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UNIFORM hp CONVERGENCE RESULTS
FOR THE MORTAR FINITE ELEMENT METHOD

PADMANABHAN SESHAIYER AND MANIL SURI

Abstract. The mortar finite element is an example of a non-conforming
method which can be used to decompose and re-compose a domain into sub-
domains without requiring compatibility between the meshes on the separate
components. We obtain stability and convergence results for this method that
are uniform in terms of both the degree and the mesh used, without assum-
ing quasiuniformity for the meshes. Our results establish that the method is
optimal when non-quasiuniform h or hp methods are used. Such methods are
essential in practice for good rates of convergence when the interface passes
through a corner of the domain. We also give an error estimate for when the
p version is used. Numerical results for h, p and hp mortar FEMs show that
these methods behave as well as conforming FEMs. An hp extension theorem
is also proved.

1. Introduction

With rapidly growing computational capability, finite element analysis is being
carried out on increasingly complicated domains incorporating several fine details
and features. Often such analysis, particularly the labor-intensive meshing phase,
may be accomplished by dividing the task among several users. For instance, the
domain Ω may be decomposed into components Ωi that are meshed separately, or
for which previously constructed meshes (or stiffness matrices) are available. It is
often too cumbersome, or even infeasible, to coordinate the meshes over separate
components so that they conform at the interfaces. The use of non-conforming
methods (at the subdomain level), which we consider in this paper, can help in this
regard.

In such methods, the meshes do not have to match at the interfaces. The inter-
domain continuity between Ωi and Ωj is enforced only in a weak sense, usually with
the help of one or more auxiliary interface spaces. For instance, in the mortar
finite element method (see e.g. [7, 8, 10] and the references therein), which we
consider in this paper, the jumps ui−uj on the interface must be orthogonal to an
interface space of piecewise polynomials. We call this a two-field method, the two
fields being the interior solution variable and a Lagrange multiplier corresponding
to the interface space. Other examples of two-field non-conforming methods (some
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defined only at the inter-element, rather than the inter-subdomain level) may be
found e.g. in [18, 14, 23].

There are also three-field methods in the literature, where an additional space,
corresponding to the trace of the true solution u, is defined on the interface. This
forms the third field. Now the jumps ui − u and uj − u are respectively made
orthogonal to two separate Lagrange multiplier spaces. Such methods have been
proposed, for example in [1, 9]. In fact, a variant of the method in [1] is currently
being implemented in the commercial hp program MSC-NASTRAN, which is one of
the motivations for the investigations (albeit on a two-field method) in this paper.
For a non-conforming method to be viable in the context of such hp implementations
(among others), the optimal rates of convergence afforded by conforming h, p and
hp discretizations should be preserved when the non-conforming method is used
instead (or at least the deterioration should be minor).

Since the subdivision into subdomains is usually done manually, there is a ten-
dency in practical situations to make the division along physically natural inter-
faces. Such interfaces may pass through corners, where the solution is singular.
In conforming methods, special care is often taken to approximate such singular-
ities, by using highly non-quasiuniform “geometrical” and “radical” meshes (see
e.g. [5]). To preserve such approximation, similar care must be taken in the non-
conforming method as well – in particular, the meshes at the interfaces must be
non-quasiuniformly refined towards the singularity.

So far, however, the available results in the literature (both computational and
theoretical) have only dealt with quasiuniform meshes at the interfaces. For in-
stance, the available analysis for the mortar finite element method [7, 8] only treats
it as an h-version method, showing that the optimal rate of convergence in h in the
presence of quasiuniform meshes is preserved.1

Our goal in this paper is to extend these results for the mortar finite element
method to h, p and hp discretizations over general meshes. Specifically, we establish
optimality for the following:

1. Non-quasiuniform h discretizations that include, among others, radical and
geometric meshes needed for the treatment of singularities (see e.g. [5]).

2. The p version, where the degree p is allowed to increase, while the mesh is
kept fixed (We show this is optimal up to O(p

3
4 ).)

3. The hp version over geometric meshes, which leads to exponential convergence.
The combination of our results demonstrates that the mortar finite element method
is an excellent candidate for hp implementation.

Let us mention that such non-conforming methods can be used for other ap-
plications as well. For instance, the discretization can be selectively increased in
localized regions (such as those around corners or other features) which contribute
most to the error (see [1]). Moreover, different variational problems in different
subdomains can be combined. See [8] for other contexts.

The plan of our paper is as follows. In Section 2, we describe the mortar element
method for a model problem. We consider only the two-dimensional case. Section 3
contains our main results. A number of ingredients needed for the proof carry over
from [8]. The two new results needed are (1) the stability of an L2-type projection
operator in terms of both h and p, over arbitrary meshes satisfying some weak

1In [8], a second method, without mesh refinement, but with degree increase, is also analyzed;
this is called the mortar spectral element method and is not discussed here.
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restrictions (Section 4) and (2) an hp “lifting” or “extension” theorem (Section
5). In Section 6, we present numerical experiments using various non-quasiuniform
meshes.

Let us mention that the result in Section 4 showing the p-dependence of L2-type
projections is interesting on its own, since it extends the results of [12]. Similarly,
the hp lifting theorem in Section 5 is expected to be useful in the context of other
hp analyses.

2. The model problem and its non-conforming discretization

2.1. The model problem. For simplicity, we consider here Poisson’s equation,
though our results will also hold for e.g. linear elasticity. Given Ω a bounded
polygonal domain in R2 with boundary ∂Ω = ∂ΩD ∪ ∂ΩN (∂ΩD ∩ ∂ΩN = ∅), we
wish to solve

−∆u = f, u = 0 on ∂ΩD,
∂u

∂n
= g on ∂ΩN .(2.1)

Defining H1
D(Ω) = {u ∈ H1(Ω)|u = 0 on ∂ΩD},2 we put (2.1) in variational form:

Find u ∈ H1
D(Ω) satisfying, for all v ∈ H1

D(Ω),

a(u, v) def=
∫

Ω

∇u · ∇v dx =
∫

Ω

fv dx+
∫
∂ΩN

gv ds
def= F (v) .(2.2)

Problem (2.2) will have a unique solution (assuming, for simplicity, that ∂ΩD 6= ∅).

