
rational functions of a into the polynomials, one should substitute their numerators
and denominators into the associated homogeneous binary forms—this can speed up
computation times from many hours to a few seconds. Even so, this step probably
requires more machine time than all the diophantine computations of section 6.)
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Similar but simpler reasoning, still assuming a ≥ 3, establishes the brackets

− log a− a−4 < log |η(2)
1 | < − log a ,(3)

2 log a < log η
(2)
2 < 2 log a + 2a−2 .(4)

Combining this with S2
1 and S1

1 on the one hand, and with S0
2 and S1

2 on the
other, we deduce from |NK/Q(ηj)| = 1 that

− 2a−2 < log |η(3)
1 |2 < −2a−2 + 8a−4 ,(5)

− 2 log a− 3a−2 < log |η(3)
2 |2 < −2 log a .(6)

We supplement the preceding results with numerical intervals enclosing the six
logarithms for small values of a. Although 3 ≤ a ≤ 5 are handled by the above, it
will be profitable to have sharper estimates for this range. The shorthand notation
for intervals should be self-explaining. For later use we also record brackets for

β = log η
(1)
1 /log η

(1)
2 .

a 1 2 3 4 5

log η
(1)
1 +0.6562560

59 +0.9920649
8 +1.2651388

7 +1.4905674
3 +1.6801636

5

log η
(1)
2 +0.2383420

19 +0.1288331
0 +0.07662480

79 +0.04949015
4 +0.03413463

2

β +2.7534228
11 +7.700395

87 +16.51083
2 +30.11848

6 +49.22169
7

log |η(2)
1 | −0.2551450

1 −0.7367905
6 −1.1093367

8 −1.3899259
60 −1.6109683

4

log η
(2)
2 +0.9804946

5 +1.6798662
1 +2.3219098

7 +2.8400508
7 +3.2610399

8

log |η(3)
1 | −0.2005554

5 −0.1276371
2 −0.07790099

100 −0.05032070
1 −0.03459760

1

log |η(3)
2 | −0.6094182

3 −0.9043496
7 −1.1992672

3 −1.4447704
5 −1.6475872

3

(7)

Lemma 3. The units η1 and η2 are multiplicatively independent.

Proof. The unit subgroup regulator of G can be expressed in several ways as

the absolute value of a determinant of four logarithms from among log |η(1,2)
j |

and log |η(3)
j |2. It suffices to show that any one of these determinants is nonzero,

which is easy using (3)–(6) for a ≥ 3 and the entries of the preceding table for
a ∈ {1, 2}.

In what follows, notations of the form ci(a) with i = 1, 2, . . . will always denote
positive real-valued functions of a.

Recall that the absolute logarithmic height h(α) of a nonzero algebraic integer α
is the sum over max{0, log |α(k)|} divided by the degree d of Q(α) over Q, where
α(k) ranges over all d embeddings of α into C. Evaluating this for α = η1 and
α = η2 in turn gives, using (3)–(6) and again log a + S1

1 and S1
2 as upper bounds

for the log η
(1)
j ,

Lemma 4. For a ≥ 6, let c1(a) = log a + 2a−2. The absolute logarithmic heights
of η1 and η2 satisfy

4h(η1) < c1(a) ,

4h(η2) < 2c1(a) .
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The second bound has been chosen slightly weaker than optimal in order to
simplify our formulas in section 5. This makes little difference for a ≥ 6. For
smaller a, we compute better values from (7):

a 1 2 3 4 5

4h(η1) < 0.6563 0.9921 1.2652 1.4906 1.6802

4h(η2) < 1.2189 1.8087 2.3986 2.8896 3.2952

4. The gap and diophantine approximation inequalities

The fact that η2 is an exceptional unit of fairly large height, and thus fairly
close to 1 at the first real place, whereas −η−2

1 is the complementary unit 1 − η2

and therefore fairly close to zero at that place, is responsible for the very disparate

sizes of the logarithms of η
(1)
1 and η

(1)
2 . These in turn force the exponents involved

in any nontrivial solutions to be rather large. More precisely, the trivial bounds
on Λ1 from (2) suffice to show that the rational number b2/b1, which “tries to”

approximate β = log η
(1)
1 /log η

(1)
2 , must also be very large, indeed of size exponential

in the height of the trivial solutions. Since b1 is a nonzero integer by Lemma 1, |b2|
must be very large indeed. We call this a “gap inequality”, alluding to far more
general “gap principles” of which this is a special and explicit instance.

