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FACTORING ELEMENTARY GROUPS OF
PRIME CUBE ORDER INTO SUBSETS

SÁNDOR SZABÓ AND COBURN WARD

Abstract. Let p be a prime and let G be the 3-fold direct product of the
cyclic group of order p. Rédei conjectured if G is the direct product of subsets
A and B, each of which contains the identity element of G, then either A or
B does not generate all of G. The paper verifies Rédei’s conjecture for p ≤ 11.

1. Introduction

Let G be a finite abelian group written multiplicatively with identity e. Let A, B
and C denote subsets of G. Assume that each element c of C is uniquely expressible
in the form c = ab, where a ∈ A, b ∈ B and that each product ab, a ∈ A, b ∈ B
belongs to C. Thus C is a direct product of A and B; we alternatively express
this by saying that the equation C = AB is a factorization of C. The subsets A
and B are called factors. Any subset of G is said to be normed if it contains the
identity e. A factorization C = AB is also called normed if both A and B are
normed subsets. We extend the definition of “factorization” in the obvious way to
more than two factors: the equation C = A1A2 · · ·Ak is a factorization when each
c ∈ C is expressible in exactly one way as a product of k elements a1a2 · · · ak where
ai ∈ Ai , 1 ≤ i ≤ k.

Each finite abelian group is a direct product of cyclic groups of prime power
orders, and this factoring is unique apart from the order of the factors. If G is a
direct product of cyclic groups of prime power orders t1, . . . , tn respectively, then
the non-ordered n-tuple (t1, . . . , tn) is called the type of the group G. We will
let 〈A〉 denote the smallest subgroup of G containing the subset A, that is, the
generatum or span of A.

Rédei [3] proved that for any factorization of a finite abelian group into two or
more normed subsets of prime cardinality, at least one of the factors must be a
subgroup. The following special case plays an important part of the proof and has
interesting geometric and combinatorial applications. (For further details see [2]
and [4].) If G is a group of type (p, p), where p is a prime, and G = AB is a normed
factorization, then either A or B is a subgroup of G.

Rédei formulated a conjecture which appears as Problem 5 in the Open Problems
section of his book [4]:

Conjecture. Let G be a group of type (p, p, p) where p is prime. If G = AB is a
normed factorization, then either 〈A〉 6= G or 〈B〉 6= G.
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In this paper we describe how Latin squares can be used to investigate Rédei’s
conjecture. With this tool we verify the conjecture for p ≤ 11.

If Rédei’s conjecture holds, then we can easily describe all normed factorizations
G = AB of groups of type (p, p, p) where p is prime. The product of the cardinalities
of A and B must equal p3. If |A| = 1 or |A| = p3, then the conjecture trivially
holds. Thus we may assume without loss of generality that |A| = p and |B| = p2.
The conjecture implies that either 〈A〉 6= G or 〈B〉 6= G. If 〈A〉 is of order p, then
〈A〉 = A, and, therefore, B must be a complete set of representatives modulo A
which contains the identity element. Similarly if 〈B〉 is of order p2, then A must
be a complete set of representatives modulo B which contains the identity element.
The last case to consider is when 〈A〉 is of order p2. Let H = 〈A〉. Let z ∈ G\H .
Since no power of z is in H , the collection {eH, zH, z2H, · · · , zp−1H} is a partition
of G. Set Bi = ziH ∩B for each i, 0 ≤ i ≤ p− 1. The sets Bi partition B.

We will show that A(z−iBi) = H is a factorization. Clearly

A(z−iBi) = A(H ∩ z−iB) ⊆ HH = H.

To show the reverse inclusion, suppose that h ∈ H . Since G = AB, zih = ab
for some a ∈ A and b ∈ B. Now z−ib = a−1h ∈ H and, hence, h = a(z−ib) ∈
A(H ∩ z−iB) = A(z−iBi) which implies that H ⊆ A(z−iBi). The product ABi is
direct and so A(z−iBi) is a factorization of H .

