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VORTEX METHOD
FOR TWO DIMENSIONAL EULER EQUATIONS

IN BOUNDED DOMAINS WITH BOUNDARY CORRECTION

LUNG-AN YING

Abstract. The vortex method for the initial-boundary value problems of the
Euler equations for incompressible flow is studied. A boundary correction
technique is introduced to generate second order accuracy. Convergence and
error estimates are proved.

1. Introduction

The vortex methods are employed in the numerical simulation of incompressible
flow. For viscous flow the Navier-Stokes equations are approximated by using an
operator splitting between the inviscid Euler equations and the Stokes equations.
One difficulty of the vortex methods is the treatment of boundary conditions. In
the viscous step a vorticity creation operator is applied to maintain the no-slip
condition. In the inviscid step the particle method is used to simulate the vorticity.
The scheme is required to be consistent and stable. The purpose of this paper is
to study this problem in the presence of boundaries. We restrict ourselves to the
Euler equations only, because we think it is a necessary first step toward studying
the problem for the entire scheme.

The consistency, stability and convergence of vortex methods for the initial value
problems of the Euler equations was first obtained by Hald and DelPrete [9], [10],
[11]; then the results were improved and different proofs were given by Anderson and
Greengard [4], Beale and Majda [5], [6], and Raviart [13]. However there are some
essential difficulties in the study of the vortex method for initial-boundary value
problems. The high order consistency result depends on an application of Taylor’s
expansion which yields a superconvergence estimation. Therefore a uniform mesh
is required for initial value problems, and it is difficult to get the same high order
consistency for a bounded domain. Chiu and Nicolaides suggested some nonuniform
meshes and introduced the derivatives of Dirac functions in the formula to get the
necessary accuracy; however, the convergence result was proved for initial value
problems.

To overcome the difficulty, the authors of [15] and [17] applied an extrapolation
technique to make correction on the boundary which also gave high order conver-
gence results for two dimensional initial-boundary value problems. Convergence of
vortex methods for three dimensional initial-boundary value problems of the Euler
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equations was proved in [16], where for simplicity the initial data was assumed com-
pactly supported. For general initial data the same boundary correction technique
is also needed.

There are boundary layers for viscous flows. The gradient of the velocity field
near the boundary is large, so the extrapolation approach causes a large error. We
introduce a simpler boundary correction technique in this paper, one for which
extrapolation is no longer needed. We will prove that this scheme possesses second
order accuracy.

In the next section we will state our scheme. In §3 we will prove our convergence
results. We will apply some results of the theory for initial value problems which can
be found in the paper of Raviart [13], or in the book by the author and Zhang [18].
Finally we will give a numerical example which shows by contrast the difference
among different treatment of boundary conditions.

2. Scheme

For simplicity we assume that Ω is a bounded and convex domain in R2, the
boundary of which, ∂Ω, is sufficiently smooth. Let x = (x1, x2) be the points in
R2. We consider the following initial-boundary value problems:

∂u

∂t
+ (u · ∇)u+

1
ρ
∇p = 0,(1)

∇ · u = 0,(2)

u · n|∂Ω = 0,(3)

u|t=0 = u0,(4)

where u = (u1, u2) is velocity, p is pressure, ρ is a constant density, ∇ = (∂1, ∂2),
and n is the outward unit normal vector on the boundary. Let ω = −∇ ∧ u be
vorticity, where ∇∧ = (∂2,−∂1), and ψ be the stream function such that u = ∇∧ψ.
Then the vorticity-stream function formulation for the problem is

∂ω

∂t
+ u · ∇ω = 0,(5)

−4 ψ = ω, ψ|∂Ω = 0, u = ∇∧ ψ,(6)

ω|t=0 = ω0 = −∇∧ u0.(7)

If u0 satisfies the consistency condition u0 ·n|∂Ω = 0, and if it is sufficiently smooth,
then there is a unique smooth solution on Ω̄× [0, T ] for any T > 0 [14].

Let uε, ωε, ψε be the approximate velocity, vorticity, and stream function respec-
tively, and Xε

j be the approximate characteristic curve, where ε > 0 is a parameter
and j is an index corresponding to a particular particle. For each j, Xε

j satifies

dXε
j

dt
= uε(Xε

j (t), t), Xε
j (0) = Xj .(8)

For simplicity we assume that the support of “vortex blob function” ζ is in the unit
disk, supp ζ ⊂ S(o, 1); then we define ζε(x) = 1

ε2 ζ(x
ε ). As usual, we require that∫

ζ(x) dx = 1.
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For a given time t, ωε is a linear combination,

ωε(x, t) =
∑

j∈J∪J(t)

αε
jζε(x−Xε

j (t)),(9)

where J = {j;Xj ∈ Ω̄}, and J(t) is the set of additional particles. Let us explain
it in detail.