Lemma 5 (Gap Inequality, preliminary form). If b1, b2 come neither from a triv-
ial solution nor from the known nontrivial ones with a = 1,

|b2| ≥ b2
b1

> c2(a)

where for a ≥ 6,

c2(a) = a2 log(a/2) > 39.550

and for smaller a we use the values

a 1 2 3 4 5

c2(a) 1.2993 2.3201 7.4648 16.112 28.915

derived from (7). Furthermore, |b2| ≥ 3 even for a = 1 apart from the known
nontrivial solution.

Proof. First notice that if a = 1 and |b1| ≤ 1, then from (2) we have |b2| ≤ 5, and
if |b2| ≤ 2, then again from (2) we have |b1| ≤ 1. It is easy to determine that the
only exceptional units satisfying these inequalities are the trivial and the known
non-trivial ones. Hence we shall now assume that either a ≥ 2 or a = 1 and |b1| > 1
and |b2| > 2.

Supposing first that b1 > 0, we have

b2
b1

=
Λ1

b1 log η
(1)
2

+ β > β

since Λ1 > 0 and log η
(1)
2 > 0. For a < 6 we notice that β is larger than the values

in the table above. For a ≥ 6 we use Lemma 2 with S0
1 and S1

2 to deduce

β =
log η

(1)
1

log η
(1)
2

>
log a

a−2
> c2(a)

as required.
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Now suppose that b1 < 0. Then

−b2
b1

=
Λ1

|b1| log η
(1)
2

− β <
log 2

|b1| log η
(1)
2

− β ≤ log 2

log η
(1)
2

− β

since Λ1 ≤ log 2. Hence
b2
b1

> β − log 2

log η
(1)
2

.

For all a ≥ 6 we then find, again using Lemma 2, that

b2
b1

> (log η
(1)
1 − log 2)/log η

(1)
2 >

log a− log 2

a−2
= c2(a).

When 2 ≤ a ≤ 5 we find that (log η
(1)
1 − log 2)/log η

(1)
2 is always greater than

or equal to the value in the table above. Hence we are only left with the case
a = 1, but our earlier assumptions |b1| > 1 and |b2| > 2 for this case give b2

b1
>

β − log 2/(2 log η
(1)
2 ) > 1.2993.

One consequence of this inequality is that b1 and b2 must have the same sign.
This gives us sufficient control at the other two archimedean places to show that
one of them will contribute a very large factor to the absolute norm of ω − 1 and
the other will contribute a factor not much less than unity.

Lemma 6 (Diophantine Approximation Inequality). Any further exceptional unit
would have to satisfy

log Λ1 < −c3(a) |b2|
where c3(a) = 1.9992 loga for a ≥ 6, implying log Λ1 < −143, and the values for
small a are found in the following table:

a 1 2 3 4 5

c3(a) 0.6954 1.6232 2.3218 2.8399 3.2609

Λ1 < 0.1242 0.0077 10−8 10−20 10−41

Proof. In the following estimates we will use the elementary facts that for fixed
positive c and positive x, the expression x−1 log(1 − exp(−cx)) is a monotonically
increasing function of x and satisfies

0 >
log(1− exp(−cx))

x
>

−1

x (exp(cx)− 1)
.

