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THE EFFICIENT COMPUTATION OF FOURIER TRANSFORMS
ON THE SYMMETRIC GROUP

DAVID K. MASLEN

Abstract. This paper introduces new techniques for the efficient computation
of Fourier transforms on symmetric groups and their homogeneous spaces. We
replace the matrix multiplications in Clausen’s algorithm with sums indexed by
combinatorial objects that generalize Young tableaux, and write the result in
a form similar to Horner’s rule. The algorithm we obtain computes the Fourier
transform of a function on Sn in no more than 3

4
n(n− 1) |Sn| multiplications

and the same number of additions. Analysis of our algorithm leads to several
combinatorial problems that generalize path counting. We prove corresponding
results for inverse transforms and transforms on homogeneous spaces.

1. Introduction

The harmonic analysis of a complex function on a finite cyclic group is the
expansion of that function in a basis of complex exponential functions. This is
equivalent to the discrete Fourier transform of a finite data sequence, and may
be computed efficiently using the fast Fourier transform algorithms of Cooley and
Tukey [7] or their many variants (see e.g. [12]).

In the current paper we study the harmonic analysis of a function on the sym-
metric group. The analogues of the complex exponentials are the matrix entries of
a complete set of irreducible complex matrix representations of Sn, called matrix
coefficients, and the expansion of functions in this basis may be computed by a
generalized Fourier transform on the symmetric group. We describe efficient algo-
rithms for computing the harmonic analysis of a function on the symmetric group,
or equivalently, its generalized Fourier transform. Thus our results may be consid-
ered a generalization of the fast Fourier transform to the symmetric group. We also
present a related algorithm for the harmonic analysis of functions on homogeneous
spaces.

Fourier transforms on finite groups have been studied by many authors. The
books of Beth [1], Clausen and Baum [3], and the survey article [19] are general
references for the computational aspects of these transforms. Rockmore [22] and
Diaconis [9] contain discussions of the applications. For applications more specific
to symmetric groups, see [8] and [11].

The computation of Fourier transforms on symmetric groups was first studied
by Clausen [5] [6], and Diaconis and Rockmore [10], using approaches related to the
one taken in the current paper; also see [4] for a detailed discussion of Clausen’s
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algorithm and its implementation. Linton, Michler, and Olsson [16] use a different
method that involves the decomposition of Fourier transforms taken at monomial
representations.

The algorithms we develop in the current paper are refinements of Clausen’s
algorithm [5] for computing Fourier transforms on the symmetric group, and of
algorithms developed to compute Fourier transforms on compact Lie groups [18].
To describe our main results, let f be a complex function on Sn and let ρ be an
irreducible matrix representation of Sn given in Young’s orthogonal form (see [15]
for terminology). Then the Fourier transform of f at ρ is the matrix sum

f̂(ρ) =
∑
s∈Sn

f(s)ρ(s).(1.1)

Computation of the transforms (1.1) at a complete set of irreducible representations
in Young’s orthogonal form gives us the harmonic analysis of f , because the scaled
matrix entry dim ρ

|Sn|
[
f̂(ρ)

]
ij

is the coefficient of the function (s 7→ [ρ(s)]ij) in the

expansion of f in the basis of matrix coefficients. We prove the following theorem,
which counts the maximum of the numbers of additions and multiplications required
to compute a collection of Fourier transforms on Sn.

Theorem 1.1. The Fourier transform of a complex function on the symmetric
group Sn may be computed at a complete set of irreducible matrix representations
in Young’s orthogonal form in no more than 3n(n−1)

4 |Sn| multiplications and the
same number of additions.

Note that since |Sn| = n!, the number of scalar operations counted in Theo-
rem 1.1 is O((log |Sn|)2 |Sn|). Although we have stated Theorem 1.1 for Young’s
orthogonal form, we actually prove a more general result that applies, e.g., to
Young’s seminormal form as well. Results on the complexity of the corresponding
inverse Fourier transform follow immediately by considering the transpose of our
algorithms.

Any complex function on a homogeneous space may also be considered to be
a function on a group which is constant on cosets. In this way we may apply
Fourier analysis on the group to functions on any homogeneous space. We prove the
following theorem concerning the expansion of functions on homogeneous spaces.

Theorem 1.2. The Fourier transform of a complex function on the homogeneous
space Sn/Sn−k may be computed at a complete set of (class-1 ) irreducible matrix
representations in Young’s orthogonal form in no more than 3k(2n−k−1)

4 |Sn/Sn−k|
multiplications and the same number of additions.

There are several novel features of our approach to the computation of Fourier
transforms. One is the use of a kind of commutativity in the group algebra of
the symmetric group that lets us replace an iterated group algebra product by a
sequence of bilinear maps. This allows us to write an expression for the Fourier
transform in a form similar to Horner’s rule, and leads to an efficient algorithm.

Another interesting feature is the appearance of certain combinatorial objects
that generalize Young tableaux. It is well known that Young tableaux may be
associated with sequences of partitions, each obtained by adding a box to the Young
diagram of the previous one. This corresponds to an upward walk in a partially
ordered set called Young’s lattice (see [24] and [25] for a discussion of combinatorial
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problems associated with these and other walks). In the current paper we encounter
sequences of partitions that satisfy more general relations corresponding to the
mapping of a multiply-connected graph into Young’s lattice. In joint work with
Dan Rockmore, such ideas have been generalized to apply to the computation of
Fourier transforms on other finite groups [21].

The organization of the paper is as follows. Section 2 contains background from
the theory of Fourier transforms on finite groups. Section 3 contains the proof of
the main theorem modulo several lemmas that are proven in Section 4. In Section 5
we prove several combinatorial lemmas, and give an exact operation count for our
algorithm. In Section 6 we turn our attention to homogeneous spaces, and finally,
we conclude in Section 7.

Although we have tried to make the paper relatively self-contained, we do use a
number of facts from representation theory that may be found in the books of Serre
[23], James and Kerber [15], and Macdonald [17]. Background from the theory of
computation of Fourier transforms may be found in the book of Clausen and Baum
[3], and in the articles [20] and [19].

2. Fourier transforms on finite groups

The Fourier transform of a function on the symmetric group and the usual dis-
crete Fourier transform of a finite data sequence are both special cases of Fourier
transforms on finite groups. We refer the reader to Serre’s book [23] for the relevant
background from representation theory.

Definition 2.1 (Fourier transform). Let G be a finite group and f be a complex-
valued function on G.

1. Let ρ be a matrix representation of G. Then the Fourier transform of f

at ρ, denoted f̂(ρ), is the matrix sum,

f̂(ρ) =
∑
s∈G

f(s)ρ(s).(2.1)

2. LetR be a set of matrix representations of G. Then the Fourier transform
of f on R is the direct sum,

FR(f) =
⊕
ρ∈R

f̂(ρ) ∈
⊕
ρ∈R

Matdim ρ(C),(2.2)

of Fourier transforms of f at the representations in R.

Fast Fourier transforms, or FFTs, are algorithms for computing Fourier transforms
efficiently.

Example 2.2. When G = Z/NZ is a cyclic group, the irreducible representations
are exactly the complex exponentials ζj(k) = e2πijk/N considered as 1× 1 matrix-
valued functions. The associated Fourier transform is the usual discrete Fourier
transform, which may be computed by the fast Fourier transform algorithms of
Cooley and Tukey [7] and others.

When defining the arithmetic complexity of computing a Fourier transform, we
must allow for the possibility that the number of operations depends on the specific
matrix representations used, and not just on their equivalence classes under change
of bases. The reduced complexity is a related quantity, which is usually easier to
work with.
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Definition 2.3 (Complexity). Let G be a finite group, and R be any set of matrix
representations of G.

1. The complexity of the Fourier transform on the set R, denoted TG(R),
is the minimum number of arithmetic operations needed to compute the
Fourier transform of f on R via a straight-line program for an arbitrary
complex-valued function f defined on G.

2. The reduced complexity tG(R) is defined by

tG(R) = TG(R)/ |G| .
When there is no possibility of confusion, we will drop the ‘R’ in the notation

for complexities and reduced complexities.
We will always define the number of arithmetic operations counted by Defi-

nition 2.3 to be the maximum of the number of complex multiplications and the
number of complex additions, though for many of our algorithms these two numbers
are the same. When the representations in R are unitary, all the multiplications
occurring in our Fourier transform algorithms are by numbers of magnitude no
greater than 1, so our results may be interpreted in terms of the 2-linear complex-
ity of FR; see [3] Chapter 3. The recent book of P. Bürgisser, M. Clausen, and A.
Shokrollahi [2] is a general reference for algebraic complexity theory that includes
applications to Fourier transforms on groups.