For each particle near the boundary we fix one reference point, Xε
j0 , on the

boundary at t = 0. For definiteness we may take Xε
j0

to be the nearest point to
Xj. According to (8) we get Xε

j0 for all t. We define

Xε
j′(t) = 2Xε

j0(t)−Xε
j (t), αε

j′ = αε
j ,

which yields one term in (9) with j′ ∈ J(t). Because the equation (5) is homoge-
neous, αε

j does not change with time. If the distance from Xε
j′ to ∂Ω is greater than

ε, then this term has no contribution, so only those Xε
j in a neighborhood of ∂Ω

need to be taken into account.
The equations for uε and ψε are the same:

−4 ψε = ωε, uε = ∇ ∧ ψε,(10)

ψε|∂Ω = 0.(11)

To solve (8)–(11) further discretization is needed. However we restrict ourselves to
consider semi-discrete problems in this paper. Some material on full discretization
was presented in [17]. If this scheme is applied to the inviscid step for the Navier-
Stokes equations, then Xε

j0 keeps stationary, and the scheme is even simpler.
To prove the consistency, stability, and convergence of the scheme (8)–(11) we

need a regular mesh as usual. Let us construct the mesh as follows.
For each point x ∈ ∂Ω, there is a neighborbood such that ∂Ω in this neighborhood

can be expressed in terms of a smooth function in local coordinates. Let us take
a finite set of them, {Ω(k)}K

k=1, such that
⋃K

k=1 Ω(k) covers ∂Ω. We thus take a
subdomain Ω(0) ⊂ Ω such that

⋃K
k=0 Ω(k) covers Ω̄. For each Ω(k), k = 1, · · · , K,

there is a domain Ω̃ on the ξ-plane R2 such that there is a bijection F (k) defined
on Ω̃ such that F (k) and (F (k))−1 are smooth and F (k)Ω̃ = Ω(k). Moreover we
require that the image of {ξ; ξ2 = 0} ∩ Ω̃ is ∂Ω ∩ Ω(k) and ξ2 > 0 corresponds
to the interior of Ω, where ξ = (ξ1, ξ2). We subdivide Ω̃ into squares with side
length h in the following way: Let j = (j1, j2, k), j1, j2 ∈ Z, X̃j = (j1h, j2h),
B̃j = {ξ; j1h − 1

2h < ξ1 < j1h + 1
2h, j2h − 1

2h < ξ2 < j2h + 1
2h}. Then we define

Xj = F (k)X̃j , Bj = F (k)B̃j . Thus if j2 = 0, Xj ∈ ∂Ω, and if j2 > 0, Xj ∈ Ω. The
domain Ω(0) is subdivided without mapping.

We define functions ϕk ∈ C∞0 (Ω(k)) such that
∑K

k=0 ϕk(x) ≡ 1 for x ∈ Ω̄. Then
we define ω

(k)
0 = ϕkω0, αj = ω

(k)
0 (Xj)|A(X̃j)|h2, where A(X̃j) is the Jacobian

of F (k) at the point X̃j . Let J (k) be the set of all nodes Xj already defined in
Ω(k), and J (0) the set of nodes in Ω(0). Denote by J1 the union

⋃K
k=0 J

(k). We
notice that the meshes overlap each other and some nodes are in the exterior of
Ω̄. Let J = {j ∈ J1;Xj ∈ Ω̄}. For a given time t, if for one index j the distance
dist(Xε

j (t), ∂Ω) < ε, then we take the symmetric point of Xε
j (t) at the exterior of

Ω as follows: Let j = (j1, j2.k); then we define

j′ = Ej = (j1,−j2, k), j0 = (j1, 0, k),

and let J(t) be the set {j′}.
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For a single mesh the centers of any two neighboring vortex blobs cannot ap-
proach each other, but that is not the case now. This is the main difference between
this overlapped mesh and a single mesh. Since vortex blobs are applied instead of
point vortices, we will see that, however, consistency and stability still hold.

3. Convergence

First of all let us introduce some new functions and notations to meet the needs
of our convergence proof. Let u, ω, ψ be the solutions to (1)-(4) and (5)–(7) on
the domain Ω̄ ∩ [0, T ]. We extend ψ smoothly so that it is compactly supported in
(
⋃K

k=0 Ω(k))× [0, T ]. From ψ we get extensions of u and ω by definition. Extending
to zero on the whole space, we get an equation for ω and u:

∂ω

∂t
+ u · ∇ω = F(12)

on R2 × [0, T ]. By (5), F ≡ 0 in Ω̄× [0, T ]. We define Xj(t) and αj(t) by

dXj

dt
= u(Xj(t), t), Xj(0) = Xj, j ∈ J1,(13)

dαj

dt
=ϕk(Xj)F (Xj(t), t)|A(X̃j)|h2,

αj(0) = ω
(k)
0 (Xj)|A(X̃j)|h2, j ∈ J1.