According to Rédei’s theorem, either A is a subgroup of G or z−iBi is a coset of
a subgroup of H . (Keep in mind that the factor z−iBi is not necessarily normed.)
Since A is not a subgroup, Ki = z−iBi is a coset modulo a subgroup of H .
We conclude that for any z ∈ G\H , there are sets K0, K1, · · · , Kp−1 such that
AK0, AK1, · · · , AKp−1 are factorizations of H and {z0K0, z

1K1, · · · , zp−1Kp−1} is
a partition of B and each Ki is a coset of a subgroup of H .

A factorization G = AB is called quasi-periodic if one of the factors, say B,
can be partitioned into r > 1 subsets B1, . . . , Br and if there is a subgroup H =
{h1, . . . , hr} of G such that ABi = AB1hi for each i, 1 ≤ i ≤ r. This definition
comes from G. Hajós [1] who conjectured that each factorization of a finite abelian
group is quasi-periodic. Sands [5] gave a counterexample to Hajós’ conjecture but
also pointed out that whenever either 〈A〉 or 〈B〉 is a proper direct factor of G,
the factorization G = AB must be quasi-periodic. In a group of type (p, p, p) each
subgroup is a direct factor, thus for these groups, Rédei’s conjecture implies Hajós’
conjecture.

2. Replaceable and reducible factors

Let A and A′ be subsets of the finite abelian group G. We say that the factor A
can be replaced by A′ in the factorization G = AB, if A′B is also a factorization
of G. If A can be replaced by A′ in every factorization of G in which A is a factor,
then we say that A is replaceable by A′ in G.

We will use two results on replaceable factors. The first one is that for each a ∈ A,
the normed factor A is replaceable by the normed factor a−1A. This is because
a−1G = G, and so if G = AB is a normed factorization, then G = (a−1A)B is one
as well.

The next result on replaceable factors is proved by Rédei [3]; the proof exploits
group characters and group rings. Let p be a prime and let G be a finite abelian
p-group. Consider a normed factorization G = AB such that |A| = p. Denote the
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elements of A by {e, a1, a2, . . . , ap−1}. Rédei’s result is that factor A is replaceable
by 〈ai〉 for each i, 1 ≤ i ≤ p− 1.

A normed subset B of a finite abelian group is said to be reducible if there
are proper subsets C,D of B such that B = CD is a normed factorization. In a
counterexample to Rédei’s conjecture, the factors must be irreducible. To prove
this, consider the factorization G = AB, where |A| = p and |B| = p2. Clearly A is
irreducible. Assume that B can be factored into CD, where |C| = |D| = p. From
the factorization G = ACD, it follows (from Rédei’s theorem) that at least one of
these factors is a subgroup of G. If this is A, then 〈A〉 6= G. Thus we may assume
that either C or D is a subgroup of G. For the sake of concreteness, assume that
D is a subgroup of G. From the factorization G = ACD, we get the factorization
G/D =

(
(AD)/D

) ·((CD)/D
)

of the factor group G/D. Again by Rédei’s theorem,
one of these factors is a subgroup of G/D. Hence, either AD or CD is a subgroup
of G, and so either 〈A〉 6= G or 〈B〉 6= G.

3. Latin squares

Henceforth we will let G = AB be a normed factorization of a group of type
(p, p, p) where p is prime. We will suppose that |A| = p and |B| = p2 and we will
assume that 〈A〉 = G. As a consequence, there are elements x, y, z of A such that
〈x, y, z〉 = G. This means that all elements of G are of the form xiyjzk where
i, j, k are integers in the range 0, 1 . . . , p − 1. For convenience, we will code the
element xiyjzk by the ordered triple (i, j, k). We will show that in the set of all
(i, j, k) representing all elements of B, any given combination of i and j determines
k uniquely. Thus the p2 triples corresponding to B can be conveniently viewed as
a p by p table whose ith row and jth column entry is k.