A direct approach to computing a Fourier transform at a complete set of in-
equivalent irreducible matrix representations, using (2.1), gives the upper and lower
bounds,

|G| − 1 ≤ TG(R) ≤ |G|2.
2.1. The group algebra. Let G be a finite group. Then the group algebra C[G] is
defined to be the space of all formal complex linear combinations of group elements,
with the product defined by(∑

s∈G

f(s)s
)
·
(∑

t∈G

h(t)t
)

=
∑

s,t∈G

f(s)h(t)s · t.

Elements of C[G] may be identified with functions on the group in the obvious way,
and the algebra product corresponds to convolution of functions.

The most important case of Fourier transform arises when the set R is a com-
plete set of inequivalent irreducible matrix representations of G. In this case the
Fourier transform is an algebra isomorphism from the group algebra C[G], defined
by functions on G, to a direct sum of matrix algebras,

FR : C[G] ↔−→
⊕
ρ∈R

Matdim ρ(C)(2.3)

Definition 2.4. Assume R is a complete set of inequivalent irreducible matrix rep-
resentations of G. Then the inverse image of the natural basis of

⊕
R Matdim ρ(C)

under the Fourier transform FR, is called the dual matrix coefficient basis for C[G]
associated to R.

Lemma 2.5 (cf. [5]). The computation of the Fourier transform FRf at a complete
set of irreducible representations R is the same as computation of the sum∑

s∈G

f(s)s(2.4)

in the group algebra, relative to the dual matrix coefficient basis associated to R.
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Proof. This holds by linear algebra, since by definition FR is the change of basis
map from functions on G represented by their function values to functions expressed
in the dual matrix coefficient basis.

For us, the group algebra is mainly a convenient notation for dealing with all irre-
ducible representations of the group G at the same time. In particular, computation
of a product a · b in the group algebra relative to the dual matrix coefficient basis
is the same thing as computing the collection of matrix multiplications ρ(a)ρ(b)
for all ρ in R. In Section 4 we shall identify the group algebra with its coordinate
realization in the dual matrix coefficient basis. The problem we then face is to
compute the sum (2.4) given the function values f(s) and expressions for the group
elements s in coordinates.

2.2. Adapted representations. In order to derive more efficient algorithms for
computing Fourier transforms, we will need to place conditions on the set of ma-
trix representations R used. We now define a property that allows us to relate
the computation of a Fourier transform to a collection of Fourier transforms on a
subgroup.

Definition 2.6 (Adapted representations). Assume G is a finite group, and R is
a set of matrix representations of G.

1. Assume K is a subgroup of G. Then R is K-adapted, if there is a set
RK of inequivalent irreducible matrix representations of K, such that for
each ρ ∈ R the restricted representation ρ ↓K is a matrix direct sum of
representations in RK .

2. The set of representations R is adapted to the chain of subgroups,

G = Kn ≥ Kn−1 ≥ · · · ≥ K0 = 1,(2.5)

provided that R is Ki-adapted for each subgroup in the chain.

Any restricted representation is always conjugate to a direct sum of irreducible
representations by complete reducibility (cf. [23] Section 1.4). In Definition 2.6
we require the restricted representation to be equal to a matrix direct sum of
irreducibles. Note that if R is K-adapted, then the set RK is uniquely determined.

Systems of Gel′fand-Tsetlin bases are an equivalent concept to adapted sets of
matrix representations. Let R̃ be a set of finite dimensional representations of
G. Then a collection of bases of the representation spaces of R̃ (one basis for
each representation) is called a system of Gel′fand-Tsetlin bases for R̃ relative
to the chain (2.5) if the set of matrix representations R obtained by writing the
representations of R̃ in coordinates relative to these bases is adapted to (2.5).

Systems of Gel′fand-Tsetlin bases were first defined in [13] for the calculation
of the matrix coefficients of compact groups. The application to the efficient com-
putation of Fourier transforms on finite groups was first noticed by Clausen [5],
[6].

Example 2.7. If G is abelian, K is any subgroup of G, and R is any set of irre-
ducible matrix representations of G, then R is K-adapted.
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Example 2.8. Young’s orthogonal form, and Young’s seminormal form (see [15])
are both examples of complete sets of irreducible matrix representations for the
symmetric group Sn, adapted to the chain of subgroups,

Sn > Sn−1 > · · · > S1 = 1.(2.6)

Since the restriction of representations from Sn to Sn−1 is multiplicity free, the basis
vectors of a system of Gel′fand-Tsetlin bases for the irreducible representations of
Sn relative to (2.6) are determined up to scalar multiples. The corresponding sets
of adapted representations are determined up to conjugation by diagonal matrices.

The dual matrix coefficient basis associated to a complete adapted set of inequiv-
alent irreducible representations has particularly nice computational properties.

Definition 2.9. The dual matrix coefficient basis corresponding to a complete set
of inequivalent irreducible representations adapted to the chain (2.5) is called a
Gel′fand-Tsetlin basis for the group algebra C[G] relative to the chain (2.5).

We can now relate the computation of a Fourier transform at an adapted set of
representations to a collection of Fourier transforms on a subgroup. This idea was
first due to Beth, and was developed by Clausen [5], [6], and Diaconis and Rockmore
[10]. Before giving a precise statement we must introduce some notation. Assume
K is a subgroup of G, R is a K-adapted set of matrix representations of G, and Y
is a subset of G. Then we let

mG(R, Y, K) =
1
|G| ×

{ The minimum number of operations required to compute∑
y∈Y y · Fy in the Gel′fand-Tsetlin basis for C[G] associ-

ated to R, where each Fy is an arbitrary element of C[K].

(2.7)

Lemma 2.10 ([10] Proposition 1, [5], [6]). Let K be a subgroup of G and let R be
a complete K-adapted set of inequivalent irreducible matrix representations of G.
Let Y ⊂ G be a set of coset representatives for G/K. Then

tG(R) ≤ tK(RK) + mG(R, Y, K).

Proof. By Lemma 2.5, computation of FRf is equivalent to computation of the
following sum Σ in a Gel′fand-Tsetlin basis for the group algebra. We have

Σ =
∑
s∈G

f(s)s =
∑
y∈Y

∑
k∈K

f(y · k)y · k

=
∑
y∈Y

yFy,
(2.8)

where for each y ∈ Y , Fy =
∑

k∈K fy(k)k ∈ C[K], and fy(k) = f(y · k).
We may therefore use the following procedure to compute the sum Σ. First

compute the algebra elements Fy ∈ C[K] for all y ∈ Y , in the Gel′fand-Tsetlin basis
of C[K] corresponding to RK , by means of Fourier transforms on K. This requires
|G/K|TK(RK) scalar operations. The second step is to express the elements Fy

in coordinates relative to the Gel′fand-Tsetlin basis of C[G]. By Lemma 2.5, this
is equivalent to finding the matrices f̂y(ρ ↓ K) for all ρ ∈ R given the matrices
f̂y(τ) for all τ ∈ RK . This does not require any arithmetic operations, since, by
the adaptedness of R, f̂y(ρ↓K) is a block diagonal matrix that may be built from
the matrices f̂y(τ) by matrix direct sums. Finally we compute the sum Σ using
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(2.8). By definition, this takes no more than |G|mG(R, Y, K) scalar operations, as
the elements Fy all lie in C[K]. Thus we obtain

TG(R) ≤ |G/K|TK(RK) + |G|mG(R, Y, K).

Dividing by |G| proves the lemma.

2.3. Harmonic analysis. We now describe how to relate the harmonic analysis
of a function to its Fourier transforms.

The dual matrix coefficient basis is not the same as the matrix coefficient basis
referred to in the introduction. Instead, it is dual to the matrix coefficient basis
under the bilinear form (f, h) =

∑
s∈G f(s)h(s).

Assume R is a complete set of inequivalent irreducible matrix representations
of G. Let {ρij} be the matrix coefficient basis and {ρ̆ij} denote the dual basis,
so (ρij , ρ̆

′
i′j′) = δρρ′δii′δjj′ . Then by the Schur orthogonality relations, see [23]

Section 2.2, ρ̆ij(s) = dim ρ
|G| ρji(s−1). The coefficient of ρij in the harmonic analysis

of a function f is

(f, ρ̆ij) =
dim ρ

|G|
[
f̂(ρ∨)

]
ij

=
dim ρ

|G|
[
(̂f∨)(ρ)

]
ji

,(2.9)

where f∨(s) = f(s−1), ρ∨(s) = ρ(s−1)T , and ( )T denotes transpose. Thus the
harmonic analysis of f may be obtained by permuting the function values to get
f∨, applying a Fourier transform on R, reordering, and then rescaling the output
by the factors dim ρ

|G| .
The representation ρ∨ appearing in (2.9) is called the dual representation to ρ,

and the set R∨ = {ρ∨ : ρ ∈ R} is a complete set of irreducible representations
that shares any adaptedness properties that R may have. By (2.9), the harmonic
analysis of f may also be obtained by computing the Fourier transform of f on
R∨, and then scaling the output by dim ρ

|G| . Clearly, any algorithms we develop for
computing Fourier on finite groups may be applied to the computation of these
transforms in at least two different ways.