2.2. Subdomains and meshes. We assume that Ω is partitioned into non-over-
lapping polygonal subdomains {Ωi}Ki=1. This partition can be geometrically con-
forming or non-conforming. In the former case, if p is a point in Γij = ∂Ωi∩∂Ωj (i 6=
j), then either p is a vertex, or the entire edge containing p lies in Γij . Our ex-
position here is presented for the geometrically conforming case, but following the
arguments of Section 3 of [7], the results can be extended to the non-conforming
case as well.

The interface set Γ is defined to be the union of the interfaces Γij = Γji, i.e.
Γ =

⋃
i,j Γij . Γ can be decomposed into a set of disjoint straight line pieces γi, i =

1, 2, . . . , L. We denote Z = {γ1, . . . , γL}.
Each Ωi is assumed to be further subdivided into triangles and parallelograms

by geometrically conforming, shape regular [11] families of meshes {T ih}. The tri-
angulations over different Ωi are assumed independent of each other, with no com-
patibility enforced across interfaces. The meshes do not have to be quasiuniform
and can be quite general, with only a mild restriction (Condition (M)) which we
will impose in Section 3.

For K ⊂ Rn, let Pk(K) (Qk(K)) denote the set of polynomials of total degree
(degree in each variable) ≤ k on K. We assume we are given families of piecewise
polynomial spaces {V ih,k} on the Ωi,

V ih,k = {u ∈ H1(Ωi) | u|K ∈ Sk(K) for K ∈ T ih , u = 0 on ∂Ωi ∩ ∂ΩD} .
Here Sk(K) is Pk(K) for K a triangle, and Qk(K) for K a parallelogram. Note
that V ih,k are conforming on Ωi, i.e. they contain continuous functions that vanish

2We use standard Sobolev space notation. Both ||.||k,A and ||.||Hk(A) will be used to denote

the norm of Hk(A). For I an interval, H
1
2
00(I) is the usual space obtained by interpolation between

L2(I) and H1
0 (I) .
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on ∂ΩD. For simplicity of notation, we let k be uniform over all Ω, but the general
case where k is different on different subdomains or elements poses no difficulty.

We now define the space Ṽh,k by

Ṽh,k = {u ∈ L2(Ω) | u|Ωi ∈ V ih,k},(2.3)

and note that functions in Ṽh,k do not satisfy any continuity constraints across the
interfaces Γij . We will define a discrete norm over Ṽh,k +H1(Ω) by

||u||21,d =
K∑
i=1

||u||2H1(Ωi)
,(2.4)

which is equivalent to the H1(Ω) norm for u ∈ H1(Ω).

2.3. The mortar finite element method. Let γ ∈ Z be such that γ ⊂ Γij .
Since the meshes T ih are not assumed to conform across interfaces, two separate
trace meshes can be defined on γ, one from Ωi and the other from Ωj . We assume
that one of the indices i, j, say i, has been designated to be the mortar index
associated with γ, i = M(γ). The other is then the non-mortar index, j = NM(γ).
We then denote the trace meshes by T hM(γ) and T hNM(γ), with the corresponding
trace spaces being VM (γ) and V NM (γ), where e.g.

VM (γ) = VMh,k(γ) = {u|γ | u ∈ V ih,k} .

Given u ∈ Ṽh,k, we denote the mortar and non-mortar traces of u on γ by uMγ and
uNMγ respectively.

We now restrict the space Ṽh,k by introducing constraints on the differences
uMγ − uNMγ . This “mortaring” is accomplished via Lagrange multiplier spaces S(γ)
defined on the non-mortar trace meshes T hNM(γ). Let the subintervals of this mesh
on γ be given by Ii, 0 ≤ i ≤ N ; then we set S(γ) = SNMh,k (γ), defined as

S(γ) = {χ ∈ C(γ) | χ|Ii ∈ Pk(Ii), i = 1, . . . , N − 1 , χ|Ij ∈ Pk−1(Ij), j = 0, N},
i.e. S(γ) consists of piecewise continuous polynomials of degree ≤ k on the mesh
T hNM(γ) which are one degree less on the first and last subinterval.

We now define Vh,k ⊂ Ṽh,k by

Vh,k = {u ∈ Ṽh,k|
∫
γ

(uMγ − uNMγ )χds = 0 ∀χ ∈ SNMh,k (γ), ∀ γ ∈ Z} .(2.5)

Then our discretization to (2.2) is defined as follows: Find uh,k ∈ Vh,k satisfying,
for all v ∈ Vh,k,

ah,k(uh,k, v) def=
K∑
i=1

∫
Ωi

∇uh,k · ∇v dx = F (v) .(2.6)

Theorem 2.1 ([8]). Problem (2.6) has a unique solution.

In particular, the proof of uniform Vh,k ellipticity in terms of the norm ||.||1,d
carries over.

Remark 2.1. The problem (2.6) can also be put into a mixed form. Defining the
Lagrange multiplier space

Sh,k = Sh,k(Γ) =
∏
γ∈Z

SNMh,k (γ)



UNIFORM hp CONVERGENCE RESULTS FOR THE MORTAR FEM 525

and the bilinear form bh,k on Ṽh,k × Sh,k by

bh,k(v, χ) =
∑
γ∈Z

∫
γ

(vMγ − vNMγ )χ ds,(2.7)

we seek (ũh,k, λh,k) ∈ Ṽh,k × Sh,k satisfying, for all (v, χ) ∈ Ṽh,k × Sh,k,

ah,k(ũh,k, v) + bh,k(v, λh,k) + bh,k(ũh,k, χ) = F (v)(2.8)

It can be shown (as in [7]) that (2.8) has a unique solution and uh,k = ũh,k.
Let us also remark that the condition u = 0 on ∂ΩD (or u = g on ∂ΩD) could

also be implemented by suitably modifying (2.7) to include appropriate boundary
terms. For convergence results for the mixed method, see Remark 3.2.