A previously mentioned result by Rédei shows that in the normed factorization
G = AB, the factor A can be replaced by 〈z〉 to get the normed factorization
G = 〈z〉B. Multiplying by arbitrary g, we get the factorization G = (g〈z〉)B.
Although this latter factorization is not necessarily normed, it is still true that
the two factors can have at most one element in common. Therefore, each of the
p2 cosets modulo subgroup 〈z〉 intersects factor B in at most one element. Since
|B| = p2, each coset contains precisely one element from B. This means for each
combination of i and j, there is exactly one k such that xiyjzk ∈ B.

We can repeat the previous argument with either 〈x〉 or 〈y〉 in the role of 〈z〉.
We conclude that for triples (i, j, k) coding factor B, each (i, k) determines j and
each (j, k) determines i. Thus each row and each column of the table for B contains
each of 0, 1, . . . , p − 1 exactly once. In summary, 〈A〉 = G implies that factor B
can be described using a p by p Latin square. In fact, this can be done in three
ways since the roles of elements x, y and z are symmetric.

Let f be a permutation on {0, 1, . . . , p − 1}. We shall use the expression “ the
ith row of the Latin square contains (is) permutation f ” to mean that the entry in
row i column j of the Latin square is f(j) for 0 ≤ j ≤ p− 1. A similar expression
will be used for columns. Some geometric terminology is also useful. The triple(
i, j, k

)
can be viewed as a point in the 3-dimensional affine space over the modulo

p finite field. When the triples for a row (column) form a straight line, we shall call
that row (column) linear and a straight line. A permutation on {0, 1, . . . , p − 1}
will be called linear if its ordered pairs form a line in AG(2, p).
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There are some major restrictions on the Latin square for B. A permutation f
of the elements of a finite abelian group H is called a complete mapping of H if
a → af(a), a ∈ H , is again a permutation on H . Using this terminology, we now
show that the rows and columns of the Latin square for B are complete mappings
of the additive group modulo p.

Note that (z−1A)B is a normed factorization of G since z ∈ A; the first factor
contains z−1y since y ∈ A. Thus the result of Rédei implies that G = 〈z−1y〉B is
a normed factorization. Consequently, each coset of 〈z−1y〉 contains exactly one
element of B. (Otherwise an element of B could be represented in two distinct
ways as an element of 〈z−1y〉 times an element of B.) This means that if a and b
are entries in the uth and vth columns in the same row of the Latin square for B,
then

b− a 6≡ (−1)(v − u) (mod p).(1)

Similarly, since x, z ∈ A it follows that if a and b are entries in the uth and vth
rows in the same column, then (1) holds. These results imply that the Latin square
describing B can contain only complete mappings in its rows and columns.

This Latin square has p positions which contain a given fixed element k. Consider
the permutation on {0, 1, . . . , p−1} which maps i to j precisely when k is the entry
in row i, column j. We refer to this permutation as the kth transversal. Because
x, y ∈ A, each coset modulo subgroup 〈y−1x〉 contains exactly one element from B.
Hence, whenever the ath and the bth positions in the uth and vth columns contain
the same element, inequality (1) must hold. We conclude that the transversals are
complete mappings.

We now make a further reduction that will be used systematically later. We
claim that if there is a counterexample to Rédei’s conjecture, then there is one such
that the Latin square for factor B contains nonlinear complete mappings in the
first column, first row and 0th transversal. The argument follows: If each column is
a straight line, then the lines must be parallel, and so factor B is a product of two
smaller subsets, namely, the elements of the first column and the first row. This
would imply that B is reducible, which it cannot be if it provides a counterexample.
Thus there is a nonlinear column; the same argument gives us the existence of a
nonlinear row. Since factor B can be replaced by b−1B for each b ∈ B, we may
assume that the nonlinear row and nonlinear column correspond to i = 0 and j = 0
respectively. (Refer to these as the first row and column.) Assume that the 0th
transversal is linear—otherwise, we are done. Let u, v, w be the permutations in
the first column, first row and the 0th transversal respectively. If each transversal
is linear, then factor B is reducible. Therefore, there is an i such that the u(i)th
transversal is not linear. We may assume that the ith row is linear because the other
alternative would mean that the Latin square for x−iz−u(i)B in the factorization
G = A(x−iz−u(i))B would have the desired properties.

