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NONCONFORMING FINITE ELEMENT APPROXIMATION OF
CRYSTALLINE MICROSTRUCTURE

BO LI AND MITCHELL LUSKIN

ABSTRACT. We consider a class of nonconforming finite element approxima-
tions of a simply laminated microstructure which minimizes the nonconvex
variational problem for the deformation of martensitic crystals which can un-
dergo either an orthorhombic to monoclinic (double well) or a cubic to tetrag-
onal (triple well) transformation. We first establish a series of error bounds
in terms of elastic energies for the L? approximation of derivatives of the de-
formation in the direction tangential to parallel layers of the laminate, for the
L? approximation of the deformation, for the weak approximation of the de-
formation gradient, for the approximation of volume fractions of deformation
gradients, and for the approximation of nonlinear integrals of the deformation
gradient. We then use these bounds to give corresponding convergence rates
for quasi-optimal finite element approximations.

1. INTRODUCTION

The nonconvex elastic energy used to model martensitic crystals is generally
minimized only by a microstructure [3], [4], [9], [19], [23], [26], [31]. A common
example of such a microstructure is a simple laminate in which the deformation
gradient oscillates on a fine or infinitesimal scale in parallel layers between two
stress-free homogeneous states.

Finite element approximations of energy-minimizing laminates necessarily have a
finite thickness. Although conforming finite element methods can be proven to give
convergent approximations to the microstructure [28], [29], [31], [32], they cannot
generally give a laminate which oscillates on the scale of the mesh size for arbitrarily
oriented meshes [11], [31].

Nonconforming finite element approximations are not required to be globally
continuous [10], [38], so it is reasonable to think that they would be able to give
a more accurate approximation to fine-scale microstructure [31]. The class of non-
conforming finite element methods analyzed in this paper was successfully used
to compute crystalline microstructure in [25]. These elements were first proposed,
tested, and analyzed in [39] for the Stokes problem. A short discussion on one of
these elements in the setting of the mixed finite element method can be found in [2].
This class of elements was analyzed for general second-order elliptic problems in
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[24]. In this paper, we prove the convergence of these nonconforming methods to an
energy-minimizing microstructure for the nonconvex elastic energies which model
martensitic crystals which can undergo either an orthorhombic to monoclinic (dou-
ble well) transformation or a cubic to tetragonal (triple well) transformation. The
results in this paper also hold for a general rotationally invariant, double well energy
density.

In the recently developed geometrically nonlinear theory of martensitic crystals,
the elastic energy density attains its minimum value (below the transformation
temperature) on a set

(1.1) SO(3)Uy U---USO(3)Uy,
where SO(3) is the group of proper rotations defined by
SOB)={Q € R¥>3: QT =Q 7! and detQ = 1},

and where the symmetry-related matrices, Uy, -+ ,Upn, for N > 1, represent the
martensitic variants. The martensitic variants Uy, --- , Uy are linear transforma-
tions which transform the lattice of the austenitic phase into the lattice of the
martensitic phase. In the above, R3*3 is the set of all 3 x 3 real matrices.

A martensitic crystal which can undergo an orthorhombic to monoclinic trans-
formation has two symmetry-related martensitic variants, that is, N = 2, and
hence the elastic energy density has two wells [4], [31]. A more commonly observed
martensitic transformation is the cubic to tetragonal transformation [3], [4], [31].
In this case, there are three associated symmetry-related martensitic variants, so
N = 3, and the elastic energy density has therefore three wells.

For certain boundary conditions, the elastic energy of the martensitic crystal
cannot be minimized by a deformation and can be lowered as much as possible only
by a sequence of deformations whose gradients oscillate so that the limiting volume
fraction is nonzero for more than one gradient [4], [31]. Based on the hypothesis
that the crystal structure is determined by the principle of energy minimization,
the geometrically nonlinear theory describes the crystalline microstructure as the
limiting configuration of energy-minimizing sequences of deformations [3], [4], [9],
[19], [23], [26], [31].

Both of our nonconforming finite elements are defined on rectangular paral-
lelepipeds. The first one has its degrees of freedom given by the values at the
centers of the faces of the rectangular parallelepipeds. The second one has its
degrees of freedom given by the averages over the six faces of the rectangular par-
allelepipeds. To prove the convergence of this class of nonconforming finite element
methods for the nonconvex energies which model crystalline microstructure, we
prove some important properties of the nonconforming finite element deformations.
They include a discrete version of a slight variation of the divergence theorem, a
Poincaré type inequality which is more general than that in [24], and a discrete
version of the usual trace theorem in Sobolev spaces [1]. These properties will be
used as key technical tools in establishing various kinds of error bounds in terms of
the elastic energy.

Our analysis utilizes the theory of numerical analysis for the microstructure in
nonconvex variational problems that was developed in [13], [16], and extended in
[6], [7], [8], [21], [34]. This theory was also used to analyze the finite element
approximation of microstructure in micromagnetics [33]. The approximation of

relaxed variational problems has been analyzed in [5], [20], [35], [36], [37], [40], [41].
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A nonconforming finite element approximation for a nonconvex variational problem
with not only an elastic energy but also a nonphysical penalty term was analyzed
in [21].

An analysis of the finite element approximation for a physical, rotationally invari-
ant energy was first given in [32] for the orthorhombic to monoclinic transformation.
This analysis has been extended to the cubic to orthorhombic transformation [29],
to more general boundary conditions [27], [28], and to the method of reduced inte-
gration [12]. The estimates in these papers and in this paper show that all of the
local minima of the energy (restricted to the finite element space) which satisfy a
quasi-optimality condition give accurate approximations to the energy-minimizing
microstructure for the deformation, the volume fractions of the deformation gradi-
ents, and the nonlinear integrals of the deformation gradient.

In this paper, we further generalize the results in [29], [32] to the approximation
by the two nonconforming finite elements. Our results show that the approximation
errors due to the nonconformity of the employed nonconforming finite elements are
negligible compared with the errors of the approximation of microstructure which
are already present in the conforming approximation. Therefore, the asymptotic
rate of convergence that we obtain for the nonconforming methods is equal to the
rate found for the conforming methods.

We refer to [31] for an introduction to the modeling and computation of crys-
talline microstructure and for a more extensive survey of results and references.

We organize the rest of the paper as follows. In §2, we describe the underlying
continuum model for crystals which can undergo either an orthorhombic to mon-
oclinic or a cubic to tetragonal martensitic transformation. In §3, we review the
definition and basic properties of the class of nonconforming finite element spaces
that we analyze. Further properties of nonconforming finite element deformations
are given in §4. These properties are then used to establish a series of error bounds
in terms of the elastic energy for the nonconforming finite element approximations in
§5—87. Finally, in §8, we first prove the existence of finite element energy minimizers
and then derive the corresponding error estimates for quasi-optimal nonconforming
finite element approximations.

2. MULTI-WELL ENERGY MINIMIZATION PROBLEMS

We first briefly review some basic definitions and properties of martensitic crys-
tals which can undergo either an orthorhombic to monoclinic or a cubic to tetragonal
phase transformation. For more details, we refer to [3], [4], [31].