3. Stability and convergence estimates

Let V NM0 (γ) denote functions in V NM (γ) vanishing at the end points of γ. The
stability and convergence of the approximate problem depends on the properties
of the projection operator Πγ : L2(γ) → V NM0 (γ) defined as follows: For u ∈
L2(γ), γ ∈ Z, Πγu = Πh,k

γ u ∈ V NM0 (γ) satisfies,∫
γ

(Πh,k
γ u) χds =

∫
γ

u χ ds ∀χ ∈ SNMh,k (γ) .(3.1)

In Section 4, we prove Theorem 3.1 below on the stability of the projections Πγ .
For this, we will need to make a minor restriction on the spaces {Vh,k}.
Condition (M). There exist constants α,C0, κ, independent of the mesh param-
eter h and degree k, such that for any trace mesh on γ ∈ Z, given by x0 < x1 <

. . . < xN+1, with hj = xj+1 − xj, we have
hi
hj
≤ C0 α

|i−j|, where α satisfies

1 ≤ α < min{(k + 1)2, κ}.
Let us observe that almost any meshes used in the h, p or hp version will satisfy

Condition (M), which essentially says that the refinement cannot be stronger than
geometric. We then have the following theorem.

Theorem 3.1. Let {Vh,k} be such that Condition (M) holds. Let {Πh,k
γ , γ ∈ Z} be

defined by (3.1). Then there exists a constant C, independent of h, k (but depending
on α,C0, κ), such that

||Πh,k
γ u||0,γ ≤ Ck

1
2 ||u||0,γ ∀u ∈ L2(γ),(3.2)

||(Πh,k
γ u)′||0,γ ≤ Ck||u′||0,γ ∀u ∈ H1

0 (γ).(3.3)

Remark 3.1. The stability of the projections Πγ has been analyzed in [7, 8] but only
under the assumption that the meshes are quasiuniform. For non-quasiuniform
meshes, the technique of [7, 8] does not work, since we no longer have a global
inverse inequality. Moreover, the estimates in [7, 8] do not address the stability in
terms of k, and good estimates for this k dependence cannot be obtained by the
techniques used there.

A second ingredient needed for the convergence proof is the existence of a
bounded hp extension or lifting operator. Such operators have been given for the
p version (e.g. [3, 4]), the h version (e.g. [25, 26]) and the hp version with quasi-
uniform meshes (e.g. [4]), but not for the hp version with general non-quasiuniform
meshes. For this, we have the following theorem.
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Theorem 3.2. For each γ ∈ Z and i such that γ ⊂ ∂Ωi and i = NM(γ), there
exists an extension operator Ri,γ = Rh,ki,γ : V NM0 (γ) → V ih,k(Ωi) satisfying, for all
z ∈ V NM0 (γ), and any ε > 0,

Ri,γ z = z on γ, Ri,γ z = 0 on ∂Ωi\γ,

||Ri,γ z||1,Ωi ≤ C||z|| 12 +ε,γ ,(3.4)

with C a constant independent of h, k, z but depending on ε. Moreover, for h or
k fixed, or for the case of quasiuniform meshes, we may take ε = 0 if we replace
||z|| 1

2 +ε,γ by ||z||
H

1
2
00(γ)

in (3.4).

Proof. Extending z to ∂Ωi by 0, we get (3.4) by Theorem 5.1, below. Using Lemmas
5.1, 5.3, and the proof in [4] shows that we can take ε = 0 in special cases.

Once the two ingredients in Theorems 3.1 and 3.2 are in place, we can prove our
main theorem, using the argument used in [8], Theorem 2. In the theorem below,
{Nj} denotes the set of all end points of the segments γ ∈ Z.

Theorem 3.3. Let {Vh,k} be such that Condition (M) holds. Then for any ε > 0,
there exists a constant C = C(ε), independent of u, h and k, such that

||u− uh,k||1,d ≤ C
∑
γ∈Z

inf
ψ∈Sh,k(γ)

||∂u
∂n
− ψ||(

H
1
2 (γ)

)′

+ C inf
v∈Ṽh,k

v(Nj)=u(Nj)

∑
i

||u− v||1,Ωi

+ k
3
4 +ε

∑
γ∈Z

(
||u− vMγ || 12 +ε,γ + ||u− vNMγ || 1

2 +ε,γ

) .

(3.5)

Moreover, for h or k fixed, or for quasiuniform meshes, we may take ε = 0 if we
replace ||.|| 1

2 +ε,γ by ||.||
H

1
2
00(γ)

.

Proof. Using the second Strang lemma, we get

||u− uh,k||1,d ≤ C
(

inf
v∈Vh,k

||u− v||1,d + eC(u)
)
,(3.6)

where eC(u) is the consistency error, which is shown in [8] to satisfy, independently
of the mesh,

eC(u) ≤ C
∑
γ∈Z

inf
ψ∈Sh,k(γ)

||∂u
∂n
− ψ||(

H
1
2 (γ)

)′ .(3.7)

For the approximation error term in (3.6), suppose ũ is any function in Ṽh,k
matching u at the vertices of each Ωi. Let γ ∈ Z; then the jump ũMγ − ũNMγ
vanishes at the end points of γ. We define

zγ = Πγ(ũMγ − ũNMγ ) ∈ V NM0 (γ),

so that ∫
γ

(ũMγ − (ũNMγ + zγ))χds = 0 ∀χ ∈ S(γ).(3.8)
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Now, if j = NM(γ), i.e. Ωj corresponds to the non-mortar domain, we use Theorem
3.2 to extend zγ into Ωj to obtain

wγ = Rj,γ
(
Πγ(ũMγ − ũNMγ )

)
∈ V jh,k .(3.9)

We note that wγ vanishes on ∂Ωj\γ and extend it by zero to Ω. Then, v =
ũ+

∑
γ

wγ ∈ Vh,k. We have

||u− v||1,d ≤ ||u− ũ||1,d +
∑
γ

||wγ ||1,d .