Let P be the plane spanned by the triples in ith row and the 0th transversal
and consider u(j), the entry in the jth row of the first column. Again, either the
jth row or the u(j)th transversal is linear since otherwise we are done. If the jth
row is linear, it must be parallel to the ith row. Furthermore, this row intersects
the 0th transversal, and so the triples representing the jth row lie in plane P . In
particular, the triple

(
j, 0, u(j)

)
lies in P . In case the u(j)th transversal is linear,

it must be parallel to the 0th transversal and it must intersect the ith row. Thus
the triples representing the u(j)th transversal lie in plane P . So, in either case,
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j, 0, u(j)

)
lies in P . Since j was arbitrary, the first column is the intersection of

P with the coordinate plane j = 0 . We conclude that u is linear; this contradicts
our choice of u.

4. When p ≤ 5

When p = 2 or p = 3, the factor A contains only 1 or 2 nonidentity elements. On
the other hand, G cannot be generated by less than 3 elements. Therefore 〈A〉 6= G.

Let us turn to the case p = 5. As always we assume 〈A〉 = G, and so, there exist
x, y, z ∈ A such that 〈x, y, z〉 = G. Consider the 5 by 5 Latin square associated
with the factor B. We have seen that we can assume that the first row, first
column and 0th transversal represent nonlinear complete mappings. When p = 5,
the complete mappings are all linear, therefore p = 5 yields no counterexample to
Rédei’s conjecture.

5. When p = 7

Assume that G = AB is a counterexample to Rédei’s conjecture where 〈A〉 = G.
The complete mappings on the additive group modulo 7 constitute the candidates
for the rows, columns and transversals of the Latin square corresponding to factor
B. We need to focus only on those mappings which fix 0, since each of the other ones
is the result of adding an arbitrary constant modulo p to one of these mappings.
There are 19 such complete mappings. Five of them are linear; Table 1 shows the
cycle notation for the remaining ones which are denoted γ1, . . . , γ14.

Table 1

γ1:(0)(1)(24653) γ7:(0)(1)(23564)
γ2:(0)(3)(12654) γ8:(0)(3)(14562)
γ3:(0)(2)(15364) γ9:(0)(2)(14635)
γ4:(0)(6)(12453) γ10:(0)(6)(13542)
γ5:(0)(4)(12365) γ11:(0)(4)(15632)
γ6:(0)(5)(13624) γ12:(0)(5)(14263)
γ13:(0)(124)(356) γ14:(0)(142)(365)

For each γi in Table 1, let φ1(γi) be the permutation on {0, · · · , p − 1} that
takes j to 3γi(3−1j). (The multiplications and inverse are taken modulo 7.) Note
that φ1(γi) can be found in Table 1, since φ1 and its inverse fix 0 and preserve the
properties of linearity and completeness. Thus φ1 is a permutation on the elements
of Table 1 which in cycle notation can be represented as

(γ1γ2γ3γ4γ5γ6)(γ7γ8γ9γ10γ11γ12)(γ13γ14) .(2)

Let ψ1 be the automorphism of G that takes g to g3. This automorphism takes
the counterexample G = AB into another one G = ψ1(A)ψ1(B). Note that if u is
the first column of the Latin square corresponding to factor B, then φ1(u) is the
first column of the Latin square that codes factor ψ1(B).