The proof is split into two cases depending on whether b1, b2 > 0 or b1, b2 < 0.
When b1, b2 > 0, we have

Λ2 = log |ω(2)| = b2 log η
(2)
2 − b1 log |η(2)

1 | > b2 log η
(2)
2

and

log |ω(2) − 1| ≥ log(exp Λ2 − 1) = Λ2 + log(1 − exp(−Λ2))

> b2 log η
(2)
2 − 1

exp Λ2 − 1

≥ b2

(
log η

(2)
2 − 1

b2 ((η
(2)
2 )b2 − 1)

)
.
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For the third conjugate we find, using Lemma 5 to bound b1/b2,

Λ3 = log |ω(3)| = b2 log |η(3)
2 | − b1 log |η(3)

1 |

= −b2
(∣∣∣log |η(3)

2 |
∣∣∣− b1

b2

∣∣∣log |η(3)
1 |
∣∣∣)

≤ −b2
(∣∣∣log |η(3)

2 |
∣∣∣− | log |η(3)

1 ||
c2(a)

)
= −b2F (a),

say, and so

log |ω(3) − 1|2 ≥ 2 log(1 − expΛ3) > b2
−2

b2 (exp(−Λ3)− 1)

≥ b2
−2

b2 (exp(b2F (a))− 1)
.

Hence

log Λ1 < log(exp Λ1 − 1) = log(ω(1) − 1) = − log |ω(2) − 1| − log |ω(3) − 1|2

≤ −b2
(

log η
(2)
2 − 1

b2 ((η
(2)
2 )b2 − 1)

− 2

b2 (exp(b2F (a))− 1)

)
.

The proof for this case is concluded by using the lower bound b2 ≥ c2(a) from

Lemma 5 and using (3)–(6) to control the log |η(k)
j |’s and thus F (a).

When b1, b2 < 0, we have

Λ2 = log |ω(2)| ≤ −|b2| log η
(2)
2

and

log |ω(2) − 1| = log(1− exp(Λ2)) >
−1

exp(−Λ2)− 1

>
−1

η
(2)
2

|b2| − 1
.

The lower bound on log |ω(3) − 1| again involves the expression F (a). We have

Λ3 ≥ |b2|
∣∣∣log |η(3)

2 |
∣∣∣−

∣∣∣log |η(3)
1 |
∣∣∣

c2(a)

 ,

and therefore

log |ω(3) − 1|2 ≥ 2 log(exp Λ3 − 1) = 2Λ3 + 2 log(1− exp(−Λ3))

> 2

(
Λ3 − 1

exp Λ3 − 1

)
.

The second expression in the parentheses is nothing but (exp(−Λ′
3)−1)−1 where Λ′

3

arises from Λ3 by changing the signs of b1 and of b2, and we have already obtained
a lower bound for the denominator while considering the previous case. Thus

log |ω(3) − 1|2 ≥ 2|b2|
∣∣∣log |η(3)

2 |
∣∣∣−

∣∣∣log |η(3)
1 |
∣∣∣

c2(a)
− 1

|b2| (exp(|b2|F (a))− 1)

 .

The assertion now follows from log Λ1 < − log |ω(2)−1|−log |ω(3)−1|2 as before.
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When we proved the first version of the gap inequality, we had used Λ1 < log 2
to bound |b2/b1 − β|, obtaining essentially (log 2)/a2. We can now replace log 2
with the upper bound on Λ1 which results from substituting the old lower bounds
for |b2| into the approximation inequality.

Lemma 7 (Gap Inequality, sharp form). If b1, b2 come neither from a trivial so-
lution nor from the obvious nontrivial ones for a = 1,

|b2| ≥ b2
b1

> c4(a)

where for a ≥ 6,

c4(a) = (a2 + 4) log a+ 2 > 73.67

and for smaller a we use the values

a 1 2 3 4 5

c4(a) 2.5797 7.6803 16.510 30.118 49.221 .