By Theorem 3.2,

||wγ ||1,d ≤ C||Πγ(ũMγ − ũNMγ )|| 1
2 +ε,γ .(3.10)

Interpolating between (3.2)–(3.3) and applying it to (3.10), we see that the result
follows by the triangle inequality.

We now apply Theorem 3.3 to various situations.

3.1. The h, p and hp versions on quasiuniform meshes. For quasiuniform
meshes, Condition (M) obviously holds. Also, the approximation theory developed
in [4, 22] easily shows that the infima in (3.5) may be bounded as in (3.11) below.
The matching of u at vertices Nj causes no problem; see [4] (ε = 0 here.)

Theorem 3.4. Let the solution u of (2.1) satisfy u ∈ H l(Ω), l > 3
2 (l > 7

4 if k
varies). For the hp version with quasiuniform meshes {T ih} on each Ωi,

||u− uh,k||1,d ≤ Chµ−1k−(l−1)+ 3
4 ||u||l,Ω,(3.11)

where µ = min{l, k + 1} and C is a constant independent of h, k and u.

Taking k= constant in (3.11), we get an optimal O(hµ−1) estimate for the pure
h version, proven in [8]. For h = constant, we have the p version estimate,

||u− uh,k||1,d ≤ Ck−(l−1)+ 3
4 ||u||l,Ω .(3.12)

Estimate (3.12) gives a rate that is suboptimal by an amount O(k
3
4 ). This loss

does not seem to appear in computations (see Section 6). In a forthcoming paper,
we prove an improved estimate with only an O(kε) suboptimality.

For polygonal domains, the solution u can be decomposed into a smooth part
and singularities at the vertices of Ω of the form rα logs rf(θ), where (r, θ) are polar
coordinates at the vertex, α > 0 and s = 0 or 1 [13]. Suppose α0 is the smallest
singular exponent (assume s = 0); then (3.12) is pessimistic. Rather, by the results
of [3], we can show a convergence rate of O(k−(2α0− 3

4 )) instead.

3.2. The h version on non-quasiuniform meshes. Suppose, as above, α0 is the
smallest singular exponent. Then the pure h version with quasiuniform meshes (and
degree k ≥ α0) will only give O(hα0) convergence, rather than O(hk) convergence.
To recover the optimal rate, special mesh refinement is carried out near vertices
or at points where the boundary condition changes, leading to non-quasiuniform
meshes. For these, we redefine h to be N−

1
2 , where N is the number of degrees of

freedom.
The radical mesh, described in Section 4 of [5], is a mesh for which the refinement

increases towards the vertex, and which leads to an optimal O(N−
k
2 ) approximation
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rate for the function rα logs rf(θ). A combination of radical mesh refinement in
the vicinity of vertices, together with adequate refinement for smooth components
in the interior, therefore, can lead to O(N−

k
2 ) convergence for the conforming h

version.
To obtain optimal convergence in the h version mortar finite element method,

appropriate (radical) mesh refinement must be carried out in each subdomain near
vertices (see the example in Section 6). The trace of such an interior mesh on the
interface will be a one-dimensional radical mesh. The simplest example, given on
[0, 1], is

xi =
(
i

n

)β
, i = 0, 1, . . . , n(3.13)

(where in 1-d, the optimal exponent is β =
k + 1

2

α− 1
2

for the function xα [15]). We note

that the refinement in (3.13) is weaker than the geometrical refinement allowed by
Condition (M), so that this condition will be satisfied (see [20] for details). Hence
Theorem 3.3 is applicable, and can be used to establish improved (up to optimal
O(N−

k
2 )) convergence for appropriately designed meshes [20].

3.3. The hp version on geometric meshes. As shown in [16], the conforming
hp finite element method leads to exponential convergence when the mesh is refined
geometrically in the vicinity of vertices. Theorem 3.3 allows us to prove this for the
hp mortar finite element method as well. For notational convenience, we replace h
by n here, where n is the number of layers of elements around each vertex.

Let {T in} denote the family of meshes on Ωi. These will be assumed to be
geometric in the following sense. For each vertex Nl of Ωi such that Nl is also
a vertex of Ω, or a point where the boundary condition changes, we assume that
in a neighborhood Nl of Nl, the elements of the mesh T in are numbered by a
double index τ

(n)
i,j with i = 1, . . . , ρ(j), ρ(j) ≤ ρ0 and j = 1, 2, . . . , n + 1. Let

hn,i,j = diam(τ (n)
i,j ), and let dn,i,j denote the distance between τ

(n)
i,j and Nl. Then,

if Nl 6∈ τ (n)
i,j , for i = 1, 2, . . . , ρ(j), j = 2, . . . , n+ 1,

C1q
n+2−j ≤ dn,i,j ≤ C2q

n+1−j , κ1dn,i,j ≤ hn,i,j ≤ κ2dn,i,j .

If Nl ∈ τ (n)
i,j , then j = 1 and

κ3q
n ≤ hn,i,j ≤ κ4q

n, i = 1, . . . , ρ(1),

where the constants Cr and κr are uniform for all the meshes.
Outside the neighborhoods Nl, we assume T in consists of a conforming (quasi-

uniform) mesh. We consider continuous piecewise polynomials of degree k on the
elements in T in . Note that the interface meshes will be traces of the geometrical
meshes in T in . These are easily seen to satisfy Condition (M). Hence, Theorem 3.3
is applicable, giving the following.

Theorem 3.5. Let u be the solution of (2.1) and un,k ∈ Vn,k the approximate
solution (2.6), where T in are geometric meshes and µn ≤ k ≤ νn for 0 < µ, ν <∞.
Then, with N the number of degrees of freedom,

||u− un,k||1,d ≤ Ce−γN
1
3(3.14)

for some γ > 0.
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Proof. We apply Theorem 3.3. In [16], the terms ||u − v||1,Ωi are bounded as in

(3.14). The terms in the H
1
2 +ε(γ) norm may be bounded by Ce−γ1N

1
2 [6], and the

k
3
4 +ε loss is easily absorbed into this by adjusting the constant γ1. Finally, the

terms in the (H
1
2 (γ))′ norm can be bounded by Ce−γ1N

1
2 as well [6].