(14)

Letting J0 = {j ∈ J1;Xj ∈ ∂Ω}, we define the Lp-norm of the error of characteristic
curves,

‖e(t)‖0,p,h =

∑
j∈J

h2|Xj(t)−Xε
j (t)|p


1
p

+ ε
1
p

∑
j∈J0

h|Xj(t)−Xε
j (t)|p


1
p

,(15)

‖e(t)‖0,∞,h = max
j∈J

|Xj(t)−Xε
j (t)|.(16)

Denote u = G(ω) if u and ω is related by (6). We decompose the error of velocity
into three parts:

u− uε = v1 + v2 + v3,

where

v1 = u−G(ω(·, t) ∗ ζε),

v2 = G

ω(·, t) ∗ ζε −
∑
j∈J1

αj(t)ζε(· −Xj(t))

 ,

v3 = G

∑
j∈J1

αj(t)ζε(· −Xj(t)) −
∑

j∈J∪J(t)

αε
jζε(· −Xε

j (t))

 .

Let us estimate the semi-norm | · |l,p of vi, i = 1, 2, 3. We will always denote by C
a generic positive constant which is independent of the mesh parameter h and ε,
and by C1, C2, · · · some particular positive constants.
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Lemma 1. If ζ ∈ L∞(R2) and∫
R2
xαζ(x) dx = 0, |α| = 1,(17)

then for integers l ≥ 0

|v1(·, t)|l,p,Ω ≤ Cε2, 1 ≤ p ≤ +∞.(18)

Proof. See [18] for details.

Lemma 2. Let p > 1, l ≥ 0 and ζ ∈ Wm+l−1,∞(R2) for m ≥ 1. Then for any
constant r ∈ [1, 2) and an arbitrary integer N ≥ 3, we have

|v2(·, t)|l,p,Ω ≤ C

((
1 +

h

ε

) 2
r hm

εm+l−1
+

hN

εN+l−1

)
.(19)

Proof. Since v2 is a linear combination with respect to k’s, it would suffice to
consider one k only. We define characteristic curves for all initial points, ξ(τ ;x, t)
by

dξ

dt
= u(ξ(τ ;x, t), τ),(20)

ξ(t;x, t) = x.(21)

Then we consider

v
(k)
2 = G

(ϕk(ξ(0; ·, t))ω(·, t)) ∗ ζε −
∑

j∈J(k)

αj(t)ζε(· −Xj(t))

 .

Since the mapping x→ ξ defined by (20) and (21) is measure preserving, we have

((ϕk(ξ(0; ·, t))ω(·, t)) ∗ ζε)(x)
=
∫
ζε(x − y)ϕk(ξ(0; y, t))ω(y, t) dy

=
∫
ζε(x − ξ(t; η, 0))ϕk(η)ω(ξ(t; η, 0), t) dη

=
∫
ζε(x − ξ(t;F (k)z, 0))ϕk(F (k)z)ω(ξ(t;F (k)z, 0), t)|A(z)| dz.

We define

g(x, z, t) = ∂γ
xζε(x − ξ(t;F (k)z, 0))ϕk(F (k)z)ω(ξ(t;F (k)z, 0), t)|A(z)|;

then by the equations (12)–(14) we have

αj(t) = ϕk(Xj)ω(ξ(t;Xj , 0), t)|A(X̃j)|h2,

but Xj = F (k)X̃j , so

g(x, X̃j , t) = αj(t)∂γζε(x−Xj(t))/h2.

Consequently

∂γ(((ϕk(ξ(0; ·, t))ω(·, t)) ∗ ζε)(x)−
∑

j∈J(k)

αj(t)ζε(x−Xj(t)))

=
∫
g(x, z, t) dz −

∑
j∈J(k)

g(x, X̃j , t)h2.
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Let |γ| = l; then, following the same lines as the proof in [18], we get the estimation
(19) for v(k)

2 , which completes the proof.

Lemma 3. If there are constants C1, C2 such that |∇uε| ≤ C1, h ≤ C2ε, and if
ζ ∈ W l,∞(R2) for l ≥ 0, then for sufficiently small ε we have

|v3(·, t)|l,p,Ω ≤ C

εl

(
1 +

‖e(t)‖0,∞,h

ε

) 2
q (
‖e(t)‖0,p,h + ε2+

1
p

)
,

where p > 1, 1
p + 1

q = 1.