Proof. The generic case (a ≥ 6) is, using S2
1 and S3

2 from Lemma 2,

b2
b1

>
log η

(1)
1 − Λ1/|b2|
log η

(1)
2

> a2 log a + 2a−2 − 7a−4 − 10−60

1− (9/2) a−2 + (79/3) a−4

> (a2 + 4) log a+ 2 ,

and we leave the calculations for the small parameter values to the reader.

This procedure of using the bounds on Λ1 and the gap inequality to sharpen
each other could be iterated yet again, but the profit would be marginal.

5. Bounding a linear form in two logarithms

We shall now apply a lower bound tailored to linear forms in the logarithms of
two multiplicatively independent, positive real algebraic numbers α1 and α2, due to
Laurent, Mignotte and Nesterenko [4], where one can also find much more general
results. We paraphrase their Corollaire 2 almost verbatim, except for the following
three modifications: The numerical coefficients have been replaced with those given
in the last entry of Tableau 2 of [4, section 8], the equality relating the quantity
b′ to b1 and b2 has been weakened to an inequality for ease of use, and we write
|bj| instead of assuming that the bj are positive. (They are still supposed to be
nonzero.) The form Λ1 is as we had defined it in (1) above, and h(ηj) denotes the
absolute logarithmic height as in our Lemma 4. Let

D = [Q(α1, α2) : Q] ,

and let A1, A2 ∈ R denote two positive real numbers such that

D logAj ≥ max {Dh(αj), | logαj |, 1}
and b′ a positive number satisfying

b′ ≥ |b1|
D logA2

+
|b2|

D logA1
.
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Theorem (Laurent, Mignotte and Nesterenko). Under the above conditions, we
have

log |Λ1| ≥ −22.13D4

(
max

{
log b′ + 0.71,

30

D
,

1

2

})2

logA1 logA2 .

We will take αj = ηj , thus D = 4, and the 1
2 inside the maximum is of no

significance. The middle term of the maximum is dominated by the first when
log b′ ≥ 6.79; the upper bound on log b′ which we shall derive using the first term
will be larger than that, so we may also drop the middle term.

Using Lemma 4, we see that D logA1 can be taken to be log a+ 2a−2 for a ≥ 6
(all of the height comes from the logarithm under consideration), and for D logA2

we may take twice this amount. Then we set

b′ = c5(a) |b2|
where c5(a) = 1.0068/loga; that this satisfies the required inequality follows at
once from Lemma 7. For 1 ≤ a ≤ 5, we use the tables after Lemma 4 and in
Lemma 7 to justify the following choices for c5(a), taking the opportunity to list
also the numerical coefficients c6(a) = 22.13D2 ·D logA1 ·D logA2:

a 1 2 3 4 5

D logA1 1 1 1.2652 1.4906 1.6802

D logA2 1.2189 1.8087 2.3986 2.8896 3.2952

c5(a) 1.3181 1.0720 0.8157 0.6824 0.6014

c6(a) 431.59 640.43 1074.6 1525.2 1960.4

(8)

The estimate now reads

log Λ1 ≥
{
−708.16 (loga+ 2a−2)2 (log b′ + 0.71)

2
, a ≥ 6 ,

−c6(a) (log b′ + 0.71)
2
, always.

(9)

We shall apply this twice, first to obtain an upper bound on a and then to
bound |b2| for any fixed value of a.

Proposition 1. Further solutions can only exist when a ≤ 215.

Proof. Assuming a ≥ 6, then combining (9) with the approximation inequality from
Lemma 6, we obtain

−c6(a) (log b′ + 0.71)
2 ≤ log Λ1 < −c3(a)|b2|.

We now substitute b′ = c5(a) |b2| into this last equation, obtaining

c6(a) (log(c5(a) |b2|) + 0.71)
2 − c3(a) |b2| > 0 .