The energy wells for an orthorhombic to monoclinic transformation are deter-
mined by the martensitic variants

U, = (I+ nes ® 61)D, Uy = (I —Mnes ® el)D,

where I is the identity transformation from R3 to R3, > 0 is a material parameter,
{e1, e2,e3} is an orthonormal basis for R3, and D is a diagonal, positive definite,
linear transformation given by

D =die; ®er +dzex ® ez +dzez @ es

for some di,ds,ds > 0. We recall that the tensor a ® n for a,n € R defines the
linear transformation (a ® n)v = (n - v)a for v € R3.
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The energy wells for a cubic to tetragonal transformation are determined by the
martensitic variants

Up=ml+(n2—m)er ®ex, Uz =ml+ (12 —m)e2 ® ez,
Us =ml+ (n2 —m)es @ es,
where 71 > 0 and 72 > 0 are material parameters such that n; # 72, and {e1, e2,e3}
is again an orthonormal basis for R3.
For convenience, we define the set of indices K to be K = {1,2} for the or-

thorhombic to monoclinic transformation and K = {1, 2, 3} for the cubic to tetrag-
onal transformation. We also denote

Uy =S0B3);, i€k, —and U=|JUi:ieK}

The following lemma, proved in [3], [4], [31], serves as a key crystallographical basis
for our analysis.

Lemma 2.1. (1) For each i € K there is no rank-one connection between U; and
itself, that is, there do not exist Fy, Fy € U; with Fy # Fy such that

Fi=Fy+a®n

for some a € R® and n € R3, |n| = 1.
(2) For any i,j € K,i # j, there are exactly two rank-one connections between
U; and Uj, that is, for any Fo € U; there are exactly two distinct Fy € U; such that

F1:F0—|—a®n

for some a € R® and n € R3, |n| = 1. In this case, we have also for any X € (0,1)
that

(1=NFy+ \Fy ¢ U.
Moreover, we have for the orthorhombic to monoclinic transformation that
n € {te1, tea},

and for the cubic to tetragonal transformation that

ne {i%(ei +ej),i\/i§(ei —ej)}.

We now consider a crystal that can undergo either an orthorhombic to mon-
oclinic or a cubic to tetragonal transformation. We denote by € the reference
configuration of the crystal which is taken to be the homogeneous austenitic phase
at the transformation temperature. We assume that Q C R? is a bounded domain
with a Lipschitz continuous boundary. We denote deformations by 3 : Q — R?
and corresponding deformation gradients by Vy : Q — R3*3., We denote the elastic
energy density at a fixed temperature below the transformation temperature by the
continuous function ¢ : R3*3 — R. The elastic energy of a deformation y is then
given by

(2.1) Ey) = / &(Vy(x)) do.

To model the underlying martensitic transformations, we assume that the energy
density ¢ is minimized on the energy wells U; = SO(3)U;, ¢ € K, so we assume (after
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adding a constant to the energy density) that
¢(F) 20,  VFeR>,
¢(F)=0 ifandonlyif FelU={U i€ K}.

We shall also assume that the energy density ¢ grows quadratically away from the
energy wells, that is,

(2.2) &(F) > k||F — n(F)|?, VEF € R3%3,

where x > 0 is a constant and 7 : R3*3 — I is a Borel measurable projection
defined by

|F —#(F)| = min |F - G|, VF € R3*3,
Geu

In the above and in the following we use the matrix norm defined by

3
|F||?> = trace (FTF) = Z F}, VF = (F;;) € R3*3.
i,j=1
The projection 7(F) exists for any F € R3*3 since U is compact, although the
projection may not be unique. It is unique, however, if || F' — 7 (F')|| is small enough
[31].
Let Fy, F1 € U be rank-one connected so as to satisfy

(2.3) Fi=F+a®n

for some a, n € R?, |n|] = 1. By Lemma 2.1, we may assume without loss of
generality that Fy € U; and F} € Us and also that

n=e;
for the orthorhombic to monoclinic transformation and

(2.4) n= L(el + e2)

V2

for the cubic to tetragonal transformation. Let A be a constant such that 0 < A < 1
and let

Fy=(1—-MNFy+ A\Fy.

We define the set of admissible deformations which are compatible with the simple
laminate to be

WL (R?) = {y € WH(QR?) @ y(a) = Faz, Vo € 092} .

Our multi-well energy minimization problem is to minimize the elastic energy
(2.1) among all deformations y € W/\1 °°(Q;R3). Ball and James have shown that
there exist no energy minimizers for this minimization problem and that any energy
minimizing sequence will converge to a unique microstructure which is composed
of the gradient Fjy with volume fraction 1 — A and the gradient F; with volume
fraction A [4].

We note that the proofs given in this paper for the orthorhombic to monoclinic
transformation hold without modification for the more general problem with a
rotationally invariant, double well energy (that is, N = 2, in (1.1)) if there exists a
rotation @ € SO(3) and vectors a, n € R3, |n| = 1, such that

QUs=Ui4+a®n.
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3. NONCONFORMING FINITE ELEMENTS

We will denote a generic point in R? by (1,22, 23). Our first finite element is
defined by the triple (Q, Po, ¥%); where Q = [a1 — 1, a1 + 1] X [og — Iz, a2 4 Io] %
[ag — I3, a3 4 I3] is a rectangular parallelepiped with its center at (aq, as, a3) and
the lengths of its edges are 2l1, 2lo, and 2l3, where I, (2,13 > 0;

2 2 2 2
(3]‘) PQ = spall 1,$1,$2,.’L’3, E - % ) E — E ;
ll lQ ll lg

and the set of degrees of freedom E”Q (the superscript p denotes point) are given by

EZZ{Q(C.FI)Z:1776}7

where cx,,i = 1,---,6, are the centers of the faces F;,¢ = 1,--- ,6, of the rectan-
gular parallelepiped Q. Our second element is defined to be the triple (Q, Pg, ¥%).
The polynomial space Pg is the same as defined in (3.1) and the set of degrees of
freedom X¢ (the superscript a denotes average) is defined by

1
Ne = — dS:i=1,---,6
Q {|fz|‘/_7:lq ? ’ 7}7

where F;,i = 1,---,6, are the faces of Q, and |F;| is the area of the face F; for
i=1,---,6.

In the sequel, we will restrict ourselves to considering rectangular domains with
faces parallel to coordinate planes. The results presented in this paper can be im-
mediately extended to domains which are the union of rectangular parallelepipeds.
However, we will assume for simplicity of exposition that Q = (0,L1) x (0, La) x
(0, L3) for some Ly > 0, k = 1,2,3. To construct a rectangular partition 7, of Q,
we define the one-dimensional partitions of [0, L], for £k =1,2,3, by

0=af) <z < <a™ =Ly,
where the my, are positive integers. We then define the rectangular parallelepipeds
-1 i io—1 i is—1 i
Riyinsis = [27' 72y ] x 2570, af] x [25', 25]
for 1 <i3 <mq, 1 <is <mo, 1 <i3<mgs, and the rectangular partition
Th ={Riy iz 1 1 <i1 <mq, 1 <ip <mg, 1 <iz<ms}.

The mesh size parameter h is defined by h = max{hy : 1 < k < 3}, where hy, =
max{x};—x};_l : 1 <4 < my} is the maximal discretization size in the kth coordinate
direction for k = 1,2,3. We will always assume that the rectangular partitions 7y,
are quasi-uniform, that is, there exists a constant ¢ > 0, independent of h, such
that

(3.2) min{z} — 2} ' ii=1,...,mg, k=1,2,3} > oh.