Proof. Since |∇u| ≤ C and |∇uε| ≤ C1, there is a constant C0 > 1 such that if
dist(Xj , Ω̄) > C0ε, then supp ζε(· − Xj(t)) and supp ζε(· − Xε

j (t)) have no inter-
section with Ω̄. We define J2 = {j; 0 < dist(Xj , Ω̄) ≤ C0ε}; then

v3 = G

 ∑
j∈J∪J2

(αj(t)ζε(· −Xj(t))− αε
jζε(· −Xε

j (t)))

 .

Let

v3 = v3,1 + v3,2 + v3,3,

where

v3,1 = G

∑
j∈J

(αj(t)ζε(· −Xj(t)) − αε
jζε(· −Xε

j (t)))

 ,

v3,2 = G

∑
j∈J2

(αj(t)− αε
j)ζε(· −Xj(t))

 ,

v3,3 = G

∑
j∈J2

αε
j(ζε(· −Xj(t)) − ζε(· −Xε

j (t)))

 .

We notice that αj(t) = αε
j = αj for j ∈ J ; hence

|v3,1|l,p,Ω ≤ C

εl

(
1 +

‖e(t)‖0,∞,h

ε

) 2
q

‖e(t)‖0,p,h.(22)

The proof of (22) is essentially the same as that in [18], except we notice that the
estimate for the cardinal number, cardJx, is multiplied by a constant K.

We turn now to estimating v3,2. Since F ≡ 0 in Ω̄× [0, T ] and F is smooth, we
have from (14) that

αj(t) = ω
(k)
0 (Xj)|A(X̃j)|h2 +O(ε)h2.

Also,

αε
j = αε

Ej = ω
(k)
0 (XEj)|A(X̃Ej)|h2.

Because j ∈ J2, dist (X̃j , X̃Ej) ≤ Cε; hence

|αj(t)− αε
j | ≤ Cεh2.

For a fixed point x we define Jx = {j ∈ J2;x ∈ supp ζε(·−Xj(t))}. Let Bj(t) be the
image of Bj under the mapping (20), (21); then the diameter of Bj(t) is bounded
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by C3h. We construct a disk with center x and radius ε + C3h; then, if j ∈ Jx,
Bj(t) is contained in the disk. Since the mapping (20), (21) is measure preserving,
we have

cardJx ≤ π(ε+ Ch)2K
h2

≤ C
(
1 +

ε

h

)2

.

Let

g =
∑
j∈J2

(αj(t)− αε
j)ζε(x −Xj(t));

then by [18], Lemma 5.1,

|g|l−1,p ≤ C
(
1 +

ε

h

) 2
q

∑
j∈J2

‖(αj(t)− αε
j(t))∂

γζε(· −Xj(t))‖p
0,p


1
p

,

where l ≥ 1, |γ| = l− 1. We consider the set

D = {x; 0 < dist (x, Ω̄) ≤ C0ε+ C3h};
then area D ≤ C(C0ε+ C3h), and it is easy to see that

cardJ2 ≤ C(C0ε+ C3h)
h2

≤ C

(
1
h

+
ε

h2

)
.

Besides, we have

‖∂γζε‖0,p ≤ C

εl−1+ 2
q

;

therefore

|g|l−1,p ≤ C
(
1 +

ε

h

) 2
q

(
1
h

+
ε

h2

) 1
p

εh2 1

εl−1+ 2
q

=
C

εl
ε2+

1
p

(
1 +

h

ε

)1+ 1
q

.

It remains to consider the case of l = 0. Let g(k) = ϕkg. We construct local
coordinates (n, τ) on Ω(k) and let n = 0 correspond to ∂Ω. Let Ωd = {(n, τ); 0 <
n < d, |τ | < C}. We estimate |g(k)|−1,p,Ωd

. Let g̃ =
∫ n

d
g dn. For ϕ ∈ C∞0 (Ωd) we

have ∫
Ωd

ϕg dn dτ =
∫

dτ

∫
ϕ
∂g̃

∂n
dn = −

∫
dτ

∫
g̃
∂ϕ

∂n
dn

≤ ‖g̃‖0,p

∥∥∥∥∂ϕ∂n
∥∥∥∥

0,q

.

We have

‖g‖0,∞ ≤ sup |(αj(t)− αε
j)ζε(x−Xj(t))|card Jx ≤ Cε

(
1 +

h

ε

)2

.

The support of g is contained in {(n, τ); 0 ≤ n ≤ Cε}; hence

‖g̃‖0,p ≤ ε2+
1
p

(
1 +

h

ε

)2

,
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and consequently

‖g‖−1,p ≤ Cε2+
1
p

(
1 +

h

ε

)2

.