For fixed a, the left-hand side is a monotonically decreasing function of |b2| provided
that a ≥ 83 and that |b2| satisfies the gap inequality |b2| > c4(a) |b1| ≥ c4(a) or its
weaker consequence |b2| > a2 log a. Note that these conditions ensure that b′ > 6.79
by a wide margin. It is therefore sufficient to show that the left-hand side with |b2|
replaced by a2 log a becomes negative when a is large enough. The expression in
question, with log 1.0068 + 0.71 replaced by the larger quantity 0.72, and then
divided by (log a)4, reads

708.16

(
1 +

2

a2 log a

)2(
2 +

0.72

log a

)2

− 1.9992
a2

(log a)2
,
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which is a monotonically decreasing function of a for a ≥ 3, and becomes negative
at a = 216. (Even the full strength of the gap inequality does not yield a smaller
result here, but it will help in the next section.)

The second application is even simpler.

Proposition 2. Nontrivial solutions, other than the known ones with a = 1, can
occur only when |b2| ≤ c7(a), where c7(a) = 47348.1 loga for a ≥ 11 and its values
for smaller a are as follows:

a 1 2 3 4 5

c7(a) 96396 53750 61579 71014 79265

a 6 7 8 9 10

c7(a) 89837 95285 100398 105125 109503

Proof. Recall that we need to assume b′ > exp 6.79 > 888.9 before we can apply (9).
Eliminate b2 in favour of b′ from the combination of (9) with the approximation
inequality and divide by (log a)2 to obtain

708.16

(
1 +

2

a2 log a

)2

(log b′ + 0.71)2 − 1.9992

1.0068
b′ > 0 .

The product of the first two factors on the left–hand side is less than

a 6 7 8 9 10 ≥ 11

752.76 738.18 729.61 724.17 720.52 717.96

The left-hand side is a monotonically decreasing function of b′ when a is fixed and
log b′ > 6.79 (in fact already for rather smaller b′), and it becomes negative when
b′ exceeds

a 6 7 8 9 10 ≥ 11

50480 49300 48610 48170 47880 47670 .(10)

Hence (for instance) if a ≥ 11 then |b2| ≤ 47670/c5(a) ≤ 47348.1 loga.
This leaves us with the small values of a, for which the necessary condition reads:

Either b′ < 889 or

c6(a) (log b′ + 0.71)2 − c3(a)

c5(a)
b′ > 0 .

Checking monotonicity of the left-hand side each time (valid for b′ ≥ 17200 in the
worst case a = 1, earlier for 2 ≤ a ≤ 5) and looking for the change of sign, we find
the following upper limits on b′:

a 1 2 3 4 5

127060 57620 50230 48460 47670
(11)

(The apparent non-monotonicity of the results between a = 5 and a = 6 is spurious;
it is mainly caused by the fact that our generic D logA2 is not very sharp for a = 6.)
Rewriting (11) and (10) in terms of |b2|, the result follows.
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6. Closing the gap

Even more interesting than the upper bounds on |b2| are the resulting upper
bounds on |b1|, obtained by combining Proposition 2 with the gap inequality of
Lemma 7.

|b1| < |b2|
c4(a)

<
47348.1 loga

c4(a)
if a ≥ 11.

Two immediate consequences are that for 154 ≤ a ≤ 215, only |b1| = 1 is possible,
and for a ≥ 66 the exponent b1 is restricted to |b1| ≤ 10.

Since Lemma 6 imposes Λ1 < exp(−143) on any nontrivial solutions with a ≥ 6,
which implies |β − b2/b1| < exp(−132) < 10−57 for 6 ≤ a ≤ 215, we only need
to check that β is not extremely close to a rational number of denominator not
exceeding 10 for 66 ≤ a ≤ 125, to half an integer for 126 ≤ a ≤ 153, and to an
integer for 154 ≤ a ≤ 215 in order to exclude nontrivial solutions in this entire range.
Instead of inspecting an approximate value of β, one should of course work with
upper and lower bounds. Such bounds are readily obtained from Lemma 2 using
S3

1 , S4
1 , S3

2 and S4
2 in appropriate combinations. Ideally these bounds should be

computed with directed rounding in every arithmetic operation, but if the individual
results are just rounded correctly to the nearest representable machine number, one
can estimate the maximal accumulated error and then add a suitable quantity to
the upper bound and subtract it from the lower bound. No candidates for solutions
are found here.