For the first finite element, we define the set of nodal points Nj, to be the set
of all centers cr of faces F of elements in 7,. The finite element spaces over the
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partition 7, are then defined respectively to be

VP = {vp € L*(Q) : vp|r € Pr, YR € 73,; adjoining v, have the same
values at shared nodal points, that is, v, is continuous on Ny},
Vit = {vy, € L*(Q) : vp|r € Pr, YR € ;

/ vp|rr dS = / vp|rr dS, ¥ faces F = OR' NIR" # 0, R',R" € 7, }.
F F

We denote by A} the set of admissible finite element deformations y;, : @ — R3
such that each component of y;, belongs to V7 and such that y,(cz) = Facr if ¢z
is the center of an element face F lying in ). Similarly, we denote Aj to be the set
of admissible finite element deformations ¥, : £ — R? such that each component
of yp, belongs to V;* and such that

/yh(x)dS:/F,\de
F F

for any element face F C 0. Note that the deformation y,(z) = Fz, x € €,
belongs to both A} and A¢. We denote for convenience V;, = VP UV,* and A, =
AP U Ag.

It is obvious that both of the spaces V¥ and V,* are finite-dimensional affine
subspaces of L?(Q). They are also affine finite element spaces [10]. For v; € V!
or v, € V2, we have in general that vy, ¢ C(Q) since v, is continuous only at
some points of the faces of adjacent elements. Thus, V/, V¢ ¢ C(Q), and hence,
neither A? nor A¢ is contained in W, >°(Q;R?) which is a subset of C(Q;R3) by
the embedding theorem [1]. Therefore, in view of minimizing the elastic energy
over W' (Q; R?) € WhH(Q;R?), the above finite elements are nonconforming.

We now denote the Lagrange interpolation operator I, : C(Q) — V}, to be either
I C(Q) — VP or I : C(Q)) — V2, which are defined respectively by Itv € V/P
and Ijv € Vi, and

Du(er) =v(er), Ve € Np,

/I,‘fvdS:/ vdS, Viaces F C OR, VR € T3,
F F

for any v € C(£2). We will also use the same notation Ij,, I and I to denote the
restrictions of these operators to an element of the partition 7y,.

For any element R € 7, and a face F C OR, we define the functional T% :
C(F) = R by TH(w) = w(cr) for w € C(F), where cr is the center of the face F,
when considering the V-approximation, and the functional T'§ : L*(F) — R by
T#(w) = (1/|F|) [rwdS for w € L?(F), when considering the V;*-approximation.
Similar functionals of suitable deformations can be defined component-wise. With-
out confusion, the same notation 7% or T will be used for functionals defined on
both scalar functions and vectorial deformations.

We will use the letter C' to denote a generic positive constant which is indepen-
dent of the mesh size h. For convenience, we also define for any integer k£ > 0 and
p € [1, 00] the space

WEP(Q) = {v € IP(Q) : vlr € WHP(R), YR € 7},
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and we equip W,]f P(Q) with the following semi-norm and norm:

1
P .
| lopn = (E|'|£7p77g) : if 1< p < oo,
maxrer, | . |k,oo,7€, lfp = 00;
1
p p .
I llkp,n = (E I kmﬁ) ’ Tf 1<p< oo,
ma'XReTh || : Hk,OO,Rv lfp = 00;
where, for R € 73, | - |k,p,r and || - [|kp,» are the usual semi-norm and norm on the

Sobolev space WkP(R) [1]. If p = 2 we write HF(Q) for W,]f’p(Q) and omit p in all
of the above semi-norm and norm expressions. We define the spaces W,’f P R3)
and Hf(Q;R?) in a similar way and use the same notation |- [k p.n, |- lkphs | |k.hs
and || - ||x,» for the associated semi-norms and norms.

We now collect some useful properties of the finite element spaces V¥ and V,* in
the following lemmas.

Lemma 3.1. For any vy, € Vi = V,f U V¢ restricted to any R € 7, we have

(3.3) g—zz € span{l,zy}, k=1,2,3.

It follows that

(3.4) (&1, &2, &3) — vp(Z1, 2, 23) = vp (21, T2, £3) — v (21, 22, 23),
(3.5) vp (21,22, T3) — vp (21, &2, x3) = vp (&1, T2, T3) — vp(T1, T2, X3),
(3.6) vp (21, To, 3) — vp(w1, T2, 23) = vi(21, T2, ¥3) — va (21, T2, T3).

for any (21, %2,%3) € R and (x1,z2,23) € R.

Proof. The equation (3.3) follows directly from the definition of the finite element
polynomial space Po (3.1). The result (3.4) follows from (3.3) since dvy,/0x1 is
independent of x5 and 3, so

. . ouy
Op (&1, &2, &3) — vp (21, T2, 3) = a—(§7x27x3)d€
T Z1
&1 5’Uh
= [ & d
o 8131 (5,,1’2,1’3) 5
= vp(Z1, 22, x3) — v (21, 22, 23).
The results (3.5) and (3.6) follow similarly. O

Lemma 3.2. Let k and [ be two integers such that 0 < k <[ < 2. We have the
following inverse inequalities for any R € 1, and any v, € Vi = VP U V2.

(3.7) lonlir < CR* ' unlk,
(3.8) lonlin < CRF =Y op |kn,
(3.9) [V 1,00,k < Chk_l_%|’0h|k,727
(3.10) [0 toe.n < CRE7175 fop i .

Proof. Since both V}’ and V,* are affine finite element spaces, the results of this
lemma can be proven by a standard argument via affine mappings [10]. O



NONCONFORMING APPROXIMATION OF MICROSTRUCTURE 925

Lemma 3.3. We have for any R € 1, and any face F C OR that

(3.11) / lv — T#(v)[*dS < Chlv]? . Vv € HY(R).
f

We also have that

(3.12) / lon — TE(on)|? dS < Chlon . Von € VP
_’F

Proof. We will prove (3.11) and (3.12) on the reference domain R = (0,1) x (0, 1) x
(0,1) with face F = {0} x (0,1) x (0,1). We can then obtain the results (3.11) and
(3.12) on the element R € 75, and the face F C R by an affine scaling.

For v € C*(R) we have that

1 1
11(0,1?2,2123)—/ / U(O,j?Q,i?g)dfledffig
0 0
1 1
—’U(l‘l,l'g,l'g,)—/ / U(:’El,i'g,f,%g)dfﬁzd{%g

(3.13) - v — (&1, 22, x3) da:l—l—/ / / 2131,1?2,2133)[1{131 dio di3

0o Om

11
= / / (21,22, 23) — v(21, &2, &3)] dEo dT3
o Jo

Xy 6,0 xrq
- — (&1, 2, x3) d:v1+/ / / il,xz,m)dxl d&o dis.
0 8131

Now,

v(z1, x2, x3) — v(@1, T2, E3)
(3.14) = [v(w1, 22, 23) — v(T1, B2, ¥3)] + [V(21, T2, 73) — v(T1, T2, T3)]
2 Qv

= — (1,2, x3) dis +/

Fo 31‘2 23

3
(w1, &2, Z3) dTs.