Remark 3.2. The above error estimates also hold when the mixed form in Remark
2.1 is used. Moreover, using the argument in [7], similar estimates can be derived
for the error in the Lagrange multiplier (e.g. exponential convergence in the hp
version). In particular, the argument in [7] shows that the inf-sup constant for
the mixed method is independent of h for the h version on any mesh satisfying
Condition (M), and behaves no worse than O(k−

3
4 ) for the p version.

4. An hp stability result

In this section, we prove Theorem 3.1. Our proof uses and extends the ideas of
[12]. For convenience, we take γ = I = (0, 1) with mesh 0 = x0 < x1 < . . . , xN+1

and denote V NM0 (γ) by Vh,k(γ), i.e.,

Vh,k(γ) = {χ ∈ C(0, 1); χ|Ij ∈ Pk, j = 0, . . . , N (N ≥ 1); χ(0) = χ(1) = 0} .

Then SNMh,k (γ) = Sh,k is defined by,

Sh,k = {χ ∈ C(0, 1); χ|Ij ∈ Pk, j = 1, . . . , N − 1; χ|I0 ∈ Pk−1; χ|IN ∈ Pk−1}

and Π = Πh,k
γ : L2(γ) → Vh,k(γ) is given by (3.1). Let us introduce the following

subspaces of Vh,k and Sh,k (we omit the reference to γ and also to h, k as necessary):

V 2
h,k = {χ ∈ Vh,k; χ(xi) = 0, i = 1, . . . , N},

S2
h,k = {χ ∈ C(0, 1); χ|Ij ∈ P0

k(Ij), j = 1, . . . , N − 1;

χ|I0 ∈ PRk−1(I0);χ|IN ∈ PLk−1(IN )}
where, for any interval I,

PRk (I) = {χ| χ ∈ Pk; χ vanishes at the right end point of I},

PLk (I) = {χ| χ ∈ Pk; χ vanishes at the left end point of I},

P0
k(I) = PRk (I) ∩ PLk (I) .

In the sequel, we will use |.|2 and |.|∞ to denote the usual l2 or l∞ norm of any
vector or square matrix. Also, the norm of a function in Hk(I) will be denoted by
||.||k .

Lemma 4.1. There exist subspaces V 1
h,k ⊂ Vh,k and S1

h,k ⊂ Sh,k such that

Vh,k = V 1
h,k + V 2

h,k , V 1
h,k ∩ V 2

h,k = 0,(4.1)

Sh,k = S1
h,k + S2

h,k , S1
h,k ∩ S2

h,k = 0,(4.2) ∫ 1

0

v χ dx = 0 , ∀ v ∈ V 1
h,k , χ ∈ S2

h,k,(4.3) ∫ 1

0

v χ dx = 0 , ∀ v ∈ V 2
h,k , χ ∈ S1

h,k.(4.4)
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Figure 1. The spaces Sih,2 and V ih,2 for i = 1, 2

Proof. We note by (4.1) and (4.2) that functions in V 1
h,k and S1

h,k must be com-
pletely specified by their values at the interior nodes, so each space has dimension
N . Let us first define V 1

h,k as the span of N nodal basis functions ψj , 1 ≤ j ≤ N,

such that (4.3) is satisfied. These basis functions will be defined in terms of the
following canonical polynomials of degree k on the standard interval I = [−1, 1] :

ψA(x) =
(−1)k−1

2k(k!)
1

1− x
dk−1

dxk−1
[(1− x)k(1 + x)k],(4.5)

ψB(x) =
(−1)k−1

2k(k!)
1

(1− x)(1 + x)
dk−1

dxk−1
[(1 − x)k(1 + x)k+1].(4.6)

It may be verified that

ψA(−1) = 0, ψA(1) = 1,
∫ 1

−1

ψA q dx = 0 ∀ q ∈ PRk−1(I),(4.7)

ψB(−1) = 0, ψB(1) = 1,
∫ 1

−1

ψB q dx = 0 ∀ q ∈ P0
k(I) .(4.8)
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We then set, for 2 ≤ j ≤ N − 1,

ψj(x) =


ψB

(
2x− xj−1 − xj

hj−1

)
on Ij−1,

ψB

(
xj + xj+1 − 2x

hj

)
on Ij ,

0 otherwise,

(4.9)

ψ1(x) =


ψA

(
2x− x0 − x1

h0

)
on I0,

ψB

(
x1 + x2 − 2x

h1

)
on I1,

0 otherwise,

(4.10)

ψN (x) =


ψB

(
2x− xN−1 − xN

hN−1

)
on IN−1,

ψA

(
xN + xN+1 − 2x

hN

)
on IN ,

0 otherwise.

(4.11)

Clearly, with V 1
h,k = Span {ψ1, . . . , ψN}, (4.1) is satisfied. Moreover, by (4.5),

(4.6) and the definition of S2
h,k, one can easily verify (4.3). Turning to the space

S1
h,k, we define φi = ψi for i = 2, . . . , N − 1, and

φ1(x) =


h0

(x− x0)
ψ1(x) on I0,

ψ1(x) otherwise,
(4.12)

φN (x) =


hN

(xN+1 − x)
ψN (x) on IN ,

ψN (x) otherwise,
(4.13)

and set S1
h,k = Span {φ1, φ2, . . . , φN−1, φN}. Then (4.2) and (4.4) can be easily

verified. (An illustration of these spaces for k = 2 is in Figure 1.)