The automorphism ψ2 of G defined by ψ2(x) = x, ψ2(y) = z, ψ2(z) = y takes a
counterexample to Rédei’s conjecture G = AB into another one G = ψ2(A)ψ2(B).
Note that if u is the first column of the Latin square for B, then u−1 is the first
column of the square for ψ2(B). Also note that the class of nonlinear complete
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mappings fixing 0 is invariant under inversion. Thus the inverse mapping can be
viewed as a permutation on the elements of Table 1. In cycle notation, this is

(γ1γ7)(γ2γ8)(γ3γ9)(γ4γ10)(γ5γ11)(γ6γ12)(γ13γ14) .(3)

Permutations (2) and (3) generate a group which separates the elements of Ta-
ble 1 into two transitivity classes {γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9, γ10, γ11, γ12} and
{γ13, γ14}. Earlier we argued that if there is a counterexample to Rédei’s conjec-
ture, then there is one in which the first column, row and 0th transversal are all
found in Table 1. The transitivity class analysis shows that we can assume without
loss of generality that the first column is either γ1 or γ13.

We lay some groundwork before we consider these two cases. Let u, v, and w
be the complete mappings represented by the the 1st column, 1st row and the 0th
transversal respectively. For a given i 6= 0, suppose w(i) = j. This means that
element 0 is found in row i column j. Note that j 6= 0. Let βi and γj denote
the complete mappings represented by row i and column j respectively. We have
βi(0) = u(i), γj(0) = v(j), and βi(j) = γj(i) = 0. Hence, u(i) = βi(0) − βi(j) 6= j
since βi is a complete mapping and j 6= 0. Thus for each i 6= 0, u(i) 6= w(i).
Furthermore, v(j) = γj(0) − γj(i) 6= i since γj is a complete mapping and i 6= 0.
Thus for each i 6= 0, v

(
w(i)

) 6= i.
Now take the case where u = γ1. Only v = γ8, v = γ10, and v = γ12 satisfy

u(i) 6= v(i), 1 ≤ i ≤ p − 1. If v = γ8, w can only be γ8, γ10, or γ12, since u(i) 6=
w(i). Because v

(
w(i)

) 6= i, all of these possibilities are excluded by v
(
w(3)

)
= 3,

v
(
w(5)

)
= 5, and v

(
w(2)

)
= 2 respectively. If v = γ10, w can only be γ8, γ10,

or γ12. All of these possibilities are excluded by v
(
w(4)

)
= 4, v

(
w(6)

)
= 6, and

v
(
w(3)

)
= 3 respectively. If v = γ12, the only possibilities for w are γ8, γ10, and

γ12 which are excluded by v
(
w(6)

)
= 6, v

(
w(1)

)
= 1, and v

(
w(5)

)
= 5 respectively.

Finally, consider the case where u = γ13. Since u(i) 6= w(i), we must have
v = γ14. At this point, there is no consistent choice available for the second column.

This contradiction shows that there is no counterexample to Rédei’s conjecture
when p = 7.

6. When p = 11

Suppose there is a counterexample to Rédei’s conjecture for p = 11. We have
argued that there is an 11 by 11 Latin square which has complete mappings for its
rows, columns and transversals. Furthermore, there exists one in which the initial
row, column and 0th transversal are nonlinear and fix 0. Any such Latin square will
be called qualified. A counterexample to Rédei’s conjecture implies the existence
of a qualified Latin square where factor B is non-reducible. We will show that no
such Latin square exists, but the numbers involved require the use of a computer
to assist in the search.

As before we regard a Latin square as a collection of triples (i, j, k) where k is the
entry in row i, column j. Consider the permutation on triples which takes (i, j, k)
to (3i, 3j, 3k) where multiplication is performed modulo 11. This acts on the set
of qualified Latin squares and preserves the property of non-reducibility. We note
that if u is the complete mapping representing the initial column of a Latin square,
then the initial column u′ of the permuted one will satisfy u′(i) = 3u(3−1i).