I3

We obtain from substituting (3.14) into (3.13) that

1 1
’U(O,.TQ,ZIJg)—/ / U(O,j?Q,Zf?g)dfle dig
/ / / 1‘1,1‘2,{,63) dxz dxzdl'g,
3
(315) / / / 81} $1,$2,$3)d$3d$2d$3

z1
— (1‘1,1‘2,1‘3 d;vl +/ / / jl,xz,l'g,)dl'l dZso dZ3.
0 8131

We can then obtain by squaring both sides of (3.15), integrating with respect to
(21,22, 23) over the domain (0,1) x (0,1) x (0,1), and using the Cauchy-Schwarz
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inequality that

1 1,1 2
’U(O,(EQ,{,C:;)—/ / ’U(O,i‘g,&fig})d(ﬁgd&%g}

d&vg d$3

(316) 0 $2,ZE3 / / O ZZ?Q,ZEg d$2 d$3 d$1 d$2 d$3
<8 8” YR D
8$1 0773 8$2 OR 82133 0)7%

The inequality (3.11) for R and F now follows from the density of C*°(R) in H*(R)
and the continuous embedding H!(R) — L2(F) [1].

We note that we cannot prove the inequality (3.12) for all v € H'(R) because
T#(v) = v(cF) is not a well-defined operator on H*(R) since H L(R) is not continu-
ously embedded in C(R %) [1]. To prove the inequality (3.12) with R and F replaced

by R and _7-' respectively, for v, € P, the finite element polynomial space (3.1),
we derive as above the identity

vh(O,azQ,xg) —v,(0,1/2,1/2)

2 Ouy, 2 Oup,
3.17 = d 1/2 dx
(3.17) 172 0x2 B, (C1E2r @) dB2 + 172 03 (xh /2,83) dis
1 Gy, 1 Ouy,
_ dz 1/2,1/2
0 axl ($13$27x3) T + ) axl (:Ela / / )

Since by Lemma 3.1, dvp,/dxy € span{l,xy}, for k =1, 2, 3, we have from (3.17)
that

vh(O,xQ,xg) —v,(0,1/2,1/2)

8vh 3
3.18 = d dx
( ) e 8$2(9C179€2,$3) Zo + e 8$3(9C179€2,$3) Z3
Xy 8 xrq 8
_ | 8;}'}11 ($1,$2,$3)d$1+ ) 8;1'1 ($1,$2,$3)d$1

We can then obtain by squaring both sides of (3.18), integrating with respect to
(21,22, 23) over the domain (0,1) x (0,1) x (0,1), and using the Cauchy-Schwarz
inequality that

1 1
/ / (o (0, 22, 23) — v (0,1/2,1/2)[? das dars
0 0

2
(3.19) <g§|2h ovy|* 4|2 MO
81'1 0, R 8;102 0773 6!E3 0, R
Lemma 3.4. We have
(3.20) Vv € Whe(Q).

Proof. The proof easily follows from the quasi-uniformity of the partition 7,
[10]. |
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4. PROPERTIES OF NONCONFORMING FINITE ELEMENT DEFORMATIONS

In this section, we will give some further properties of the considered noncon-
forming finite element deformations. We first prove a discrete version of a slight
variation of the divergence theorem.

Theorem 4.1. We have for any y, € A, = A} U A} that

(4.1) 3 /RVyh(:z:)da:: 3 /RFAdz.

RETH ReETH

Proof. Applying the divergence theorem to each integral on R € 7, in the summa-
tion and noticing the cancellation of contributions from adjacent elements to their
common faces, we see by the definition of Af that (4.1) holds if y;, € AJ.

For y, € A}, we set z,(z) = yn(z) — Frxz, x € Q. We also denote by cx the
center of a face F of an element in 75,. Thus, by the definition of A}, we have
zn(cr) =0 if F C 0Q2. Moreover, we have

> /RVZh(x)dw= > /8th($)®1/¢£5

ReTH ReTH

(4.2) = Z Z /f[zh(x) — zp(er)] ® v|£ dS,

ReT, FCOR

where v is the unit exterior normal to the underlying boundary.
Fix R = [011 — Iy, a1 + ll] X [042 — Iy, 0 + 12] X [013 — I3, a3 + 13] € 7. Set
Fi= [051 —l, 01 + ll] X [052 —ly, a0 + lQ] X {ag + 13} It follows from (36) that

zn(x1, T2, a3 +13) — zn(a1, ag, a3 +13) = zp(z1, 22, a3 — I3) — zp(0, o, g — 3).

Noting that v|z, = —v|r_ = e3, we then have

/ [z (2) — 2n(cr,)] @ V|7, dS—|—/ [zn(z) — zn(cr )] @ v|F_dS
Fy F

ar+ly paz+ls
= [ / {[zn(z1, 22, 3 + I3) — zp(1, a2, a5 + 13)]

1=l 2—l2
(4.3) — [zn(21, 22, a3 — I3) — zp(a1, a2, a3 — I3)]} do1 dee| @ e3
=0.
The same argument applies to any other pair of faces Fi C OR. Therefore,
(4.4) Z / [zn(z) — zn(cr)] @ v|FdS = 0.
Fcor’F

The arbitrariness of R € 73, then implies that the sum in (4.2) is zero. This proves
(4.1) for yp € A} as well. O

We now prove a Poincaré type inequality for all of the finite element deformations
in Aj,. This result is more general than that proven in [24].
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Theorem 4.2. There exists a constant C > 0 such that for all w € R? with |w| =1
and all y;, € Ap,

[ (o) = Fraf da
Q

(4.5) <C > / Vyh — B\ w]? + b ||Vyn(x) — Fk||2} da

RETH

Proof. Fix an arbitrary w € R? with |w| = 1. For y, € Ap, set again z;(z) =
yn(x) — Frz, x € Q. By integration by parts we obtain [44]

[l@kae= 3 [ ja@P- o) vas

ReETH

(4.6) - (V]zn(2)]? - w) (w - z) dz
R;h/ h )
= Il—|—]2.

We estimate the second term Is by the Cauchy-Schwarz inequality to get

Z/ Vlzp(z)]? - w) (w - z) da

RETH

(@7) < 2max|u -l (RET / Vzn(a ) </ |2n (e dx)

/|zh da:—l—CZ / |Vzp(z

RETH

|Io] =

To estimate I;, we first consider the Af-approximation. So, we fix y, € Aj.
Observing that T'%(zp,) = 0 for any element face 7 C 052, we obtain by the definition
of Af that

=% X [l = T+ TR - ) vlr) dS

ReT FCOR
YD /|zh T (w - 2)(w - v|5) dS
ReT,L FCOR
(4.8) + Z Z /|Tf zp)|” (w-x)(w - v|F)dS
ReT, FCOR
+ Z Z /2T}- (zn) - [on(x) = TE(20)] (w - ) (w - v|£) dS
ReT, FCOR
=¥ > [ @) -T2 - a)w-vip)as
ReTr, FCOR
2% % /Tf 20 - [en(@) = T(zn)] (w - 2)(w - v]7) dS
RETHL FCOR

EJl +2J2,
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where we combined adjacent elements and canceled their contributions to the com-

mon face to obtain that one summed term is equal to zero. It follows directly from
(3.11) that