Using (4.1), we may write

Π = Π1 + Π2,(4.14)

where for any u ∈ H1
0 (I) we have Πiu ∈ V ih,k, i = 1, 2. It is easily seen by Lemma

4.1 that Πi : H1
0 (0, 1)→ V ih,k is defined by∫

I

Πiu χ dx =
∫
I

u χ dx ∀χ ∈ Sih,k, i = 1, 2.(4.15)

(Note that for k = 1,Π = Π1.)
We will prove Theorem 3.1 by deriving estimates for Π1 and Π2 separately. We

begin by obtaining an explicit matrix characterization of Π1.

Suppose w = Π1u =
N∑
i=1

wiψi. We can then write

N∑
i=1

wi(ψi, φj) = (u, φj) = uj, j = 1, . . . , N.(4.16)



532 P. SESHAIYER AND M. SURI

In matrix form, this becomes

GW = U,(4.17)

where Gij = (ψi, φj), Wj = wj and Ui = ui. We will need to compute the non-zero
elements of G, which we note is tridiagonal. We begin with a preliminary lemma.

Lemma 4.2. Let Lk(t) be the Legendre polynomial of degree k, k = 0, 1, . . . . Then∫ 1

−1

(1− t2)(L′k(t))2 dt =
2k(k + 1)

2k + 1
,(4.18)

∫ 1

−1

(L′k(t))2 dt = k(k + 1) .(4.19)

Proof. Let P (α,β)
k be the Jacobi polynomial with index (α, β) and degree k. Then

the following relation holds:

L′k(t) =
1
2

(k + 1)P (1,1)
k−1 (t).

Therefore, using a property of Jacobi polynomials,∫ 1

−1

(1 − t2)(L′k(t))2dt =
1
4

(k + 1)2

∫ 1

−1

(1− t2)(P (1,1)
k−1 (t))2 dt

=
1
4

(k + 1)2 8
2k + 1

Γ(k + 1)Γ(k + 1)
Γ(k)Γ(k + 2)

=
2k(k + 1)

2k + 1
,

which proves (4.18). The proof of (4.19) is given in [17], Proposition 4.4.

Lemma 4.3.

(ψj , φj) = (ψj , ψj) =
1

k(k + 2)
(hj−1 + hj), j = 2, . . . , N − 1,(4.20)

(ψj , φj+1) = (ψj , ψj+1) =
(−1)k−1

k(k + 1)(k + 2)
hj, j = 1, . . . , N − 1,(4.21)

(ψ1, φ1) =
h0

k(k + 1)
+

h1

k(k + 2)
, (ψN , φN ) =

hN−1

k(k + 2)
+

hN
k(k + 1)

,(4.22)

||ψ1||20 =
h0

(k + 1
2 )(k + 1)

+
h1

k(k + 2)
, ||ψN ||20 =

hN−1

k(k + 2)
+

hN

(k + 1
2 )(k + 1)

,

(4.23)

||φ1||20 =
2h0

k(k + 1)
+

h1

k(k + 2)
, ||φN ||20 =

hN−1

k(k + 2)
+

2hN
k(k + 1)

.(4.24)

Proof. Equations (4.20) and (4.21) are proved in Lemma 2 of [12]. Let us prove
(4.22). Using the properties of Legendre polynomials, we have∫ t

−1

Lk(x) dx =
(−1)k

2k (k!)
dk−1

dtk−1

{
(1 − t2)k

}
.(4.25)
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Using (4.5) and (4.25), we get

ψA(t) =
(−1)
1− t

∫ t

−1

Lk(x) dx.(4.26)

Next, integrating the governing differential equation for Legendre polynomials, we
may show that ∫ t

−1

Lk(x) dx = − (1 − t2)
k(k + 1)

L′k(t) .(4.27)

Substituting (4.27) in (4.26), we obtain

ψA(t) =
1

k(k + 1)
(1 + t) L′k(t) .(4.28)

Hence, using Lemma 4.2, and the fact that t[L′k(t)]2 is an odd function, we have∫ 1

−1

ψ2
A(t)

1 + t
dt =

1
k2(k + 1)2

∫ 1

−1

(1 + t) [L′k(t)]2 dt =
1

k(k + 1)
.

Then (4.22) follows by a transformation of variables.
Next, let us prove (4.23). By (4.28) we have∫ 1

−1

ψ2
A(t) dt =

1
k2(k + 1)2

∫ 1

−1

(1 + t2) [L′k(t)]2 dt,

where we have again used the fact that t [L′k(t)]2 is an odd function. Hence,∫ 1

−1

ψ2
A(t) dt =

1
k2(k + 1)2

{
2
∫ 1

−1

[L′k(t)]2 dt−
∫ 1

−1

(1− t2) [L′k(t)]2dt
}
.

Using Lemma 4.2, we therefore obtain∫ 1

−1

ψ2
A(t) =

1
k2(k + 1)2

{
2k(k + 1) − 2k(k + 1)

2k + 1

}
=

4
(k + 1)(2k + 1)

,

from which (4.23) follows by a transformation of variables. Equation (4.24) is
proved similarly.

Let us now introduce the diagonal matrix D with the same diagonal elements as
G,

di = (ψi, φi), i = 1, . . . , N .(4.29)

We can then write G in the form

G = D(I +K),

where K is a tridiagonal matrix with diagonal elements zero and bidiagonal entries

K1,2 =
(−1)k−1h1

(k + 2)h0 + (k + 1)h1
,(4.30)

KN,N−1 =
(−1)k−1hN−1

(k + 2)hN + (k + 1)hN−1
,(4.31)

Kj,j−1 =
(−1)k−1

k + 1
hj−1

hj−1 + hj
, j = 2, . . . , N − 1,(4.32)

Kj,j+1 =
(−1)k−1

k + 1
hj

hj−1 + hj
, j = 2, . . . , N − 1 .(4.33)
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Then equation (4.17) becomes

(I +K)W = D−1U .(4.34)

Lemma 4.4. Let {Vh,k(I)} be a sequence of finite element trace spaces such that
Condition (M) holds. Let the matrices D and K be defined by (4.29) – (4.33). Then
the matrices (I + D

1
2KD−

1
2 )−1 and (I + D−

1
2KD

1
2 )−1 exist and are bounded in

the l2 norm independently of k and the mesh.