When the representation matrices are all real and orthogonal, e.g., for Young’s
orthogonal form, then ρ∨ = ρ for each ρ in R, and the harmonic analysis of f may
be obtained directly from its Fourier transform on R.

3. Fast transforms on the symmetric group

In this section we shall restate and prove Theorem 1.1 assuming the existence
of certain bilinear maps with specific properties. We leave the construction of the
bilinear maps to Section 4. In this way we hope to clarify the steps in the proof
by giving the overall form of the proof first, and then filling in the technical details
later.

Rewriting Theorem 1.1 in the language of adapted representations, gives us
Theorem 3.1. For background on the representation theory of symmetric groups,
we refer the reader to [15].

Theorem 3.1. The Fourier transform of a complex function on the symmetric
group Sn may be computed at a complete set of irreducible matrix representations
of Sn adapted to the chain of subgroups

Sn > Sn−1 > · · · > S1 = 1(3.1)

in no more than 3n(n−1)
4 |Sn| multiplications and the same number of additions.
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Proof. We start by noting that if ti is defined to be the transposition (i−1 i), then
the group elements

t2 · · · tn, t3 · · · tn, . . . , tn, e,

form a complete set of coset representatives for Sn relative to Sn−1. Thus by
Lemma 2.10, the problem of computing the Fourier transforms of a complex function
at a set of adapted representations will be solved, if we can show how to compute
sums of the form

Σ =
n∑

i=1

ti+1 · · · tn · Fi(3.2)

in a Gel′fand-Tsetlin basis for the group algebra relative to the chain (3.1), where
the Fi are arbitrary elements of C[Sn−1].

We shall rearrange the sum (3.2) in a form similar to Horner’s rule, and show
that such a sum may be computed in no more than 3(n−1)

2 |Sn| scalar operations,
given the algebra elements Fi ∈ C[Sn−1] in the appropriate Gel′fand-Tsetlin basis.
By Lemma 2.10, this relates the Fourier transform of a function on Sn to a collection
of Fourier transforms on Sn−1, and allows us to prove the theorem inductively.

The key to rearranging the sum (3.2) is to permute the order in which the
group algebra multiplications are performed. We claim that there is a sequence of
bilinear maps ∗

2
, . . . , ∗

n
, and spaces V1, . . . , Vn, C2, . . . , Cn, such that the following

four properties hold.

Prop. 1. V1 = C[Sn−1] and Vn = C[Sn]. For 2 ≤ i ≤ n,

Ci = C[Si] ∩ Centralizer(C[Si−2]),

and the map ∗
i
: Vi−1 × Ci → Vi is bilinear.

Prop. 2. If F ∈ V1 and si ∈ Ci for 2 ≤ i ≤ n, then

s2 · s3 · · · sn · F =
(· · · (F ∗

2
s2

) ∗
3
s3 · · ·

) ∗
n

sn.

Prop. 3. For each i with 2 ≤ i ≤ n, the map

F 7−→ (· · · (F ∗
2

e
) ∗

3
e · · · ) ∗

i
e ∈ Vi

requires no arithmetic computation to apply.
Prop. 4. Given vi−1 ∈ Vi−1, si ∈ Ci and vi ∈ Vi, we may compute vi−1∗

i
si+vi in no

more than 3(i−1)
n |Sn| multiplications and the same number of additions.

In order to simplify the presentation, we shall defer the construction of ∗
i

and the
demonstration of Prop. 1–4 to Section 4, where they will follow from Lemmas 4.5–
4.8 respectively. We have already chosen bases for the spaces V1, Vn, and Ci

(Gel′fand-Tsetlin bases); the spaces Vi, 1 < i < n, will be constructed with a
natural choice of basis, and it is with respect to these bases that the complexity
statements Prop. 3 and Prop. 4 are to be interpreted.
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Using Prop. 1 and Prop. 2, it is easy to rearrange (3.2) into a more manageable
form,

Σ =
n∑

i=1

e · · · e · ti+1 · · · tn · Fi

=
n∑

i=1

(· · · ((· · · (Fi ∗
2
e
) ∗

3
· · · ) ∗

i
e
) ∗

i+1
ti+1 · · ·

) ∗
n

tn

=
[[
· · ·
[[

F1 ∗
2

t2 + F2 ∗
2

e
]
∗
3

t3 +
(
F3 ∗

3
e
) ∗

3
e

]
∗
4

t4

· · · + · · ·
]
∗

n−1
tn−1

+
(· · · (Fn−1 ∗

2
e
) ∗

3
· · · ) ∗

n−1
e

]
∗
n

tn

+
(· · · (Fn ∗

2
e
) ∗

3
· · · ) ∗

n
e.

(3.3)

The algorithm for computing Σ given F1, . . . Fn proceeds in the obvious way:

Stage 1. Let G1 = F1.
Stage i. Let Gi = Gi−1 ∗

i
ti +

(
. . .
(
Fi ∗

2
e
) ∗

3
. . .
) ∗

i
e, for 2 ≤ i ≤ n.

Stage n. Let Σ = Gn = Gn−1 ∗
n

tn + Fn.

A quick look at (3.3) verifies that Σ = Gn.
Assume that the Fi are given and the ti have been precomputed relative to the

Gel′fand-Tsetlin basis. Then Stage 1 requires no computation, and by Prop. 3 and
Prop. 4 the computation of Gi from Gi−1 and Fi at Stage i requires no more than
3(i−1)

n |Sn| scalar operations.
Adding the operation counts for all the stages shows that the computation of

Σ given F1, . . . , Fn takes no more than 3(n−1)
2 |Sn| scalar operations. Thus by

Lemma 2.10, the reduced complexities for the computation of Fourier transforms
relative to Gel′fand-Tsetlin bases satisfy

tSn ≤ tSn−1 +
3(n− 1)

2
.(3.4)

Applying (3.4) recursively shows that tSn ≤ 3n(n−1)
4 . Therefore the Fourier trans-

form of a complex function on Sn may be computed in no more than 3n(n−1)
4 |Sn|

scalar operations. Prop. 4 easily implies that the number of multiplications required
by our algorithm is the same as the number of additions.

Remark 3.2. Clausen’s algorithm [5] calculates the products ti+1 · · · tn ·Fi occurring
in (3.2) by matrix multiplication of the corresponding matrices in the order from
right to left. By Lemma 4.1 equation (4.5), the matrices corresponding to to tj are
sparse so the product tj · (tj+1 · · · tn · Fi), i < j may be computed efficiently given
tj and tj+1 · · · tn · Fi in a Gel′fand-Tsetlin basis.

Clausen’s algorithm requires (n+1)n(n−1)
3 |Sn| scalar operations, so Theorem 3.1

represents an improvement of order a factor n.
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Theorem 3.1 immediately gives us a method for computing inverse Fourier trans-
forms as well. To see this, suppose that R is a complete set of inequivalent irre-
ducible representations of the group G, and let D, I be the maps

D :
⊕
ρ∈R

Mat(dim ρ)(C) −→
⊕
ρ∈R

Mat(dim ρ)(C) :
⊕
ρ∈R

F (ρ) 7−→
⊕
ρ∈R

dim ρ

|G| F (ρ),

(3.5)

I :
⊕
ρ∈R

Mat(dim ρ)(C) −→
⊕

ϕ∈R∨
Mat(dimϕ)(C) :

⊕
ρ∈R

F (ρ) 7−→
⊕

ϕ∈R∨
F (ϕ∨),

(3.6)

where ρ∨ denotes the dual representation; see Section 2.3. Then FT
R∨IDFR = I,

where ( )T denotes transpose, and I is the identity transformation.

Theorem 3.3. Assume R is a complete set of irreducible matrix representations of
Sn adapted to the chain of subgroups (3.1). For each ρ ∈ R, let F (ρ) be a complex
dim ρ× dim ρ matrix. Then the inverse Fourier transform

f(s) = F−1
R [
⊕
ρ∈R

F (ρ)](s) =
1
|Sn|

∑
ρ∈R

(dim ρ)Trace(F (ρ)ρ(s−1))(3.7)

may be computed in no more than 3n(n−1)
4 |Sn| scalar operations.

Proof. Equation (3.7) is simply the Fourier inversion formula; see [23] 6.2 Proposi-
tion 11. To compute the inverse transform F−1

R , first apply D, as defined by (3.5)
with G = Sn, then apply I, and finally apply FT

R∨ using the transpose algorithm
(see [3], Chapter 3) of the algorithm of Theorem 3.1 for computing the Fourier
transform at the set of dual representations R∨. The last step is possible because
R∨ is also adapted to the chain (3.1).