PHE

> Y [ @) - T30 2w vlr) ds

ReT FCOR
(4.9) < Ch|[Vznl3

Setting g, (z) = (w - x)(w - v), we have

B=Y ¥ [ T @) - THe e ds

ReT, FCOR
@) =Y 3 [ T3 lale) - TH] lale) - TH00)] 45
ReT FCOR

For a fixed face F C OR of some element R € 75, we have by the inverse estimate
(3.9) that

IT5%(2n)| < ll2nllo.co = < Ch™%|2nl0,%-
We also have by (3.11) that

/ |2n (@) — T2(z) > dS < Ch|[Vzn|2 2

and
[ @) = T2 45 < CHIVa 3 < O
Consequently,
1< 30 S 1 ([ lee) = 3L 05
ReT,L FCOR
([ oo - 1200007 dS)
(4.11) < Ch
ReETH

< Chllznllo. [Vznllo n
1 2
< 3 Iznllo 0 + CR2 IV 28115 -

Now we consider the A} -approximation. Fix y, € A}. We have as above that
T7(zn) = 0 for any element face F C 09, so (cf. (4.8))

I = Z AR |Zh($) — ij_—(zh”?(w . x)(w . U) ds

(4.12) +2 Z Z / (zn) - [zn(x) — TH(zn)] (w - z)(w - v|£) dS

ReT, FCOR
JP 208,
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It similarly follows from (3.12) that

> 5 [ lento) - T - a)w- vz as

ReETL FCOR
(4.13) < Chl|Vznll§ p-

[P =

Let us fix again R = [a1 — l1, 1 + 1] X [ag — I3, a0 + lo] X [ag — 3,3+ 13] € 73,
and a pair of its faces Fur = [aq — l1, 01 + l1] X [ag — lo, ap + 12] X {ag +13}. We
have that g, (z) = +¢g(x) on Fy, where g(x) = (w-e3)(w - z). We also have by (3.6)
that

zp (w1, 2, a3 + 13) — zp(ar, g, a3 +13) = zp(x1, 22, a3 — I3) — zp(a, az, ag — I3).

It then follows from the above identity, the inverse inequality (3.9), and (3.12) that

[ wnler,) - nle) = mnler, (o) ds
F+

- [ snler ) lale) = snler Vo) a5

a1+l patls
/ [zn(x1, T2, a3 + 13) — 2 (a1, a2, a3 + 13)]
a1 — l1 o — l2

g(x1, 22, a3 + 13)zn (1, 2, a3 + 13)

—g(x1, T2, a3 — I3)zn (a1, ag, a3 — I3)] dzy dzo

ar+li paz+lz
(4.14) = / { Zh $1,$2,063+lg)—Zh(ozl,ag,()ég—Flg)]

1=l Jaz—l2

asz+l3 )
) / E. (9(x)zn(1, ag, 3)) das }da:l dxs
« T3

3—l3

gcm%mmﬁ/ |20(x) — zn(er, )| dS
_’F

+
< CR¥|znlls oo ( / o (z) — zh<cf+>|2ds>
Ty
< Ch(||znllo,r IVznllo,= + I V215 .%) -

This argument also applies to other pairs of faces of R € 73,. Hence, we can also
conclude in this case that

73| < Chllznllo.llVznllon + ChIVanllg 5
1
(4.15) Sg/VM@Fw+CWV%%M
Q
The assertion of the theorem now follows from (4.6)—(4.15). O

A local trace inequality was used in [21] to derive estimates for a nonconform-
ing finite element approximation of a variational problem. But even an improved
version of such a local result (cf. Lemma 3.4 in [24]) cannot be applied here to our
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situation. We thus give a global version of a discrete trace theorem for our finite
element deformations.

Theorem 4.3. There exists a constant C' > 0 such that for any rectangular paral-
lelepiped w C Q which is a union of elements R of a rectangular mesh Ty,

> > WP yn(er) - Frer|” < %W)/w lyn(z) — Faz|® dx

RCw,0RNOw#AD FCORNOw

(4.16) e <L lyn () —FAx|2dx)%<

or all y, € AY, and
f ) h

) > [ @) - Bl as

RCw,0RNOw#D FCIRNOw

(4.17) < % /w lyn(x) — F>\gc|2 dx + Ch Z /R IVyn(x) — F,\H2 dx

RCw

+O(/ lyn(@) — Fazl” dﬂl?)% (Z /RHVyh(%)—l[’jAH2 d$>%
w RCw

for all yp, € A%, where A(w) is the length of the shortest edge of w.

> /71 [Vyn(x) — Fa|l? d?l?)

RCw

Proof. Assume that w = [w,w]] X [wy,wy] X [wy,ws]. Fix y, € Ap and set
zn(x) = yn(z) — Fho, x € Q. Also, fix an arbitrary element face Fy C dw of an
element R C w. Assume without loss of generality that the corresponding unit
exterior normal at Fy with respect to dw is v = v|z, = —e;. Denote by

So={r+y:z € Fyand y = se; where s € [0,w] —w] ]|} Cw

the cylinder composed of elements of 75, with generating line parallel to ey, one
base Fy C w, and the other base also on dw. We denote the corresponding height
(the length of the generating line segment) of the cylinder Sy by Ay = wj” — wy .
Notice that A; is in fact the length of one edge of the rectangular parallelepiped
w. Suppose further that the element faces which are in the cylinder Sy and are
parallel to Fy are given by F;, i =0,--- , k, and that these faces lie respectively in

the planes z1 = ol”, for some w] = al” < ... < al¥) = w.

Case 1. y, € A}. Denoting by cz, the center of the face F; for i = 0,--- ,k, we

have by the fact Ay = a§k> - a§0> that
k—1
S [(af = al™V) fautem )] = (a8 = ol loner)?]
=0

(4.18) = —Ay|zn(er)

If0<i<k—1, then
‘(agk) - Oégiﬂ)) l2n(er )| - (agk) - Oégi)) |zn(cF;)
= |(? = o) [[antem) " = lanter)IP] + (o = ol |zn(ez )

< Al ‘ I:Zh(cfi+1) - Zh(cfi>] : I:Zh(cfi+1) + Zh(cfi>] ‘ +h |Zh(c-7:i+1)|2 .

2
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This, together with (4.18) and the inverse inequality (3.9), leads to

2 1
Bl <103 (1930 ot + 3 20
RCSo

1
(4.19) <0 5 (193l enll r + s ol

RCSo

Case 2. yp, € A}. Noting that a( ) 50) = A1, we have

(k)—ac o (2] da
R;S/@m 1)|h()|}d
= /aR alk)—xl |Zh( )P (v-e1)dS

RCSo

= _Al/ |z (z dS+kZ:1 (ozl )/f [}z;(gj”?_ }z;(z)ﬂ ds,

where for a fixed face F;, 1 < ¢ < k—1, we denote by z,jf the restriction of z;, to F;
for zj defined on the adjacent element sharing the common face JF; such that the
corresponding unit exterior normal of the element boundary v satisfies v|z, = +e;.
Consequently, we have that

[ v as
> / L@ + @Vl do

RCSO
[|Zh _‘ 2 ( ’ ]dS‘
1 2
= Z 1 lznllor +2llznllor 1Vanllor
RCSo !

(4.20)

[l - 760+ 73,0
| a) = T3, + 73, ) 5]

1 2
-y (A—1||zh||3,n+2||zh||o,n 192113

RCSO
_ o 2
[ —T% (2n) | — |z, (x) = T%, (z1)| ] dS‘
<c Z [ ||zh||m+|Zhnm||VZh||0R+h||th||m}
RCSo

where in the last step we used (3.12).