Proof. We note that all terms of K are of the same sign, so that the same holds for
K l for any integer l ≥ 1. Also, K l will be min(2l + 1, 2N − 1) diagonal. Hence,

|D 1
2K lD−

1
2 |2 ≤ max

|i−j|≤min{l,N−1}= τl

(
di
dj

) 1
2

|K l|2.

Here, by (4.20), (4.22) and Condition (M),(
di
dj

)
≤ 3

2
(hi−1 + hi)
(hj−1 + hj)

≤ 3
2
C2

0α
τl + 1 for |i− j| ≤ τl .

Since K l is (2τl + 1)–diagonal, we also have

|K l|2 ≤ Cτ
1
2
l |K l|∞ ≤ Cτ

1
2
l |K|l∞ ≤

Cτ
1
2
l

(k + 1)l
,

where we have used (4.30)–(4.33) to obtain

|K|∞ = max
i

∑
j

|kij | =
1

k + 1
.

Finally,

|(I +D
1
2KD−

1
2 )−1|2 ≤ 1 +

∞∑
l=1

|(D 1
2K lD−

1
2 )−1|2

≤ 1 + C

∞∑
l=1

τ
1
2
l

(
α

1
2

k + 1

)l
< ∞ .

Similarly |(I + D−
1
2KD

1
2 )−1|2 can be shown to have a bounded inverse.

Lemma 4.5. There exists a constant C, independent of k and the mesh, such that,
for any u ∈ L2(0, 1),

||Π1u||0 ≤ C||u||0 .

Proof. We first note that since ψi has support over only 2 intervals,

||Π1u||20 = ||
N∑
i=1

wiψi||20 ≤ 3
N∑
i=1

|wi|2||ψi||20 = 3
N∑
i=1

|wi|2di = 3|D 1
2W |20 .(4.35)

Next, we note that, using (4.34),

D
1
2 (I +K)D−

1
2D

1
2W = D−

1
2U,

so that, by Lemma 4.4,

|D 1
2W |2 = |(I +D

1
2KD−

1
2 )−1D−

1
2U |2 ≤ C|D− 1

2U |2 .(4.36)
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Finally, using Lemma 4.3,

|(D− 1
2U)i| =

|(u, φi)|
(ψi, φi)

1
2
≤ C

( ||u||0,Ii−1 ||φi||0,Ii−1

||φi||0,Ii−1∪Ii
+
||u||0,Ii ||φi||0,Ii
||φi||0,Ii−1∪Ii

)
.

Therefore,

|(D− 1
2U)i| ≤ C

(
||u||0,Ii−1 + ||u||0,Ii

)
,(4.37)

so that

|D− 1
2U |2 ≤ C||u||0 .(4.38)

The lemma now follows from (4.35), (4.36), and (4.38).

Lemma 4.6. Let u ∈ H1
0 (0, 1) be such that u|Ii ∈ H1

0 (Ii), for i = 0, . . . , N . Then,

||(Π1u)′||0 ≤ Ck2

(
N∑
i=0

h−2
i ||u||20,Ii

) 1
2

,

where C is a constant independent of u, k and the mesh.

Proof. We first note that (with ψ0 = ψN+1 = 0)

||(Π1u)′||20 = ||
N∑
i=0

wiψ
′
i||20 ≤

N∑
i=0

∫
Ii

(wiψ′i + wi+1ψ
′
i+1)2 dx

≤ 2
N∑
i=0

∫
Ii

(
(wiψ′i)

2 + (wi+1ψ
′
i+1)2

)
dx

= 2
N∑
i=1

w2
i ||ψ′i||20 ≤ Ck2

N∑
i=1

w2
i

(
h−1
i−1 + h−1

i

)
,

(4.39)

where we have used Lemma 4.3 and the local inverse inequality,

||ψ′i||0,Ii ≤ Ck2h−1
i ||ψi||0,Ii

(this can be verified to be sharp for the functions ψi). Next,

(h−1
i + h−1

i−1)(hi + hi−1) = 2 + h−1
i−1hi + h−1

i hi−1 ≤ 2(1 + C0α) .

Hence,

(h−1
i + h−1

i−1) ≤ C(hi + hi−1)−1 ≤ Ck−2d−1
i(4.40)

by the definition of di as in (4.29). Hence, (4.39) gives

||(Π1u)′||0 ≤ C|D− 1
2W |2 .(4.41)

Next, we see by (4.34) that

D−
1
2 (I +K)D

1
2D−

1
2W = D−

3
2U,

so that by Lemma 4.4,

|D− 1
2W |2 ≤ C|D− 3

2U |2 .(4.42)

Finally, we note that

d−1
i ∼ k2(hi + hi−1)−1 ≤ k2h−1

i−1, k
2h−1
i .

Hence, using (4.37),

|(D− 3
2U)i| ≤ k2

(
h−1
i−1||u||0,Ii−1 + h−1

i ||u||0,Ii
)
,(4.43)
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so that by (4.41)–(4.43) we have

||(Π1u)′||0 ≤ Ck2

(
N∑
i=0

h−2
i ||u||20,Ii

) 1
2

.

Lemma 4.7. There exists a constant C, independent of k, such that, for any u ∈
L2(0, 1),

||Π2u||0,Ii ≤ C||u||0,Ii , i = 1, . . . , N − 1,(4.44)

||Π2u||0,Ii ≤ Ck
1
2 ||u||0,Ii , i = 0, N.(4.45)

Proof. Equation (4.44) follows immediately from (4.15) by taking χ ∈ Π2u|Ii and
using the Schwarz inequality.