In a similar fashion, the transformation taking (i, j, k) to (i, k, j) acts on the set
of all qualified Latin squares, preserves non-reducibility and changes the square’s
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Table 2

f(0)f(1) · · ·f(9)f(10) (β, δ)
0 1 2 4 5 7 10 3 6 8 9 (8, 6) (0, 6) (9, 0)
0 1 2 5 6 9 3 10 4 7 8 (5, 4) (4, 0) (0, 8)
0 1 2 5 10 4 6 3 8 9 7 (4, 4) (8, 7) (3, 0) (1, 4) (0, 6) (0, 7) (9, 0) (7, 0)
0 1 3 4 8 5 9 2 6 10 7 (7, 0) (0, 3) (3, 2)
0 1 3 5 6 4 8 10 7 9 2 (8, 7) (0, 6) (9, 0)
0 1 3 5 6 4 9 7 10 8 2 (4, 0) (0, 8) (5, 4)
0 1 3 5 6 10 8 2 4 9 7 (7, 0) (0, 3) (3, 2)
0 1 3 5 10 7 4 2 9 6 8 (9, 8) (3, 10) (0, 4) (8, 7) (0, 6) (9, 0) (3, 3) (8, 0)
0 1 4 7 5 9 2 8 10 3 6 (5, 4) (7, 6) (1, 3) (4, 0) (3, 0) (0, 7) (0, 8) (8, 10)
0 1 7 5 3 10 4 9 6 8 2 (4, 10) (0, 3) (0, 4) (9, 8) (8, 0) (3, 2) (1, 7) (7, 0)

initial column u to u−1. The group generated by both of these permutations parti-
tions the 3441 complete mappings that fix 0 into 23 transitivity classes of nonlinear
mappings and 6 classes containing linear mappings. Thus our search for a coun-
terexample needs to consider only 23 cases; each case uses a representative nonlinear
mapping from a transitivity class as the initial column of the Latin square repre-
senting factor B. There are exactly 389 complete mappings that fix 1 as well as 0
and at least one of these belongs to each of the 23 transitivity classes. So in our
calculations, we chose a representative from each class that fixes both 0 and 1.

We performed an exhaustive computer search for all qualified Latin squares
having an initial column equal to one of the 23 representatives discussed above.
The search was performed in a depth-first fashion. At stage 1 the initial row was
chosen from the nonlinear complete mappings that fix 0. Subsequently, the columns
were chosen, one per stage. Backtracking occurred whenever a candidate column
or row had no more instantiations consistent with the previously established parts
of the Latin square.

The search revealed exactly 50 qualified Latin squares meriting further consid-
eration as possible counterexamples. We checked each one to see if factor B was
reducible or not. An interesting pattern was observed. Suppose there exist integers
α, β, ω, δ, and complete mappings f and g on the additive group modulo p such
that all the triples (i, j, k) constituting the Latin square satisfy the relationship

k = f(αi+ βj) + g(ωi+ δj),(4)

where the operations are taken modulo p. If the matrix
(

α β
ω δ

)
has an inverse modulo

p, say
(

a b
c d

)
, then the collection of triples in the Latin square is the direct sum of{(

am, cm, f(m)
) ∣∣ 0 ≤ m ≤ p− 1

}
and

{(
bn, dn, g(n)

) ∣∣ 0 ≤ n ≤ p− 1
}
.

All 50 qualified Latin squares satisfied a special case of equation (4), namely
where k = f(i+βj)+ δj. The roster in Table 2 gives the complete mappings f and
the (β, δ) pairs that generate these 50 Latin squares.

Thus we are able to conclude there is no counterexample to Rédei’s conjecture
when p = 11 because all qualified Latin squares represent reducible factors.

When p ≥ 13, the size of the search space precludes using the exact approach
discussed above. Some further simplifications are necessary to make additional
progress.
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