Since every such cylinder Sy C w will only be used twice corresponding to its
two bases on Ow, we therefore obtain (4.16) and (4.17) from (4.19) and (4.20),
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respectively, by summing over all boundary faces Fy C 0w of elements R C w such
that OR N Ow # 0. O

Remark 4.4. We can generalize the above theorem to cover more general closed
subdomains w C € which are still unions of rectangular elements of 75,. For such
an w we denote by A(w) the smallest height of all cylinders Sp C w composed of
elements of 7, which have generating lines parallel to the coordinate axes and for
which both bases lie in the boundary dw. Both of the inequalities (4.16) and (4.17)
remain valid.

5. APPROXIMATION OF LIMITING MACROSCOPIC DEFORMATIONS
We define
aw) = Y [ o(Vm)ds, Vo e A
ReETH R

The following result which will be frequently used is a direct consequence of the
quadratic growth rate of the energy density around the energy wells (2.2).

Lemma 5.1. We have
Z / Vyn(z) — 7(Vyn(2)||Pdz < 5 Enlyn), Yyp, € Ap.
Rer, 'R
In the following lemma, we recall that we have assumed that
(5.1) Fi=FK+a®n,
and that we have assumed without loss of generality in the cubic to tetragonal case

by Lemma 2.1 that

(5.2) n= i(el + e2).

V2

Lemma 5.2. For any w € R? satisfying w - n = 0, there exists a constant C > 0
such that

63) X [ (Vi) - BluPde < CEm)E Von € A

RETH

Proof. We first consider the orthorhombic to monoclinic transformation. In this
case we have

m(F) € SO3)Fy USO(3)Fy,  VF € R¥*3,
Consequently, we have by the rank-one connection (5.1) and by the identity
Fy=1-NF+ A1 =F+X a®n

(5.4) |T(F)w| = |Fow| = |Fiw| = |Faw|, VE € R3*3,
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for any w € R3 such that w-n = 0. It then follows from Theorem 4.1, the Cauchy-
Schwarz inequality, the identity (5.4), and (2.2) that for any yp € A,

> /R|[7T(Vyh($))—FA]w|2da:

RETH
=2F\w- R,EZM /R [Fy — 7(Vyp(z))] wdz
(5.5) =2F\w- R;h /R [Vyn(z) — 7(Vyp ()] wdz

N|=

< 2|Fyuw|(meas )12 | 3 /RHVyh(x)—w(Vyh(x))Hde

RETH
< 2|Fyw|(meas Q)22 (yn) 3

which implies (5.3) for the orthorhombic to monoclinic transformation.
Now we consider the cubic to tetragonal transformation. Set

w1 = e — ey + e3 and Wy = €1 — €9 — €3.
It is easy to check that

wy-n=wy -n=>0,

|Uswj| = /203 + 13, 1=1,2,3, j=1,2.

Consequently, we can obtain (5.4) and hence (5.5) again for w = w; and w = wo,
respectively. Thus, (5.3) is also proved for the cubic to tetragonal transformation
since {wy,wa} is an orthonormal basis for the two-dimensional subspace {w € R? :
w-n =0} |

and

The following theorem is a direct consequence of the above two lemmas. It gives
error bounds for the approximation of directional derivatives of deformations to
the limiting macroscopic deformation gradient F) in the direction tangential to the
parallel layers of the laminate. It will play a key role in establishing all of the other
error bounds.

Theorem 5.3. For any w € R? satisfying w-n = 0, there exists a constant C' > 0
such that

> /71 [Vyn(z) — FaJwl* dz < C [Eh(yh)% +5h(yh):| , Vyn € Ap.

RETH

We now give error bounds for the strong L2-approximation of deformations to
the limiting macroscopic homogeneous deformation Fyz, x € ).

Theorem 5.4. There is a constant C > 0 such that

/ |yh(:z:) — FA$|2d$ <C Sh(yh)% + 5h(yh) +hi, Yyn € Ap.
Q
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Proof. For any yp, € A, we have by Lemma 5.1 that

> [ IV~ B

RETH
(5.6) <2 Z / IVyn (@) — m(Vyn(2))|]* do + 2 Z / | (Vyn(x)) — Fy | d
ReETH ReETH
< Cén(yn) +C,
which together with Theorem 4.2 implies the desired inequality. O

We now establish error bounds for the weak approximation of deformation gra-
dients to the limiting macroscopic deformation gradient Fl.

Theorem 5.5. For any rectangular parallelepiped w C Q whose boundary Ow is
composed of faces parallel to the coordinate planes, there exists a constant C' =
C(w) > 0 such that for all y, € Ap

(5.7)

> [ V) = B de| < C [ + et + 2]

ReETH

Proof. Denoting
thU{RGTh:RCw},

we have for any y, € Ajp, that

3 / ) =R do

ReTh
G8) = > / [Vyn(z) — Fr] dz + Z/ [Vyn(z) — Fr] dz
ReETH,RCwp RETH (w=wn)NR
:K1+K2.
Since

meas (w — wp) < Ch,

we can estimate Ko by virtue of the triangle inequality, the Cauchy-Schwarz in-
equality, and Lemma 5.1 to get

1Ko = R;/w o [Vyn(z) — Fy] dx
(5:9) Z / m(Vyn(z)) — Fi] dz
RETH (w—wn
< Cht Z/HV% (@) = m(Vyn(2))|*dz| + Ch

ReTH
< Ch%&,(yn)? + Ch.
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To estimate K; we first assume that y;, € Aj. It then follows from the divergence
theorem and the definition of the Af-approximation that

K, = Z /R [Vyn(z) — F)\] dz

RETH,RCwy,

Z /871 [yn(x) — Frz] @ vdS

ReETH,RCwh

- Z Z /f[yh(:v) — Fyz] ®vdS.

RCwh,0RNOwp#D FCORNOw

Since wy, C Q is a rectangular parallelepiped which is a union of elements in 7,, we
have by the Cauchy-Schwarz inequality and (4.17) that

K<Y > [l - Bl as
RCwn,dRNwn#D FCORNOwy, YT

2

< (meas 3wh)% Z Z /}_ lyn(z) — Faz|>dS

RCwp,0RNOwp #0 FCORNIOwy,

gC(measaw)% {A(z,luh) /Wh |yh(x)—F)\x|2dx+h Z /RHVyh(x)—F,\Hde
> [ 1V -5 da:> } ,

RCwp
1
2
+(/ |yh(x)—m|2dx> (
“Wh RCwy,

1 9 ,
SC{—A(wh)/Q|yh(a:)—Fw| de+h Z /RHV?Jh(J?)—FAII da

RETH
+ (/Q lyn(z) — F,\CC|2dff)% (

1
341
> [ 19 - m"’czx) } ,
R
since A(w) < CA(wp,). This, together with (5.6) and Theorem (5.4), implies that

=

RETH

(5.10) 1K1l < C [Enun)d + Enlun)t + 14

Now let us assume that y, € A}. By the same argument as in the proof of
Theorem 4.1, cf. (4.3) and (4.4), we have

K= > [Vyn(z) — Fy] do
ReETHL,RCwp R
= Z / [yn(z) — Frz] @ vdS
ReT,,RCwp OR

= Y [ @ - R er) - Besl e vas

ReETH,RCwy, FCOR

T Z Z /}_[yh(cf)—FACf]Q@VdS

ReETH,RCwp FCOR
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= > > /f[yh(cf)—FAcf]QbudS

ReETH,RCwy, FCOR

- Z Z /f [yn(cF) — Facr] @ vdS.