The map I is a re-indexing map, and requires no arithmetic operations to apply.
The Fourier transform algorithm of Theorem 3.1 has the same number of outputs
as inputs, so by [3] Theorem 3.10, the transpose algorithm takes exactly the same
number of scalar operations as the Fourier transform algorithm of Theorem 3.1.
Application of D requires at most an extra |Sn| scalar operations, but the bound of
Theorem 3.1 overestimates the complexity of the Fourier transform by at least this
much (see the proofs of Lemma 4.8 and Lemma 5.3 in the following sections).

Remark 3.4. If the representations in R are unitary, then F−1
R = F∗RD, where ( )∗

denotes conjugate transpose. If the representations are orthogonal, e.g., Young’s
orthogonal form, then the conjugate transpose may be replaced by a transpose. For
representations of the symmetric group, we may always find a diagonal transfor-
mation DR such that FT

RDRFR = I (see Example 2.8).
The transformation I can be given a coordinate-free definition, but that requires

a more sophisticated interpretation of the transposes.

4. Construction and properties of the bilinear maps

From now on, it is convenient for us to fix a complete set of irreducible matrix
representations of Sn adapted to the chain of subgroups

Sn > Sn−1 > · · · > S1 = 1.(4.1)
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The standard bases for the spaces of column vectors on which these representations
act is then a system of Gel′fand-Tsetlin bases relative to (4.1). This also deter-
mines a Gel′fand-Tsetlin basis for the group algebra C[Sn]. Unless explicitly stated
otherwise, we shall always refer to this system of Gel′fand-Tsetlin bases, and this
Gel′fand-Tsetlin basis for the group algebra.

To motivate our construction of the bilinear maps ∗
i

and the spaces Vi, we first

investigate some explicit ways of writing a product of elements in the group algebra
in coordinates. We start by noting that the irreducible representations of Sn are in
one to one correspondence with partitions of n; see e.g., [17]. If αn is a partition of
n, then we denote the corresponding representation of Sn by ∆αn .

It is well known [15] that a system of Gel′fand-Tsetlin bases for representations of
Sn relative to the chain of subgroups (4.1) may be indexed by a chain of partitions

α = αn αn−1oo · · ·oo α2oo α1oo (α0 = φ)oo(4.2)

where αi is a partition of i, and α βoo indicates that the partition β may
be obtained from α by removing a single box, or equivalently that ∆β occurs in
the restriction of ∆α to the symmetric group of one lower order. α indexes the
unique Gel′fand-Tsetlin basis vector for ∆αn which is contained in the isotypic
subspace of type ∆αi under the action of Si, for 1 ≤ i ≤ n. Thus, a single chain of
partitions determines an irreducible representation of Sn and a basis vector for that
representation, whereas a pair of chains of partitions α, β with αn = βn determines
an element of the Gel′fand-Tsetlin basis for the group algebra C[Sn].

The chain of partitions α is equivalent to specifying a standard Young’s tableau
on a Young’s diagram with n boxes (see [17]), so all our arguments involving chains
of partitions could be rewritten in terms of Young’s tableaux.

Convention 1. We shall identify the group algebra C[Sn] with its realization in
coordinates relative to the Gel′fand-Tsetlin basis, indexed by pairs of chains of
partitions. Thus, if G is an element of C[Sn] we shall denote its coordinates relative
to the Gel′fand-Tsetlin basis by either [G]β,α or

G

(
βn βn−1 . . . β1

αn−1 . . . α1

)
,(4.3)

where β is the chain of partitions indexing rows of Fourier transforms of G, and α
indexes columns. Note that we always have αn = βn, which explains why αn does
not occur in (4.3).

Convention 2. An element F of C[Sn−1] can be written in coordinates relative to
the restricted Gel′fand-Tsetlin basis for C[Sn−1]. When we do this, we shall denote
the coordinates by

F

(
βn−1 βn−2 . . . β1

αn−2 . . . α1

)
.

Alternatively, F may be considered as an element of C[Sn], and expanded in the
Gel′fand-Tsetlin basis for that algebra. Fortunately, these two notations are easily
reconciled by Lemma 4.1, which follows. In particular, moving from one realization
to another is simply a re-indexing process and does not require any arithmetic
computation.
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Recall that we defined the spaces Ci, 2 ≤ i ≤ n, to be the centralizer algebras

Ci = C[Si] ∩ Centralizer(C[Si−2]).

Elements of the spaces Ci and C[Sn−1] have a very special form when written in
the Gel′fand-Tsetlin basis for C[Sn].

Lemma 4.1. Assume that 2 ≤ i ≤ n, that si ∈ Ci and F ∈ C[Sn−1]. Then,
relative to a Gel′fand-Tsetlin basis for the group algebra C[Sn], the elements si and
F have the forms

[si]β,α = δαn−1,βn−1 · · · δαi,βi · P i
si

(
βi βi−1

αi−1 αi−2

)
· δαi−2,βi−2 · · · δα1,β1 ,(4.4)

[F ]β,α = δαn−1,βn−1 · F
(

βn−1 βn−2 . . . β1

αn−2 . . . α1

)
,(4.5)

where P is a complex function of the variables indicated.

Proof. These are standard facts about Gel′fand-Tsetlin bases; see e.g., [14] Propo-
sition 2.3.12 for a proof in different notation. Equation (4.5) follows immediately
from the definition of adaptedness to Sn and Sn−1, since it describes the correct
block diagonal matrices. Iterating (4.5) shows that an element H of C[Si], i ≤ n−1,
has the form

[H ]β,α = δαn−1,βn−1 · · · δαi,βi ·H
(

βi βi−1 . . . β1

αi−1 . . . α1

)
in the Gel′fand-Tsetlin basis. The general form of an element of C[Sn] which
commutes with C[Si] is easily found by solving the equations [AH −HA]β,α = 0
as H runs over the basis for C[Si].

Remark 4.2. Lemma 4.1 shows us that Ci is isomorphic to the space of complex
functions of the partition-valued variables βi, βi−1, αi−1, αi−2, where these variables
are constrained to satisfy the relation

βi βi−1
oo

αi−1

OO

αi−2oo

OO

.(4.6)

This isomorphism may be given as si 7→ P i
si

, which requires no computation relative
to a Gel′fand-Tsetlin basis for the subgroup chain (4.1).

Example 4.3. A particularly relevant case of Lemma 4.1 equation (4.4) is when
the complete adapted set of irreducible matrix representations is Young’s orthogonal
form, and si = ti = (i − 1 i). In that case there is an explicit formula for P i

ti
, first

determined by A. Young.
For any two boxes b1 and b2 in a Young diagram, we define the axial distance

from b1 to b2 to be d(b1, b2), where

d(b1, b2) = row(b1)− row(b2) + column(b1)− column(b2).

Thus, d(b1, b2) is positive if b1 lies to the right and upwards from b2, and negative
if b1 lies to the left and downwards from b2.

Now suppose that βi, βi−1, αi−1, αi−2 are partitions which satisfy (4.6). Then
the skew diagrams of βi − βi−1 and βi−1 − αi−2 each consist of a single box, and
the axial distance d(βi − βi−1, βi−1 − αi−2) is simply the signed length of the hook
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in βi starting at one box and ending one box before the other. The formula for P i
ti

may now be stated as

P i
ti

(
βi βi−1

αi−1 αi−2

)
=

{
d(βi − βi−1, βi−1 − αi−2)−1 if αi−1 = βi−1,√

1− d(βi − βi−1, βi−1 − αi−2)−2 if αi−1 6= βi−1.
(4.7)

For a proof of this formula, in slightly different notation, see [15], Chapter 3. The
constraints (4.6) imply that P i

ti
given by (4.7) is symmetric in αi−1 and βi−1.

Now we may give an expression for the product s2 · · · sn·F in the Gel′fand-Tsetlin
basis.

Lemma 4.4. Assume F ∈ C[Sn−1] and si ∈ Ci for 2 ≤ i ≤ n. Then, relative to
the Gel′fand-Tsetlin basis for the group algebra C[Sn], the element s2 · · · sn ·F may
be expressed as

[s2 · · · sn · F ]β,γ =
∑

αn−2,...,α1

F

(
γn−1 αn−2 . . . α1

γn−2 . . . γ1

)
·

n∏
i=2

P i
si

(
βi βi−1

αi−1 αi−2

)
(4.8)

where the partitions αj , βj, γj satisfy the relations (4.9), and αn−1 = γn−1.

βn βn−1
oo βn−2

oo . . .oo β3
oo β2

oo β1
oo

γn−1

OO

αn−2oo

OO

αn−3oo

OO

. . .oo α2oo

OO

α1oo

OO

α0oo

OO

}}||
||

||
||

γn−2

ddHHHHH

HHHHH

oo . . . γ1oo

(4.9)

Proof. This follows by multiplying the algebra elements s2, . . . , sn, F in coordinates,
using the expressions (4.4) and (4.5).