By the Lp-norm estimate [2], [3] we get

|v3,2|l,p,Ω ≤ C

εl
ε2+

1
p , l ≥ 0.(23)

Finally let us estimate v3,3. At the time t = 0 we have

Xj(0) = Xj = F (k)X̃j

and

Xε
j (0) = 2Xε

j0(0)−Xε
Ej(0)

= 2Xj0 −XEj = 2F (k)X̃j0 − F (k)X̃Ej .

Applying Taylor’s expansion about the point X̃Ej we get

F (k)X̃j = F (k)X̃Ej +DF (k)(X̃j − X̃Ej) +O(ε2),

F (k)X̃j0 = F (k)X̃Ej +DF (k)(X̃j0 − X̃Ej) +O(ε2).

But we have

X̃j − X̃Ej = 2(X̃j0 − X̃Ej),

and hence

Xj(0)−Xε
j (0) = (Xj −XEj)− 2(Xj0 −XEj)

= (F (k)X̃j − F (k)X̃Ej)− 2(F (k)X̃j0 − F (k)X̃Ej)

= O(ε2).(24)

Applying Taylor’s expansion to the function u, we get

u(Xj0(t), t) = u(XEj(t), t) +Du(Xj0(t)−XEj(t)) +O(ε2),

u(Xj(t), t) = u(XEj(t), t) +Du(Xj(t)−XEj(t)) +O(ε2).

Then by the equation (13) we get

d(Xj0(t)−XEj(t))
dt

= Du(Xj0(t)−XEj(t)) +O(ε2),

d(Xj(t)−XEj(t))
dt

= Du(Xj(t)−XEj(t)) +O(ε2).

Let f(t) = (Xj(t)−XEj(t))− 2(Xj0(t)−XEj(t)); then

df

dt
= Du · f +O(ε2).

By (24) f(0) = O(ε2); hence f(t) = O(ε2). Also, we have

Xε
j (t) = 2Xε

j0(t)−Xε
Ej(t);

therefore

Xj(t)−Xε
j (t) = 2(Xj0(t)−Xε

j0(t))− (XEj(t)−Xε
Ej(t)) +O(ε2).
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Consequently

−v3,3 = G

∑
j∈J2

αε
j

∫ 1

0

Dζε(x −Xj(t) + θ(Xj(t)−Xε
j (t))) dθ(Xj(t)−Xε

j (t))


= w1 + w2 + w3,

where

w1 = 2G
(∑

j∈J2

αε
j

∫ 1

0

Dζε(x−Xj(t)

+ θ(Xj(t)−Xε
j (t))) dθ(Xj0 (t)−Xε

j0(t))
)
,

−w2 = G

(∑
j∈J2

αε
j

∫ 1

0

Dζε(x−Xj(t)

+ θ(Xj(t)−Xε
j (t))) dθ(XEj(t)−Xε

Ej(t))
)
,

w3 = G

O(ε2)
∑
j∈J2

αε
j

∫ 1

0

Dζε(x −Xj(t) + θ(Xj(t)−Xε
j (t))) dθ

 .

The estimate for w2 is the same as v3,1. Thus we have

|w2|l,p,Ω ≤ C

εl

(
1 +

‖e(t)‖0,∞,h

ε

) 2
q

‖e(t)‖0,p,h.(25)

The estimate for w3 is the same as v3,2, except that

cardJx ≤ C

(
1 +

ε

h
+
‖e(t)‖0,∞,h

h

)2

;

therefore

|w3|l,p,Ω ≤ C

εl
ε2+

1
p

(
1 +

‖e(t)‖0,∞,h

ε

)2

.(26)

It remains to estimate w1. By analogy to (25) we get

|w1|l,p,Ω ≤ C

εl

(
1 +

‖e(t)‖0,∞,h

ε

) 2
q

∑
j∈J2

h2|Xj0(t)−Xε
j0(t)|p


1
p

.

We notice that j0 = (j1, 0, k) and j = (j1, j2, k); hence, for fixed j0, card {j} =
card {j2} ≤ C(1 + ε

h ). Then∑
j∈J2

h2|Xj0(t)−Xε
j0(t)|p ≤ C

(
1 +

ε

h

)
h
∑

j0∈J0

h|Xj0(t)−Xε
j0(t)|p.

By the definition (15) we have

|w1|l,p,Ω ≤ C

εl

(
1 +

‖e(t)‖0,∞,h

ε

) 2
q

‖e(t)‖0,p,h.(27)

The combination of (22), (23), (25)–(27) gives the desired estimate.
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We now estimate ‖e(t)‖0,p,h. By (8) and (13) we have

Xj(t)−Xε
j (t) =

∫ t

0

(u(Xj(s), s)− uε(Xε
j (s), s)) ds = I

(1)
j + I

(2)
j ,

where

I
(1)
j =

∫ t

0

(u − uε)(Xε
j (s), s) ds,

I
(2)
j =

∫ t

0

(uε(Xj(s), s)− uε(Xε
j (s), s)) ds.