RCwp,0RNOwp 75(2) FCORNOwp,

Using a similar argument to that for y, € Af, we can obtain (5.10) again for

yn € A} by (4.16), (5.6), and Theorem 5.4.
Finally, (5.7) follows from (5.8), (5.9), and (5.10).

6. APPROXIMATION OF MARTENSITIC VARIANTS

|

Let us now define the projection operator w15 : R3*3 — Ufy Uls by

|F —m2(F)]| = min ||F-d|, VEF € R3%3,

GelUU2

For the orthorhombic to monoclinic transformation, we note that m = w. The
next lemma gives an estimate for 712 — 7 for the cubic to tetragonal transformation
by showing that the measure of the set of points in which the gradient of energy
minimizing sequences of deformations is near Us converges to zero. Thus, the next
lemma reduces the three-well problem for the cubic to tetragonal transformation

to a two-well problem.

Lemma 6.1. For the cubic to tetragonal transformation, there exists a constant

C > 0 such that

00 3 [ (Vi) - ma(Vin @) o < Caau)t V€ A
RETH R
Proof. We have by a simple calculation that
Jnf [l — Fales| 2 [z —ml.
Denoting
Q3 = U {x € R:n(Vyn(x)) € Us}
ReTH
for yp, € Ap, we have by Lemma 5.2 that
meas (3 = Z meas {x € R : m(Vyp(x)) € Us}
RETH
(62) <tm=ml? X [ (Vo) - Bleaf do

ReETH
< C&(yn)?,
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since e3 - n = 0 (recall that n = 271/2(e; + e3)). The result (6.1) then follows from
the inequality

3 / 17 (Vy(@)) — o (Von (@) da

ReETH
-y / I7(Vy(2)) — ma(Tyn ()] da
RETH RmQ?’
< 4(2nf + n3) meas Q3

< C&(yn)*

since ||7(F)| = ||m2(F)| = \/2n? + n3 for all F € R3*3. O

We next define the operators © : R3*3 — SO(3) and II : R3*3 — {Fy, F}} by
the relation

(6.3) m9(F) = O(F)II(F),  VF € R**3,

The following theorem gives an error bound for the convergence of deformation
gradients to the set of variants {Fy, F1}.

Theorem 6.2. There exists a constant C > 0 such that

> [ 19~ Mm@ de < € [Entum)? + Enm)] Vo € A

RETH
Proof. For any w € R? such that w - n = 0, we have

H(F)w = Fyw = Fiw = Fyw, VF € R3*3,
Thus, it follows from (6.3) that
[O(F)—1IFow=[0(F) - I|TI(F)w = [m2 (F) — Fh\]w
= [r12 (F) = n(F)]w + [r(F) — F\Jw,  VF € R¥*3,

We can then apply the triangle inequality to the above identity with F' = Vy,(z),
x € R, for any yp € A;, and any element R € 73, and estimate the corresponding
two terms by Lemma 6.1 and Lemma 5.2 to obtain for w - n = 0 that

> /| (Vyn(z)) — 1) Fow|® dz

RETH
<2} / 1o (Vyn (@) — 7 (Tyn ()] w] da
RETH
(6.4) +2 ) /| (Vyn(z)) — Fa] w|*dz
RETH
< Cf,’h(yh)?.

Choose w; € R3 and wy € R3 so that wy -n = wy -n = 0 and w1, w. are linearly
independent. Set m = Fyw; X Fyws,. Since

Qm = QFyw X QFyws, vQ € SO(3),
we have for all F' € R3*3 that
[O(F)—Ilm ={0 (F) Fow; x © (F) Fows} — {Fowy x Fyws}
={[® (F) — I] Fowr X © (F) Fowz} — {Fowy X [I — O (F)] Fowsa} .
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This together with (6.4) implies that

(6:5) > [ 16 (Vunte)) ~ 1mf de < Centun)?.

ReETH R

Now {Fow;, Fows, m} is a basis for R3, so we can conclude from (6.4) and (6.5)
that for all y, € Ap,

66 3 [0 (Vuna) ~ DI dr <€ [entun)* +nun)].

ReET)

We complete the proof by applying the triangle inequality to the identity

F —1I(F) = [F = 7(F)] + [r(F) — m12(F)] 4 [m12(F) — TI(F)]
=[F —n(F)] + [n(F) — m=2(F)] + [O(F) — I|II(F), VF € R3%3,

with F' = Vyy(x) for any y, € A, © € R, and R € 73, and by estimating the three
terms by Lemma 5.1, Lemma 6.1, and (6.6). O

7. APPROXIMATION OF SIMPLY LAMINATED MICROSTRUCTURE

For any subset w C 9, p > 0, and yj, € A, we define the sets

wg(yh) = URGTh {r e wNR: I(Vyp(z)) = Fy and ||[Vyp(z) — Fol| < p},
wy(yn) = Urer, {2 € wNR :1(Vyn(2)) = F1 and ||[Vyn(z) — F1|| < p}.
The following theorem states that for any rectangular parallelepiped w C € and
for any energy minimizing sequence {y} the volume fraction that the piecewise
defined gradient Vy,, is near Fj converges to 1 — A and the volume fraction that
Vyy, is near F} converges to A.

Theorem 7.1. For any rectangular parallelepiped w C Q0 whose faces are parallel
to the coordinate planes, and any p > 0, there exists a constant C = C(w,p) > 0
such that for all yn, € Ap,

‘measwg(yh) -yt ‘measw})(yh) s
measw measw
(7.1) < C [Enlun)® + ) + 2]

Proof. Fix yj, € Ay,. It follows from the definition of wg = wg(yh) and w}) = w}) (yn)
that

[measw) — (1 — A) measw]| Fy + [measw), — Ameasw| Fy

(7.2) = R;h /w . [II (Vyn(z)) — Fy| dz

- II (Vyp(z)) de.

Rer, ~/(w—{w2Uw;})ﬂR
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We have by Theorem 6.1 and Theorem 5.5 that

> /m [ (Vyn(z)) — F)] dz

HRGT}L

< / [ (Vyn(z)) — Vyn(x)] do H [Vyh(x)—FA] dx
Rer, TWNR Rer, YN
(7.3)
< (measw)? [Z / T (Vyn (= Vyh($)||2d$]
ReTH
+ HR; /w - [Vyn(z) — F] do

<C [&(yh)% +En(yn)E + hi] .

Since |IL(F)|| = /2n? + n3 for all F € R3*3 we can conclude by the definition of
wg and wl and by Theorem 6.2 that

IT(Vyp(x)) dx

HRETh (w—{wlUwl})NR
< Cmeas(w — {wg U w;})
C
(4 <S5 1T (Vyn(2) = Fon ()| do
(w {wOle}) R

P RETH

< Clmeasw)= C(measw)z lz / 1T (Vyn (x Vyh(x)||2d:v1

RETH
<C [gh(yh)% + 5h(yh)%} :
Therefore, we have by (7.3) and (7.4) that
|| [measw) — (1 — A\)measw] Fy + [measw) — Ameasw] Fi ||
<C {&L(yh)% +En(yn)® + hﬂ ;
which implies (7.1) because Fj and F} are linearly independent. O

We now denote by V the Sobolev space of all measurable functions f(z, F) :
Q x R3*3 — R such that

2
1515 = | [esssupnva(x,Fn@ dr + Gy]12 < o,
Q LFeRrsx3
where

Gy(x) = f(x, F1) — f(z, Fy), x € Q.