4.1. Definition of the spaces and maps. For 1 ≤ i ≤ n we define Vi to be the
space of complex functions of the form

G

 βi . . . β1

αn−2 . . . αi−1

γn−1 . . . γ1

(4.10)

where αi−1, . . . , αn−2, β1, . . . , βi, and γ1, . . . , γn−1, are partitions satisfying the
restriction relations (4.11).

βi βi−1
oo . . .oo β1

oo

γn−1 αn−2oo . . .oo αi−1oo

OO

φ

OO

~~}}
}
}

}}
}}

γn−2

ccHHHHH

HHHHH

oo . . . γ1oo

(4.11)

When i = 1 or i = n, a collection of partitions satisfying (4.11) is equivalent to
specifying a pair of standard Young’s tableaux of the same shape, and the spaces
we get are C[Sn−1] and C[Sn] respectively, using Convention 1. (In the case of V1

note that the variable β1 can only assume one possible value.) This justifies the
definitions V1 = C[Sn−1] and Vn = C[Sn].
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Notice that the spaces Vi, 2 ≤ i ≤ n− 1, come equipped with a natural choice of
basis given by indicator functions which are each 1 at exactly one point (choice of
sequences of partitions) and zero elsewhere. When i = 1 or i = n, these are exactly
the Gel′fand-Tsetlin bases.

The bilinear maps ∗
i

are now easy to define. Assume that 2 ≤ i ≤ n, that
Gi−1 ∈ Vi−1, and that si ∈ Ci. Then we define Gi−1 ∗

i
si ∈ Vi by

[
Gi−1 ∗

i
si

] βi . . . β1

αn−2 . . . αi−1

γn−1 . . . γ1

 =
∑
αi−2

Gi−1

βi−1 . . . β1

αn−2 . . . αi−2

γn−1 . . . γ1

 · P i
si

(
βi βi−1

αi−1 αi−2

)(4.12)

where αi−2 satisfies (4.13).

βi βi−1
oo

αi−1

OO

αi−2oo

OO

.(4.13)

Notice that in going from Gi−1 to Gi−1 ∗
i
si we remove a dependence on αi−2 and

add a dependence on βi.

4.2. Properties of the bilinear maps. We now prove a sequence of lemmas
corresponding to the properties Prop. 1–4, required by the proof of Theorem 3.1.

Lemma 4.5 (Prop. 1). The map ∗
i
: Vi−1 × Ci → Vi is bilinear.

Proof. This follows from the bilinearity of (4.12), and the linearity of the coordi-
natizing map P i.

Lemma 4.6 (Prop. 2). Assume F ∈ V1, and si ∈ Ci for 2 ≤ i ≤ n. Then

s2 · s3 · · · sn · F =
(· · · (F ∗

2
s2

) ∗
3
s3 · · ·

) ∗
n

sn.(4.14)

Proof. Rearranging (4.8) in Lemma 4.4 shows that

(4.15) [s2 · · · sn · F ]β,γ

=
∑
αn−2

[
. . .

[∑
α2

[∑
α1

[
F

(
γn−1 αn−2 . . . α1

γn−2 . . . γ1

)
· P 2

s2

(
β2 β1

α1 φ

)]
· P 3

s3

(
β3 β2

α2 α1

)]
·

· P 4
s4

(
β4 β3

α3 α2

)]
· · ·
]
·Pn

sn

(
βn βn−1

αn−1 αn−2

)
.

The right hand side of (4.15) is exactly the composition of bilinear maps(
. . .
(
F ∗

2
s2

) ∗
3

. . .
) ∗

n
sn.

The summation over αi−2 corresponds to the application of ∗
i
. We have not writ-

ten the summation over α0 explicitly, because the only partition on 0 boxes is φ.
Similarly, one could omit the sum on α1, as that is trivial too.
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Lemma 4.7 (Prop. 3). Assume 2 ≤ i ≤ n and F ∈ C[Sn−1]. Then we have the
following expression for

(
. . .
(
F ∗

2
e
) ∗

3
. . .
) ∗

i
e in coordinates.

(4.16)
[(

. . .
(
F ∗

2
e
) ∗

3
. . .
) ∗

i
e
] βi . . . β1

αn−2 . . . αi−1

γn−1 . . . γ1


= δαi−1βi−1F

(
γn−1 αn−2 . . . αi−1 βi−2 . . . β1

γn−2 . . . . . . . . . . . . γ1

)
.

This requires no arithmetic computation; it is simply a re-indexing operation.

Proof. Equation (4.16) follows by using the definition (4.12) repeatedly, and noting
that P i

e has a particularly simple form,

P i
e

(
βi βi−1

αi−1 αi−2

)
= δαi−1βi−1 .

Before proving Prop. 4 we introduce notation which lets us give an exact count
of the number of operations we use to apply the bilinear maps ∗

i
. We prove the

exact count in this section, but defer the proof of the bound 3(i−1)
n |Sn| to the next

section.
Equation (4.12), which defines the bilinear maps, has a combinatorial indexing

scheme that generalizes Young’s tableaux. The left hand side of that formula in-
volves sequences of partitions γ1, . . . , γn−1, β1, . . . , βi, αi−2, . . . , αn−2 (with αj a
partition of j etc.), which satisfy the relations

βi βi−1
oo . . .oo β1

oo

γn−1 αn−2oo . . .oo αi−1oo

OO

αi−2oo

OO

φ

OO

~~}}
}}

}}
}}

γn−2

ccHHHHH

HHHHH

oo . . . γ1oo

.(4.17)

Let Fn
i denote the number of such sequences.

The number of arithmetic operations taken by our algorithm may be expressed in
terms of Fn

i , and the combinatorial lemmas proven in Section 5 allow us to further
express this count in terms of F i

i , which we bound. Lemma 4.8, summarizes the
end result.

Lemma 4.8 (Prop. 4). Assume that 2 ≤ i ≤ n, and that vi−1 ∈ Vi−1, si ∈ Ci

and vi ∈ Vi, are given. Then we may compute vi−1 ∗
i

si + vi in no more than

Fn
i ≤ 3(i−1)

n |Sn| multiplications and the same number of additions.

Proof. Let Gn
i denote the number of sequences of partitions γ1, . . . , γn−1, β1, . . . , βi,

αi−1, . . . , αn−2 which satisfy the relations (4.11). Clearly Gn
i = dim Vi.

Calculating vi−1 ∗
i
si using (4.12) directly takes Fn

i scalar multiplications and
Fn

i − Gn
i scalar additions. Adding vi to the result requires an additional Gn

i addi-
tions. Therefore the computation of vi−1 ∗

i
si +vi takes a total of Fn

i multiplications

and Fn
i additions. The bound Fn

i ≤ 3(i−1)
n |Sn| is proven in Lemma 5.3.
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We have now verified all four properties of ∗
i
. This completes the proof of The-

orem 3.1, except for the combinatorial Lemma 5.3.

5. Combinatorial lemmas

We now turn to the combinatorial lemmas needed to complete the proof of
Theorem 3.1. First we introduce some notation which is useful for counting chains
of partitions.

Assume that i ≥ j, that α is a partition of i, and that β is a partition of j. Then
let M(α, β) denote the number of sequences of partitions αj , . . . , αi such that

(α = αi) αi−1oo · · ·oo αj+1oo (αj = β)oo .

The function M has a number of other equivalent definitions.

M(α, β) = multiplicity of ∆β in the restriction of α to Sj

= number of standard tableaux on the skew diagram α− β

= number of ways of removing boxes from α to get β.

These numbers are a special case of the Kostka numbers [17] and are usually denoted
Kα−β,(1|α|−|β|), although [15] writes kα/β,(1|α|−|β|). We have chosen our notation
to emphasize the properties of this function which come from its interpretation
as restriction multiplicities (cf., [20]). In this paper we will only use the formal
properties of M and a few special values. In particular, it is easily shown ([14]
Corollary 2.3.2) that if α, β are partitions of i and j respectively, and j ≤ k ≤ i,
then

M(α, β) =
∑
αk

M(α, αk)M(αk, β),(5.1)

where αk ranges over all partitions of k.
We shall also use the notation dα = M(α, φ). Thus dα is the dimension of the

representation ∆α, and may be calculated using the famous hook-length formula of
Frame, Robinson, and Thrall (see [17] or [15]).

Recall that Fn
i denotes the number of sequences of partitions γ1, . . . , γn−1,

β1, . . . , βi, αi−2, . . . , αn−2 (with αj a partition of j etc.), which satisfy the rela-
tions (4.17).

Lemma 5.1.

(5.2) Fn
i =

∑
βi,βi−1

γn−1,αi−1,αi−2

M(γn−1, αi−1)M(αi−1, αi−2)M(βi, αi−1)

· M(βi, βi−1)M(βi−1, αi−2)dβi−1dγn−1 ,

where αj , βj , γj range over partitions of j.