Lemma 4. We assume that the moment condition (17) holds. If |∇uε| ≤ C1,
ζ ∈ Wm+1,∞(R2), m ≥ 2, p > 2, and

C−1
4 εa ≤ h ≤ C4ε

m+1
m ,(28)

where p
2 > a ≥ m+1

m , then we have

‖e(t)‖0,p,h ≤ Cε2(29)

for t ∈ [0, T ], provided ε is sufficiently small.

Proof. We start by estimating the first term of (15). By Lemmas 1, 2, 3 we have

|u− uε|l,p,Ω ≤ C

{
ε2 +

(
1 +

h

ε

) 2
r hm

εm+l−1
+

hN

εN+l−1

+
1
εl

(
1 +

‖e(t)‖0,∞,h

ε

) 2
q (
‖e(t)‖0,p,h + ε2+

1
p

)}
,(30)

where 1
p + 1

q = 1, N is large enough, and l = 0, 1, 2. By [13]∑
j∈J

h2|(u − uε)(Xj(t), t)|p
 1

p

≤ CK
1
p (‖u− uε‖0,p,Ω + h|u− uε|1,p,Ω).

Due to (30) and the assumption we obtain∑
j∈J

h2|I(1)
j |p

 1
p

≤ C

∫ t

0

{
ε2 +

(
1 +

‖e(s)‖0,∞,h

ε

) 2
q (
‖e(s)‖0,p,h + ε2+

1
p

)}
ds.(31)

By the assumption we have∑
j∈J

h2|I(2)
j |p

 1
p

≤ C

∫ t

0

∑
j∈J

h2|Xj(s)−Xε
j (s)|p

 1
p

ds

≤ C

∫ t

0

‖e(s)‖0,p,h ds.(32)
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We now estimate the second term of (15). Analogously to (32),

ε
1
p

∑
j∈J0

h|I(2)
j |p

 1
p

≤ C

∫ t

0

‖e(s)‖0,p,h ds.(33)

Let

f(η) = (u− uε)(ξ(t;F (k)η, 0), t);

then by [13] we have analogously∑
j∈J0

h|f(X̃j)|p


1
p

≤ CK
1
p (‖f‖0,p,R + h|f |1,p,R).

We set η = εη′ and apply the trace theorem [1] to get

‖f(ε·)‖0,p,R ≤ C‖f(ε·)‖1,p,R2 ,

|f(ε·)|1,p,R ≤ C(|f(ε·)|1,p,R2 + |f(ε·)|2,p,R2).

Therefore

‖f‖0,p,R ≤ ε−
1
pC(‖f‖0,p,R2 + ε|f |1,p,R2),

|f |1,p,R ≤ ε−
1
pC(|f |1,p,R2 + ε|f |2,p,R2).

Consequently∑
j∈J0

h|f(X̃j)|p
 1

p

≤ ε−
1
pC(‖f‖0,p,R2 + ε|f |1,p,R2 + εh|f |2,p,R2).

Therefore

ε
1
p

∑
j∈J0

h|I(1)
j |p

 1
p

≤ C

∫ t

0

ε
1
p

∑
j∈J0

h|f(X̃j)|p
 1

p

ds

≤ C

∫ t

0

(‖f‖0,p,R2 + ε|f |1,p,R2 + εh|f |2,p,R2) ds.

Since (F (k))−1 is smooth, we get

ε
1
p

∑
j∈J0

h|I(1)
j |p

 1
p

≤ C

∫ t

0

(‖u− uε‖0,p,R2 + ε|u− uε|1,p,R2 + εh|u− uε|2,p,R2) ds.
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It is analogous to (31) that

ε
1
p

∑
j∈J0

h|I(1)
j |p


1
p

≤ C

∫ t

0

{
ε2 +

(
1 +

‖e(s)‖0,∞,h

ε

) 2
q (
‖e(s)‖0,p,h + ε2+

1
p

)}
ds.(34)

The combination of (31)–(34) gives

‖e(t)‖0,p,h

≤ C

∫ t

0

{
ε2 +

(
1 +

‖e(s)‖0,∞,h

ε

) 2
q (
‖e(s)‖0,p,h + ε2+

1
p

)}
ds.(35)

We claim that

‖e(t)‖0,p.h ≤ C5ε
2,(36)

where C5 is a constant to be determined. Since ‖e(0)‖0,p,h = 0 and ‖e(t)‖0,p,h is
continuous, (36) holds on an interval [0, T∗]. By (28)

‖e(t)‖0,∞,h ≤ h−
2
p ‖e(t)‖0,p,h

≤ C
2
p

4 ε
− 2a

p ‖e(t)‖0,p,h ≤ C
2
p

4 C5ε
2− 2a

p .