The following theorem gives error bounds for the approximation of nonlinear inte-
grals of deformation gradients which represent macroscopic thermodynamic densi-
ties.
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Theorem 7.2. There exists a constant C > 0 such that

> [ (@ (@) = (1= V@) + A (o Fa)) do

ReETH

< Clflv [Enlun)t + Enln)} +1E], VFEV, vy € An.
Proof. We have

> [ (@ ) = [0 = N o Fo) Ao R do

ReTH
-y / %, Vyn(@)) — f (&, T (Vyn(2)))] de
RETH
15+ X [ @O~ [0 = NS Fo)+ M ) de
ReETH
= M; + M.

The first term M; can be easily estimated by the Cauchy-Schwarz inequality and
Theorem 6.2 to give

i< Y [ Jessup Ve s Pl 19m) = 11T 0] d

RETH

(Bdfseeot)

(7.6) {Z / IVyn(z) — IL(Vyn(z ))llzdx}
RETH

< ClIfllv [Entym) +5h<yh>5] .
To estimate the second term Ms, we use the identity
f(, H(F)) (1 =X f(x, Fo) + Af(z, F1)]
= |2 {a-[(F) - F\]n}Gy(x),  VF e R,

-

to show that
Moz 3 [ 7 @I (T0@) - (1= 2@ F) + A o )} d

RETH
= R;h /R — {a- [I(Vyr(z)) — Vyn(2)| n} Gy (z) dx
/ — {a- [Vyn(z) — Fx]n} Gy (z) dx
RETh | |
(7.7) - R;h /R 5 {a- [[I(Vyn(2)) — Vyn(2)|n} Gy (z) dx

+Z/ 2{@ [yn(z) — Faz]} (n-v)Gy(x)dS

ReETH
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> [ e o) = Ral} [VGy(w) - da
ReETH | |

EP1—|—PQ—|—P3.

We can estimate P; and P3 by the Cauchy-Schwarz inequality, Theorem 6.2, and
Theorem 5.4 by

a9 inl=c( [ e |dx)1[sh<yh>4+eh<yh>%}

(7.9) |Ps| < C (/Q |VGf(;v)n|2dx) : {5h(yh)% + Enlyn)? + h%} .

To estimate P», we denote again zp(z) = yp(z) — Fhz, z € Q. We rewrite P, as

=3 3 [ sl a@] G v)as

ReTh FCOR
=3 ¥ [ orle @) - TR Grle) - T3 Gl (0 ) dS
Rem Feor 7 lal
for yp € A{ by the definition of Af and

=y Y [ Ela @l Gr@n-v)ds

ReTh, FCOR
- Z Z / | |2 {a’ Zh( )_Zh(c]:)]}Gf( )(n V)dS
ReTn FCOR

for y, € A} by the definition of A}. By the same argument as for estimating J§
and JI in the proof of Theorem 4.2 (cf. (4.10), (4.11), (4.14), and (4.15)) and by
Lemma 3.3 and (5.6), we have

1
: :
pl<on| Y [ 1vne mzdx] [ 1v6s ]
RETH Q
(7.10) < Ch (&)t +1] IV Gyl o -
Finally, the assertion of the theorem follows from (7.5)—(7.10). O

8. ERROR ESTIMATES FOR QUASI-OPTIMAL DEFORMATIONS

We first establish the existence of finite element energy minimizers as well as the
error bound for the corresponding minimum energy.

Theorem 8.1. There exist a constant C > 0 and y, € Ay such that
Sh(yh) = min &p(up) < Ch%.
up €A
Proof. Fix a mesh 7,. We have by the inverse inequality (3.8), Lemma 5.1, and
Theorem 5.4 that

_3
[unlly oon < CR72 Jlunlly s

(8.1) < Ch_% 5h(uh)i —|—5h(uh)% + 1], Yup € Ap.
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Moreover, the continuity of the energy density ¢ implies the continuity of the energy
functional &, on the finite-dimensional affine space Aj. Therefore, the bound (8.1)
implies the existence of a finite element energy minimizer by compactness.

To finish the proof, we need to construct a finite element deformation y € Ay,
such that

En(yn) < Ch3.

This can be demonstrated by an argument similar to that in [8], [32], [31] since the
space of our finite element polynomials (3.1) contains all linear polynomials and
since the interpolation operator Ij, : C(Q2) — V}, satisfies the inequality (3.20). O

The number of local minima of the energy functional &, on Ay grows arbitrarily
large as the mesh size h — 0 [31]. Many of these local minima are approximations
on different length scales to the same optimal microstructure [31]. Thus, it is rea-
sonable to give error estimates for finite element approximations yp, € Ay, satisfying
the quasi-optimality condition
(8.2) En(yn) <~ inf E(up)

up €Ap
for some constant v > 1 independent of h. Our estimates show that all of the local
minima of &, on A; which satisfy the quasi-optimality condition give accurate
approximations to the energy-minimizing microstructure for the deformation, the
volume fractions of the deformation gradients, and the nonlinear integrals of the
deformation gradient.

It follows directly from the above theorem and all of the error bounds established
in 8§85, §6, and §7 that we can obtain the following error estimates for all quasi-
optimal finite element deformations y;, € Ap and for any family of rectangular
meshes 7, satisfying the quasi-uniformity condition (3.2).

Corollary 8.2. For any w € R3 satisfying w-n = 0, there exists a constant C > 0
such that

> Al[Vyh(:r)—FA]wﬁdxgc;ﬁ

RETH
for any yn, € Ap, which satisfies the quasi-optimality condition (8.2).
Corollary 8.3. There exists a constant C > 0 such that

for any yn, € Ap, which satisfies the quasi-optimality condition (8.2).

Corollary 8.4. If w C Q is a rectangular parallelepiped whose faces are parallel to
the coordinate planes, then there exists a constant C' = C(w) > 0 such that

< ChTs

R;h /w (V) — B

for any yn, € Ap, which satisfies the quasi-optimality condition (8.2).
Corollary 8.5. There exists a constant C > 0 such that

3 /R V() — TL(Vyn (@) | dz < Ch

for any yn, € Ap, which satisfies the quasi-optimality condition (8.2).
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Corollary 8.6. Ifw C Q is a rectangular parallelepiped whose faces are parallel to
the coordinate planes and p > 0, then there exists a constant C = C(w, p) > 0 such
that

measw) (yn) measw)(yn)

— (1= — A < Chis

measw measw

for any yn, € Ap, which satisfies the quasi-optimality condition (8.2).

Corollary 8.7. There exists a constant C' > 0 such that

3 /R {f (2, V(@) — [(1 = Nf (2, Fo) + M, )]} da| < ClLfllvh

ReETH

forany f €V and any y, € Ap, which satisfies the quasi-optimality condition (8.2).
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