Proof. We count the sequences satisfying (4.17) as follows. First choose the parti-
tions αi−2, αi−1, βi−1, βi, γn−1 subject only to the restrictions that αi−2 is a par-
tition of i − 2, etc. Then the number of ways of choosing the chain of partitions
from αi−1 to γn−1 is M(γn−1, αi−1). Similarly, the number of ways of choosing the
chain of partitions φ, γ1, . . . from φ to γn−1 is dγn−1 , and the number of ways of
choosing the chain of partitions from φ to βi−1 is dβi−1 . Furthermore, these choices
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are independent given the choices of γn−1, αi−1 and βi−1. Finally we note that the
choice of αi−2, αi−1, βi−1, βi is only consistent with (4.17) when the product

M(αi−1, αi−2)M(βi, αi−1)M(βi, βi−1)M(βi−1, αi−2)

is nonzero. This product is always either 0 or 1, so the number of sequences
satisfying (4.17) may be found by summing the product

M(γn−1, αi−1)dγn−1dβn−1M(αi−1, αi−2)M(βi, αi−1)M(βi, βi−1)M(βi−1, αi−2)

over all choices of αi−2, αi−1, βi−1, βi, γn−1.

Suppose β is a partition. Then let jmp(β) denote the number of jumps in the
Young diagram of β. For example, if β = (4, 3, 3, 1, 1), then jmp(β) = 3.

Lemma 5.2. 1. Fn
i = (n−1)!

(i−1)! F i
i .

2. F i
i = (i − 1) · (i − 1)! +

∑
βi−1

jmp(βi−1)2d2
βi−1

, where βi−1 ranges over
partitions of i− 1.

Proof. 1. follows immediately from (5.2) by Frobenius reciprocity, since for any
αi−1 we have∑

γn−1

M(γn−1, αi−1)dγn−1 = dim IndSn−1
Si−1

∆αi−1 = |Sn−1/Si−1| · dαi−1 .

For 2. we start with the sum (5.2) in the case n = i, and split it into two parts,
distinguishing the cases where αi−1 6= βi−1 and αi−1 = βi−1. If αi−1 and βi−1 are
distinct partitions of i − 1 which are both obtained from βi by removing a box,
then they jointly determine βi (and αi−2), since the boxes removed from βi to get
to these two partitions are distinct. Thus the contribution to F i

i from terms with
αi−1 6= βi−1 may be written as

(5.3)
∑
αi−2

αi−1 6=βi−1

M(βi−1, αi−2)M(αi−1, αi−2)dαi−1dβi−1

=
∑
αi−2

αi−1,βi−1

M(βi−1, αi−2)M(αi−1, αi−2)dαi−1dβi−1−
∑

βi−1,αi−2

M(βi−1, αi−2)2d2
βi−1

.

Using Frobenius reciprocity and (5.1), the first term of (5.3) may be evaluated
as ∑

αi−1,αi−2

M(αi−1,αi−2)dαi−1

∑
βi−1

M(βi−1, αi−2)dβi−1

=
∑

αi−1,αi−2

M(αi−1, αi−2)dαi−1 · dim IndSi−1
Si−2

∆αi−2

=
∑

αi−1,αi−2

M(αi−1, αi−2)dαi−1 |Si−1/Si−2| dαi−2

= (i − 1)
∑
αi−1

d2
αi−1

= (i− 1) |Si−1| .

(5.4)

The second term of (5.3), including the minus sign, is −∑βi−1
jmp(βi−1)d2

βi−1
.

On the other hand, if αi−1 = βi−1, then the only conditions on βi and αi−2 are
that they may be obtained from βi−1 by adding or removing a box, respectively. In
this case, given βi−1, there are jmp(βi−1) + 1 ways of choosing βi, and jmp(βi−1)



1138 DAVID K. MASLEN

ways of choosing αi−2. Thus the contribution to F i
i from terms with αi−1 = βi−1

is ∑
βi−1

jmp(βi−1)(jmp(βi−1) + 1)d2
βi−1

.

Lemma 5.3.

Fn
i ≤ 3(i− 1)

n
|Sn| .

Proof. In light of Lemma 5.2, it suffices to show that for any partition βi of i, we
have jmp(βi)2 ≤ 2i. Let a = jmp(βi). By deleting rows and columns from the
Young diagram of βi, we may obtain a new partition with fewer boxes, but the
same number of jumps, and the Young diagram of this new partition can be made
to have a staircase form, i.e., the new partition is exactly (a, a− 1, . . . , 1). For an
example, see Figure 1. The number of boxes in the staircase (a, a − 1, . . . , 1) is
1
2a(a + 1), which shows that a(a + 1) ≤ 2i.

7−→

Figure 1. Removing rows and columns to obtain a staircase.

Remark 5.4. The same techniques used to prove Lemma 5.2 part 1 also show that

dim Vi =
i

n
|Sn| .

The analogous problem of finding an explicit formula for Fn
i in closed form, if one

exists, appears to be much more difficult.

5.1. Exact operation counts. Lemma 4.8 allows us to give an exact expression
for the complexity of our Fourier transform algorithm on Sn, which we may evaluate
using the combinatorial lemmas.

Theorem 5.5. The Fourier transform of a complex function on the symmetric
group Sn may be computed at a complete set of irreducible matrix representations
of Sn adapted to the chain of subgroups

Sn > Sn−1 > · · · > S1 = 1

in no more than (
n∑

k=2

1
k

k∑
i=2

1
(i − 1)!

F i
i

)
· |Sn|

multiplications and the same number of additions.

Proof. By Lemma 4.5 and the proof of Theorem 3.1, we know that the number of
multiplications (or additions) required by our algorithm is

n∑
k=2

n!
k!

k∑
i=2

Fk
i =

n∑
k=2

k∑
i=2

n!(k − 1)!
k!(i− 1)!

F i
i .

We have used Lemma 5.2 to simplify the result.
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Lemma 5.2 allows us to calculate F i
i , and hence the exact complexity of our

algorithm for computing Fourier transforms on Si, for small values of i. We have
done this for 1 ≤ i ≤ 50, which certainly includes all cases where the algorithm
might ever be implemented. In Table 1 we display these values for 1 ≤ i ≤ 12, where
TSi denotes the number of additions (or the number of multiplications) taken by
the algorithm for computing Fourier transforms on Si.

Table 1. Exact sequence and operation counts.

i
∑

βi
jmp(βi)

2d2
βi

F i
i TSi

1
|Si|TSi

1 1 0 0 0.0
2 2 2 2 1.0
3 18 6 16 2.7
4 78 36 130 5.4
5 474 174 1088 9.1
6 4004 1074 9792 13.6
7 32404 8324 96452 19.1
8 290558 67684 1034656 25.7
9 2924922 613118 12029342 33.1

10 33884848 6190842 150941204 41.6
11 416578024 70172848 2037003932 51.0
12 5485499312 855662824 29442867576 61.5

It is interesting to note that for i ≤ 50, the reduced complexity TSi/ |Si| is
bounded above by 1

2 i(i− 1), and their ratio lies close to 1 for i in this range.

5.2. Remarks concerning the combinatorial lemmas. Lemmas 5.1–5.3 have
some simple generalizations, which become important when we extend the algo-
rithm for Fourier transforms on the symmetric group to other finite groups and
semisimple algebras. The main observation is that Young’s lattice may be replaced
by other Bratteli diagrams.

Let N denote the nonnegative integers. A Bratteli diagram (see [14] and [26])
is a connected N-graded multigraph such that

(i) Each level (vertices with the same grading) has only finitely many vertices,
and finitely many edges connected to it.

(ii) Edges only connect adjacent levels, and if two adjacent levels are non-
empty, then the bipartite graph, consisting of those two levels and the
edges connecting them, is connected.

(iii) The zeroth level contains a unique vertex, denoted φ.

Given any Bratteli diagram and two vertices α, β in the diagram, we let M(α, β)
denote the number of upward paths in the diagram from β to α. As before, we let
dα = M(α, φ).

The definition of Fn
i is easy to generalize to any Bratteli diagram which has at

least n + 1 levels: given such a Bratteli diagram, we define Fn
i to be the number of

grading-preserving maps from a graded graph of the form (4.17) into the Bratteli
diagram. Each such map not only sends αj , βj , γj into vertices of level j, but also
sends each edge into an edge of the Bratteli diagram.

With these definitions of M and Fn
i , the statement of Lemma 5.1 holds with the

only change being that αj , βj , γj now range over vertices at level j in the Bratteli
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diagram. To generalize Lemma 5.2, we need to place some extra conditions on our
Bratteli diagrams.

Any Bratteli diagram is uniquely associated to a chain of semisimple algebras,
called path algebras (see [14] 2.3.11). The ith path algebra Ai has dimension
dim Ai =

∑
βi

d2
βi

, where βi ranges over vertices at level i, and Ai contains Ai−1 as
a subalgebra. A Bratteli diagram is locally free if Ai is free over Ai−1 for i ≥ 1.