By the assumption p > 2a we have on [0, T∗] that(
1 +

1
ε
‖e(t)‖0,∞,h

) 2
q

≤ C6,

where

C6 ≥
(

1 + C
2
p

4 C5ε
2− 2a

p

) 2
q

.(37)

(35) is reduced to

‖e(t)‖0,p,h ≤ C7

∫ t

0

{ε2 + ‖e(s)‖0,p,h} ds.

Applying Gronwall’s inequality, we get

‖e(t)‖0,p,h ≤ C7te
C7tε2.(38)

First we take a constant C6 > 1, then we set C5 = C7Te
C7T , then we take ε0

sufficiently small that (37) holds for ε ≤ ε0. If T∗ < T , then by (38) we have

‖e(t)‖0,p,h < C5ε
2,

which means the interval [0, T∗] can be extended. Thus T = T∗.

Corollary 1. Under the conditions of Lemma 4, (29) holds for all ε > 0, and the
condition a < p

2 is not necessary.

In fact we can take p large enough so that p > 2a, and then by Lemma 4 we
have (29). For r ∈ [1, p), we can apply the Hölder inequality to get

‖e(t)‖0,r,h ≤ C‖e(t)‖0,p,h,
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because Ω is bounded. Besides, if ε > ε0, we have

‖e(t)‖0,p,h ≤ Cε−2
0 ε2,

since ‖e(t)‖0,p,h is bounded.
Finally, let us prove the convergence theorem.

Theorem 1. If the moment condition (17) holds, ζ ∈ Wm+1,∞(R2) for m ≥ 2,
p ∈ [1,∞), and if the condition (28) holds for a ≥ m+1

m , then

|∇uε| ≤ C, x ∈ Ω̄,(39)

‖u− uε‖0,p + ‖e(t)‖0,p,h ≤ Cε2,(40)

where t ∈ [0, T ].

Proof. We take p > 2 and notice that

‖(u− uε)(·, 0)‖2,p,Ω = ‖(v1 + v2 + v3,2 + w3)(·, 0)‖2,p,Ω ≤ C,

which gives

‖(u− uε)(·, 0)‖1,∞,Ω ≤ C8.

Enlarge C8 if necessary so that

‖(v1 + v2)(·, t)‖1,∞,Ω ≤ C8.(41)

Let

C1 = max
(x,t)∈Ω̄×[0,T ]

|∇u|+ C8 + 1;

then |∇uε| ≤ C1 on a certain interval [0, T∗]. By Lemma 4 and Corollary 1

‖e(t)‖0,p,h ≤ Cε2.

By Lemma 3

|v3|l,p,Ω ≤ Cε2−l.

We take a constant s such that 2/p < s < 1; then, by the interpolation inequality
[1],

‖v3‖1,∞,Ω ≤ C‖v3‖1−s
1,p,Ω‖v3‖s

2,p,Ω ≤ Cε1−s.

Taking ε small enough, we have

‖v3‖1,∞,Ω < 1.

By (41), |∇uε| < C1. Using continuous extension we get (39) for t ∈ [0, T ] and
small ε. Then (40) with large p, small ε follows from Lemmas 1, 2, 3, 4. The
restriction for p, ε can be loosened via the argument of Corollary 1.
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4. Numerical example

Let Ω be a unit disk. We consider the initial-boundary value problem,
∂u

∂t
+ (u · ∇)u +

1
ρ
∇p = f,

∇ · u = 0,

u · n|∂Ω = 0,

u|t=0 = u0.

We take the stream function,

ψ = (1− |x|2)(x1 + x2)e−t,

then we get the velocity u and vorticity ω by direct calculation, and then we get
the initial condition for the vorticity,

ω|t=0 = 8(x1 + x2).

Upon substituting u and ω into the equation
∂ω

∂t
+ u · ∇ω = F,

we get

F = −8(x1 + x2)e−t + 16(x2
1 − x2

2)e
−2t.

We will compare the approximate solutions to this exact solution.
The first scheme (A) is a simple one without boundary treatment. We subdivide

R2 into squares with side length h and pick those whose centers lie in Ω. The vortex
blob function is taken as

ζ(x) =

{
7
2π (1− 10|x|3 + 15|x|4 − 6|x|5), |x| < 1,
0, |x| ≥ 1;

hence ∫
R2
ζ(x) dx = 1.