(Ten-digit pocket-calculator accuracy is almost sufficient to cover this range;
with more significant digits available, like the default PARI/GP precision of about
28 decimal places, one can exploit the shortcut of testing whether 2520β is close to
an integer for 66 ≤ a ≤ 125.)

For a ≤ 65, testing individual denominator candidates becomes unattractive.
Instead, we invoke the ordinary continued fraction expansion of β. Note first that
Lemmas 2, 6 and 7 together imply

|β − b2/b1| < 1

2|b1|2 ·
2a2|b1|

(1− 9
2a

−2) exp(c3(a) a2 log a |b1|)

when a ≥ 3; the second factor is less than 4|b1|/109|b1| and thus far smaller than 1.
Therefore b2/b1 is a convergent of the continued fraction expansion of β. If b1 and b2
had a common factor b0 > 1, then our putative nontrivial exceptional unit, ω, would
be of the form ωb0

0 with a unit ω0 ∈ G, and ω0 − 1, which divides ω − 1, would
also be a unit—in other words, ω0 itself would have to be a nontrivial solution.
Therefore it is no loss of generality to assume that b1 and b2 are coprime. But then
|b2| and |b1| itself are the numerator pn and the denominator qn of a continued
fraction convergent of β.

This argument remains valid for a = 2 and also for a = 1 when |b1| > 1, except
for the elementary verification that proper powers of the known nontrivial solutions
for a = 1 do not produce any further solutions, when the factor S2

2 coming from

the log η
(1)
2 in the denominator is replaced with a tight numerical estimate for that

logarithm, and a2 log a under the exponential with the explicit values c4(1) and
c4(2).
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Moreover, when |β − b2/b1| = |β − pn/qn| is smaller than 1/(2q2
n) we have an

explicit lower bound for the next partial denominator an+1:

an+1 + 2 >

(
q2
n

∣∣∣∣β − pn
qn

∣∣∣∣)−1

.

(This is an easy consequence of Theorems 163 and 171 of [3].) It implies an+1 > 108

for any nontrivial solution with a ≥ 3, and an+1 > 104 for any with a = 2. For
a = 1, it implies an+1 ≥ 37 when |b1| ≥ 4 and an+1 > 180 for |b1| > 4; we won’t
need to consider |b1| ∈ {2, 3} since the sequence of denominators of convergents
begins 1, 1, 4, 18, . . . in this case.

It remains to verify for each 1 ≤ a ≤ 65 that no partial denominators of the
indicated size occur in the expansion of β before the denominators of the conver-
gents exceed the upper bound on |b1|. The expansions should be computed using
Lehmer’s technique [1, Algorithm 1.3.13] of simultaneously expanding an upper and
a lower bound for the true value of β. The partial denominators in common to both
expansions are then known to be correct, and the first discordant pair of partial
denominators still yields rigorous bounds for the correct value. As before, suitable
bounds for β can be obtained from Lemma 2 when a is not too small. The same
truncation orders a−6 and a−8 as used earlier are sufficient for a ≥ 50. For a ≤ 49,
the truncated series S3

1 and S3
2 should be replaced with S5

1 and S5
2 ; for a ≤ 39, we

replace S4
1 and S4

2 with S6
1 and S6

2 , and for 11 ≤ a ≤ 16, we invoke the full power
of S7

1 and S7
2 . Treating the entire range 11 ≤ a ≤ 215 took less than 1.8 seconds

using PARI/GP.—For a ≤ 10, we calculate η
(1)
1 to higher precision using a numeric

Newton iteration, and compute β from the result with adequate safety margins on
either side.

The proof of the Theorem is now completed by combining the two propositions
with the nonexistence of good diophantine approximations as established in this
section.
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