A Bratteli diagram is multiplicity free ifM is either 0 or 1 for any two adjacent
vertices.

Lemma 5.6. 1. Assume n ≥ i ≥ 1. Then for any locally free Bratteli
diagram, dim Ai is an integer multiple of dim Ai−1, and

Fn
i =

dim An−1

dim Ai−1
F i

i .

2. For any locally free, multiplicity free Bratteli diagram,

F i
i =

(dimAi−1)2

dim Ai−2
+
∑
βi−1

(c+(βi−1)− 1)c−(βi−1)d2
βi−1

where βi−1 ranges over vertices at level i− 1, and c+(βi−1), c−(βi−1) are
the number of edges from βi−1 to levels i and i− 2 respectively.

Proof. If Ai is free over Ai−1, then dimAi/ dim Ai−1 is the size of a basis for Ai

as an Ai−1-module. For the rest of the lemma, start with equation (5.2), which
holds for any Bratteli diagram, and follow the proof of Lemma 5.2 with partitions
replaced by vertices and the operation of adding a box replaced by an upward
step in the Bratteli diagram. Frobenius reciprocity still holds, and the locally free
property implies that ∑

αk

M(αk, βj)dαk
=

dim Ak

dim Aj
dβj

for all vertices βj at level j, where j ≤ k and αk ranges over vertices at level k. See
[21].

Example 5.7. Any differential poset [24] [25] is a locally free, multiplicity free
Bratteli diagram. The Bratteli diagram of a tower of group algebras is locally free.

Several other combinatorial results for Young’s lattice also extend to locally free
Bratteli diagrams: In particular, the theorems of Stanley ([24] Theorem 3.7 and
[25] Theorem 2.7) which count the number of paths in a differential poset, which
start and end at φ, hold in this more general setting. See [21] for a more detailed
treatment of these and similar results.

6. Homogeneous spaces

The harmonic analysis of a function on a homogeneous space is an important
special case of harmonic analysis on groups. If K is a subgroup of the finite group
G, then the associated spherical functions on the space G/K are defined to be
the right K-invariant matrix coefficients on G viewed as functions on G/K. The
harmonic analysis of a function on G/K is the expansion of that function in a basis
of associated spherical functions, and may be computed by means of a Fourier
transform on the homogeneous space. We direct the reader to [20] for background
on the computation of Fourier transforms on homogeneous spaces.
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Definition 6.1 (Fourier transform). Let G be a finite group with subgroup K, and
let f be a complex-valued function on G/K. Then the Fourier transform of f at a
K-adapted matrix representation of G, or a K-adapted set of matrix representations
of G, is defined to be the Fourier transform of the right K-invariant function f̃ on
G defined by

f̃(g) =
1
|K|f(gK).

We shall denote the Fourier transform at a representation ρ, or a set of representa-
tions R, by f̂(ρ)K and FK

Rf respectively.

The factor 1
|K| appearing in the definition of Fourier transform on homogeneous

spaces ensures that the Fourier transform on the trivial homogeneous space K/K
is trivial, and not multiplication by |K|. This will not affect our complexity results,
but it does make the theory a bit tidier.

It is important to note that the only matrix entries of FK
Rf which may be nonzero

are those entries in columns corresponding to K-invariant basis vectors. Moreover,
the Fourier transform relative to a complete K-adapted set of inequivalent irre-
ducible representations of G is an isomorphism from the space of functions on
G/K to the space obtained by ignoring those columns which do not correspond to
K-invariant vectors

A representation of G is said to be of class-1 with respect to K if it contains
a nontrivial K-invariant vector. If desired, we could restrict ourselves to class-1
representations when discussing Fourier transforms on homogeneous spaces.

Remark 6.2. Let R be a complete K-adapted set of inequivalent irreducible repre-
sentations of G, let ρ ∈ R be class-1 with respect to K, and let f be a complex
function on G/K. Then the coefficient of the associated spherical function ρij0 in
the harmonic analysis of f is

dim ρ

|G/K|
[
f̂(ρ∨)K

]
ij0

where ρ∨ denotes the dual of ρ, and j0 indexes the right K-invariant columns of
ρ. Clearly the harmonic analysis of f may be found by computing the Fourier
transform FK

R∨f relative to the set of dual representations, and then scaling the
output by the factors dim ρ

|G/K| .
Of course, if the group is Sn and R is Young’s orthogonal form, then taking the

dual has no effect.

The complexity and reduced complexity of the Fourier transform on a homoge-
neous space were defined in [20] by analogy with the group case.

Definition 6.3 (Complexity). Let G be a finite group with subgroup K, and let
R be any K-adapted set of matrix representations of G.

1. Let TG/K(R) denote the minimum number of operations needed to com-
pute the Fourier transform of f on R via a straight-line program for an
arbitrary complex-valued function f defined on G/K.

2. Let tG/K(R) = TG/K(R)/ |G/K|.
TG(R) is called the complexity of the Fourier transform on G/K for the set R, and
tG/K(R) is called the reduced complexity.
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The complexity always satisfies the inequalities

|G/K| − 1 ≤ TG/K(R) ≤ |G/K|2 .

When there is no possibility of confusion, we will drop the ‘R’ in the notation for
complexities and reduced complexities.

In order to compute Fourier transforms on homogeneous spaces efficiently it suf-
fices to see how the algorithms we have already developed for groups simplify when
applied to a right invariant function. In [20] it was shown that for a large class of
algorithms the bounds on the group reduced complexity tG also apply to the ho-
mogeneous space reduced complexity tG/K , so complexity results for homogeneous
spaces could be obtained with essentially no extra work.

This is true in the current case as well. For instance, we shall show that if R is an
adapted set of representations of Sn, the homogeneous space reduced complexities
satisfy

tSn/Sn−k
(R) ≤ tSn−1/Sn−k

+
3(n− 1)

2
.(6.1)

Notice that this has the same form as equation (3.4) of Section 3. Applying (6.1)
recursively and noting that tSn−k/Sn−k

= 0 will give us Theorem 1.2 of the intro-
duction.

We now restate and prove Theorem 1.2 using the terminology of adapted repre-
sentations.

Theorem 6.4. The Fourier transform of a complex function on the homogeneous
space Sn/Sn−k may be computed at a complete set of (class-1 ) irreducible matrix
representations of Sn adapted to the chain of subgroups

Sn > Sn−1 > · · · > S1 = 1(6.2)

in no more than 3k(2n−k−1)
4 |Sn/Sn−k| scalar operations.

Proof. The result follows by chasing through the algorithm for computing Fourier
transforms on Sn to see how it simplifies when applied to a right Sn−k-invariant
function on Sn. We will simply indicate how to change the proofs already given in
the group case to the current situation.

First we note that if f is a right Sn−k-invariant function on Sn, then the
corresponding element of C[Sn] is invariant under multiplication by elements of
C[Sn−k] on the right. In particular, if k ≥ 1 then this also holds for the elements
Fy ∈ C[Sn−1] that occur when the proof of Lemma 2.10 is applied to the sub-
group Sn−1 of Sn. Therefore, we must bound the number of operations required to
compute any sum of the form

Σ =
n∑

i=1

ti+1 · · · tn · Fi(6.3)

in a Gel′fand-Tsetlin basis for the group algebra relative to the chain of subgroups
(6.2), where the Fi are arbitrary right Sn−k-invariant elements of C[Sn−1].
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In Sections 3 and 4 we showed that relative to a Gel′fand-Tsetlin basis for (6.2),
the sum (6.3) has the following expression in coordinates,

(6.4) [Σ]β,γ =
n∑

i=1

∑
αn−2,...,α1

Fi

(
γn−1 αn−2 . . . α1

γn−2 . . . γ1

)
·

i∏
j=2

δαj−1βj−1

·
n∏

j=i+1

P j
tj

(
βj βj−1

αj−1 αj−2

)
where the partitions αj , βj , γj satisfy the relations (4.9), and αn−1 = γn−1. This
follows from Lemma 4.4, the proof of Lemma 4.7, and (6.3). Then, by equation
(3.3) and the proof of Lemma 4.8, we were able to show that this sum could be
computed in

∑n
i=2 Fn

i scalar operations, where Fn
i is the number of sequences of

partitions satisfying the relations described by (4.17).
Now suppose that each Fi is invariant under right multiplication by elements of

Sn−k. Then the coordinate of F

[F ]α,γ = F

(
γn−1 αn−2 . . . α1

γn−2 . . . γ1

)
is only nonzero when γn−k is the partition (n − k) with a single row, i.e., the
corresponding representation ∆γn−k

is the trivial representation of Sn−k. Therefore
we only need to compute (6.4) in those cases where γn−k = (n−k), and the number
of operations required to do this is

∑n
i=1 F̃n

i , where F̃n
i is the number of sequences

of partitions which have γn−k = (n− k) and satisfy the relations (4.17) as well.
Following through the arguments of Lemma 5.1 in the case where γn−k = (n−k),

it is easy to see that an expression for F̃n
i may be obtained from the expression (5.2)

for Fn
i by replacing the factor dγn−1 by M(γn−1, (n − k)). Splitting the resulting

sum in two according to the cases αi−1 6= βi−1 and αi−1 = βi−1, and using (5.1)
leads to the expression (6.5) for F̃n

i , in the notation of Section 5.