The function ζ satisfies the condition (17). Since it is axisymmetric and compactly
supported, the solution of −4 g = ζε(x) on R2 can be expressed explicitly:

g(x) =

{
− 7

2π log |x|
(

1
2
|x|2
ε2 − 2 |x|

5

ε5 + 5
2
|x|6
ε6 − 6

7
|x|7
ε7

)
, |x| < ε,

− 1
2π log |x|, |x| ≥ ε,

which simplifies our computation. The boundary value problem (10), (11) is solved
by the Fourier method. First we employ a linear combination of g’s to get a par-
ticular solution to the nonhomogeneous equation, then solve the Laplace equation
with nonhomogeneous boundary conditions. Let the vorticity ωε be expressed in
terms of (9); then the equations for Xε

j and αε
j are (8) and

dαε
j

dt
= F (Xε

j (t), t)h2.

We use an explicit Euler scheme to solve these ordinary differential equations. To
prevent any vortex blob from moving across the boundary, we use the following
modification for those vortex blobs neighboring the boundary: Let (r, θ) be the
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Figure 1

position of a particle and (ur, uθ) be its velocity in polar coordinates. Since ur

vanishes on the boundary, we solve
dr̄

dt
= ur

1− r̄

1− r
,

r̄|t=0 = r,

which gives

r̄ = 1− (1− r)e−urt/(1−r).

Consequently after a time step ∆t we take the new coordinate of this particle as
(1− (1− r)e−ur∆t/(1−r), θ + uθ∆t/r).

The second scheme (B) is the one introduced in [15] and [17]. We extend the
domain Ω a little and evaluate the motion of all vortex blobs even if their centers
are not in Ω. The velocity of these blobs is obtained by extrapolation. Since we
don’t care if the centers are in Ω, the modification for the blobs near the boundary
mentioned above is not necessary.

The third scheme (C) is the one developed in this paper. We create overlapped
meshes. We consider the contribution of some blobs outside the domain, but ex-
trapolation is not employed. We use the partition of unity here, so we define a
compactly supported function

ϕ(x) =


1, |x| < 1− 2δ,
2
δ3 (|x|+ 5

2δ − 1)(1− δ − |x|)2, 1− 2δ ≤ |x| < 1− δ,

0, |x| > 1− δ.

The flow is shown in Figure 1. The meshes of the schemes (A),(B), and (C) are
shown in Figures 2, 3, and 4, respectively. For the sake of clearness we take large
parameters h = 0.25, ε = 0.5 and δ = 0.2, and only part of the squares are drawn.
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Figure Figure Figure

Table 1

t (A) (B) (C)
0 0.475 0.139 0.204

0.1 0.486 0.152 0.182
0.2 0.433 0.161 0.167
0.3 0.367 0.162 0.154
0.4 0.373 0.155 0.142
0.5 0.340 0.156 0.153
0.6 0.304 0.152 0.169
0.7 0.252 0.152 0.210
0.8 0.218 0.144 0.221
0.9 0.183 0.139 0.254
1.0 0.182 0.129 0.232
1.1 0.162 0.132 0.218
1.2 0.186 0.117 0.210
1.3 0.176 0.115 0.178
1.4 0.162 0.105 0.175
1.5 0.156 0.100 0.155
1.6 0.142 0.0955 0.125
1.7 0.121 0.0901 0.112
1.8 0.118 0.0857 0.110
1.9 0.109 0.0828 0.112
2.0 0.0976 0.0814 0.111

In the real computation we take h = 0.1, ε = 0.3, δ = 0.1 and ∆t = 0.01. In the
Fourier method we take 100 integral points and we truncate the Fourier series by
taking 20 terms. For each scheme we evaluate 200 steps. The errors are shown in
Table 1; they are defined as

error = max
j

max{|(uε
1 − u1)(Xε

j (t), t)|, |(uε
2 − u2)(Xε

j (t), t)|}.

Let us notice that |u1|max = |u2|max = 1 +
√

2.
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From the results we may conclude that:
1. To see the consistency we examine the errors at t = 0, because they are just

the truncation errors. The best one is (B) and the worst is (A).
2. All schemes seem stable. Even more, they are asymptotically stable. After

a period of oscillation the errors decrease monotonically. We think this is because
these schemes are self-adaptive. In particular, the oscillation of the scheme (B) is
the smallest.

3. It seems the scheme (B) is the best, but the extrapolation process in it depends
on the smoothness of the solution, and it is time-consuming. We use an IBM 486
PC computer. The CPU time for them are 30, 90, and 40 minutes respectively.

4. For the scheme (A) we cannot prove anything theoretically: consistency,
stability, or convergence. For all these schemes we don’t know how to study the
asymptotic stability.
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