(6.5) F̃n
i =

∑
γn−1,βi−1

αi−2

M(γn−1, αi−2)M(βi−1, αi−2)dβi−1M(γn−1, (n− k))

+
∑

γn−1,βi−1

M(γn−1, βi−1) jmp(βi−1)2dβi−1M(γn−1, (n− k))

By Frobenius reciprocity and (5.1), the first term of (6.5) may be evaluated as

∑
γn−1,αi−2

M(γn−1, αi−2)M(γn−1, (n− k))

∑
βi−1

M(βi−1, αi−2)dβi−1


=

∑
γn−1,αi−2

M(γn−1, αi−2)M(γn−1, (n− k))
[
dim(IndSi−1

Si−2
∆αi−2)

]
= |Si−1/Si−2|

∑
γn−1,αi−2

M(γn−1, (n− k))M(γn−1, αi−2)dαi−2

= (i− 1)
∑
γn−1

M(γn−1, (n− k))dγn−1

= (i− 1) |Sn−1/Sn−k| = i− 1
n

· |Sn/Sn−k| .

(6.6)
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Notice that the last step follows from Frobenius reciprocity applied to the trivial
representation of Sn−k induced up to Sn−1.

The second term of (6.5) is bounded by

|Sn−1/Sn−k| ×max
βi−1

jmp(βi−1)2,

where jmp(βi−1) is the number of jumps in the partition βi−1. By the arguments of
Lemma 5.3 we already know that the max in this expression is bounded by 2(i−1),
so the second term of (6.5) is bounded by 2(i−1)

n |Sn/Sn−k|.
Adding the bounds for the two terms of (6.5) shows us that

F̃n
i ≤ 3(i− 1)

n
|Sn/Sn−k| ,

and hence that the reduced complexities for the computation of Fourier transforms
on homogeneous spaces satisfy

tSn/Sn−k
≤ tSn−1/Sn−k

+
1

|Sn/Sn−k|
n∑

i=2

F̃n
i ≤ tSn−1/Sn−k

+
3(n− 1)

2
.(6.7)

Applying (6.7) recursively with tSn−k/Sn−k
= 0 shows that tSn/Sn−k

≤ 3k(2n−k−1)
4 ,

and hence that the Fourier transform of a complex function on Sn/Sn−k may be
computed in no more than 3k(2n−k−1)

4 |Sn/Sn−k|multiplications and the same num-
ber of additions.

Remark 6.5. Theorem 6.4 is an improvement on the result of Maslen and Rockmore
([20], Theorem 6.5), which was obtained by applying Clausen’s algorithm [5] to a
right invariant function on the symmetric group. They showed that the Fourier
transform of a complex function on Sn/Sn−k could be computed at an adapted
set of representations in no more than k

(
n2 − kn + 1

3 (k2 − 1)
) |Sn/Sn−k| scalar

operations.

As in the case of transforms on groups, Theorem 6.4 gives us a method for
computing inverse transforms, with no extra work. Suppose that R is a complete
K-adapted set of inequivalent irreducible representations of the finite group G, and
let DK be the map

DK :
⊕
ρ∈R

Mat(dim ρ)(C) −→
⊕
ρ∈R

Mat(dim ρ)(C)

⊕
ρ∈R

F (ρ) 7−→
⊕
ρ∈R

dim ρ

|G/K|F (ρ).
(6.8)

Then (FK
R∨)T IDKFK

R = I, where I is the re-indexing map defined by (3.6). There-
fore, inverse Fourier transform algorithms may be obtained from Fourier transform
algorithms by taking the transpose algorithm and scaling the input.

When G = Sn and the representations are in Young’s orthogonal form, we have
(FK
R)T DKFK

R = I, where K is any subgroup in the chain (6.2).
The preceding discussion gives us Theorem 6.6, which we state without further

proof.

Theorem 6.6. Assume R is a complete set of (class-1 ) irreducible matrix rep-
resentations of Sn adapted to the chain of subgroups (6.2). For each ρ ∈ R, let
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F (ρ) be a complex dim ρ×dim ρ matrix with zeroes in those columns which are not
Sn−k-invariant columns of ρ. Then the inverse Fourier transform

f(sSn−k) =

(FSn−k

R )−1[
⊕
ρ∈R

F (ρ)]

 (sSn−k)

=
1

|Sn/Sn−k|
∑
ρ∈R

(dim ρ)Trace(F (ρ)ρ(s−1))

(6.9)

may be computed in no more than 3k(2n−k−1)
4 |Sn/Sn−k| scalar operations.

Remark 6.7. Diaconis and Rockmore [11] discuss the computation of isotypic pro-
jections of functions on homogeneous space. They suggest a direct method equiv-
alent to the composition of a Fourier transform followed by a truncation followed
by an inverse Fourier transform, and which takes |G/K|2 scalar operations.

The current techniques can be applied to efficiently compute the isotypic projec-
tions of functions on the space Sn/Sn−k. First compute the Fourier transform of
the function on Sn/Sn−k with respect to Young’s orthogonal form, by the method
of Theorem 6.4. Next truncate those parts of the transform which do not corre-
spond to representations of the chosen type ρ. Finally, compute an inverse Fourier
transform by multiplying by dim ρ

|Sn/Sn−k| , and then applying the transpose of the al-
gorithm of Theorem 6.4, again with respect to Young’s orthogonal form. Note that
for some applications the final inverse transform may not be necessary.

7. Conclusion

Although the results presented in this paper are specific to the symmetric group,
the techniques used to obtain them are much more general. The use of Gel′fand-
Tsetlin bases, the choice of factorizations for group elements or coset representa-
tives, and the rearrangement of sums similar to Horner’s rule are all well known
tools for computing Fourier transforms on finite groups [3] and compact Lie groups
[18]. Together they form the basis for the general ‘separation of variables’ method
for constructing Fourer transform algorithms [20] [21].

The construction of the bilinear maps in Section 4 may also be generalized to any
finite group (or semisimple algebra). Given a system of Gel′fand-Tsetlin bases, a
collection of products of group elements, and a permutation, there is a well defined
sequence of bilinear maps that allow the products to be rearranged (cf., Prop. 2)
according to the chosen permutation. The spaces on which the bilinear maps are
defined are associated to diagrams generalizing (4.9) (4.11) (4.17), and formulae for
the number of operations needed to apply these maps can be read off the diagrams,
in terms of restriction multiplicities. In joint work with Dan Rockmore [21], such
ideas have been systematically developed, and applied to the computation of Fourier
transforms on a variety of groups and algebras.

The methods used in Section 4 also raise some combinatorial questions. Walks
generalizing (4.11) have already been studied on Young’s lattice and other posets
[24] [25], but the appearance of multiply-connected configurations, e.g., (4.9) and
(4.17), appears to be a new phenomenon; also see [18] and [20]. More generally,
one may consider mappings from any graded diagram into a Bratteli diagram.
Such objects appear in the construction of Fourier transform algorithms on other
finite groups [21], and the complexity of the algorithms may again be obtained
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by counting the mappings. There are always expressions for the numbers of these
objects, generalizing equation (5.2) for Fn

i , but it is not clear when these expressions
may be evaluated in closed form. We do not even know the answer for (5.2) itself.

Finally, we should note that, even for the symmetric groups, the problem of
computing Fourier transforms is far from completely solved. In particular, some
applications [8] [11] require the transform to be computed at representations which
are adapted relative to other chains of parabolic subgroups. Although Clausen’s
algorithm and the algorithms in this paper may both be adapted to these new
situations, the results are less convincing.

We have not yet implemented the algorithms in this paper. Because of their close
relationship with Clausen’s algorithm, we expect these algorithms to be stable and
efficient, in practice as well as in theory.
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gart, 1984. MR 86g:65002

[2] P. Bürgisser, M. Clausen, A. Shokrollahi, Algebraic Complexity Theory, Springer-Verlag,
Berlin, 1996. CMP 97:10

[3] M. Clausen and U. Baum, Fast Fourier transforms, Wissenschaftsverlag, Mannheim, 1993.
MR 96i:68001

[4] , Fast Fourier transforms for symmetric groups, theory and implementation, Math.
Comp. 61(204) (1993), 833–847. MR 94a:20028

[5] M. Clausen, Fast generalized Fourier transforms, Theoret. Comput. Sci. 67 (1989), 55–63.
MR 91f:68081
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