To prove (4.45), we note that for the interval I0, (4.15) gives∫
I0

Π2u χ ds =
∫
I0

u χ ds ∀χ ∈ PRk−1(I0) .(4.46)

Suppose first that I0 = [−1, 1]. Then we can write

u =
∞∑
p=0

cpLp(x), Π2u =
k∑
p=0

apLp(x).(4.47)

Substituting (4.47) in (4.46) and taking χ = Lm − L0 for m = 1, . . . , k − 1, we
obtain the following (k − 1) equations:

am − (2m+ 1)a0 = cm − (2m+ 1)c0, m = 1, . . . , k − 1.(4.48)

Also, the conditions Π2u(±1) = 0 give,

k∑′

m=0

am = 0,
k∑′′

m=0

am = 0,(4.49)

where
∑′ (

∑′′) denotes summation over odd (even) m’s.
Assume k is even (say). Then equations (4.48),(4.49) have the explicit solution

am = cm −
2(2m+ 1)
k + k2

k−1∑′

m=1

cm, m = 0, 1, . . . , k − 1,(4.50)

ak =
k−1∑
m=0

(−1)m+1cm −
2k

k2 + k

k−1∑′

m=1

cm .(4.51)

Let us note that by the Schwarz inequality

A =
k−1∑′

m=1

cm ≤
(
k−1∑
m=1

c2m
2m+ 1

) 1
2
(
k−1∑
m=1

(2m+ 1)

) 1
2

≤ Ck||u||0,
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and that
k−1∑
m=0

(−1)m+1cm is similarly bounded. Hence,

||Π2u||20 =
k∑

m=0

a2
m

2m+ 1
=

k−1∑
m=0

a2
m

2m+ 1
+

a2
k

2k + 1

≤ C
(
k−1∑
m=0

c2m
2m+ 1

+
k−1∑
m=0

(m
k4

)
A2

)
+ C1k||u||20

≤ Ck||u||20 .

A similar estimate holds when k is odd, so that

||Π2u||0 ≤ Ck
1
2 ||u||0 .

By scaling, the same result holds for I0 = [0, h0], proving (4.45) for i = 0. The case
i = N is similarly established.

Lemma 4.8. Let u ∈ H1
0 (0, 1) be such that u|Ii ∈ H1

0 (Ii) for i = 0, . . . , N . Then

||(Π2u)′||0,Ii ≤ Ck
1
2 ||u′||0,Ii , i = 0, . . . , N.(4.52)

Proof. Let us first consider I0, and assume it is [−1, 1]. Since u,Π2u both vanish
at the end points of I0, we may write

Π2u =
k−2∑
p=0

ap(Lp+2 − Lp), u =
∞∑
p=0

cp(Lp+2 − Lp).(4.53)

Substituting (4.53) in (4.46) and taking χ = Lm−L0,m = 1, . . . , k− 1, we get the
following system of equations:

A~a = B~c ,(4.54)

where ~a = [a0 a1 . . . ak−2]T , ~c = [c0 c1 . . . ck−1]T , the (k−1)× (k−1) matrix
A is given by

A = C +D,

Ci1 = 2i+ 1, Cij = 0, j 6= 1,
Di,i−1 = 1, Di,i+1 = −1, Dij = 0 otherwise,

(4.55)

and the (k − 1)× k matrix B is given by

B = [ A ~e ], ~e = [0 0 . . . 0 − 1]T .(4.56)

Then (4.54) can be explicitly solved to give

~a = ~̃c+ ~xck−1,(4.57)

where, for 1 ≤ i ≤ k − 1,

xi = (A−1~e)i = − i(i+ 1)
k(k + 1)

, c̃i = ci−1 .(4.58)

Now, using the fact that

L′p+2 − L′p = (2p+ 3)Lp+1,
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we obtain from (4.53), (4.57) that

||(Π2u)′||20 = 2
k−2∑
p=0

a2
p(2p+ 3) ≤ 4

(
k−2∑
p=0

c2p(2p+ 3) + c2k−1

k−2∑
p=0

x2
p(2p+ 3)

)
.

The first term may be bounded by C||u′||20, using (4.53). For the second term, we
note, using (4.58), that

c2k−1

k−2∑
p=0

x2
p(2p+ 3) ≤ c2k−1

k−2∑
p=0

(2p+ 3) ≤ Ck||u′||20,

so that (4.52) follows for I0 = [0, h0] by a scaling argument. The proof for IN can
be done in exactly the same way.

Next, let 1 ≤ j ≤ N − 1 and assume Ij = [−1, 1]. Then, taking χ = Lm+2 −
Lm , m = 0, . . . , k − 2, in (4.15), we get a system analogous to (4.54), with ~a,~c as
before, and the matrices A,B given by

Ai,i = 4i+ 2, Ai,i+2 = −(2i− 1), Ai+2,i = −(2i+ 3), Aij = 0 otherwise,

B = [ A ~e1 ~e2 ] ,(4.59)

with

~e1 = [0 0 . . . 0 − (2k − 5) 0]T , ~e2 = [0 0 . . . 0 0 − (2k − 3)]T .(4.60)

Then (4.54) can be explicitly solved to give

~a = ~̃c+ ~x1ck−1 + ~x2ck,(4.61)

where c̃i = ci−1 as before and, for 1 ≤ i ≤ k − 1,

x1i = (A−1~e1)i = − i(i+ 1)
4n2 + 6n+ 2

for i odd, x1i = 0 for i even

x2i = (A−1~e2)i = − (i− 1)(i− 2)
4n2 + 10n+ 6

for i even, x1i = 0 for i odd.

Then, since |x1i| ≤ 1 and |x2i| ≤ 1, we obtain (4.52) analogously to the case
j = 0.

For any u ∈ H1(I), we now define the interpolant Ih,ku ∈ Vh,k by

(Ih,ku)(xi) = u(xi), i = 0, . . . , N ,(4.62) ∫
Ii

(Ih,ku)′v′ dx =
∫
Ii

u′v′ dx ∀ P0
k(Ii) .(4.63)

Then from [4] we have, for 0 ≤ s ≤ 1,

||u− Ih,ku||s,Ii ≤ Ch1−s
i k−(1−s)||u||1,Ii .(4.64)

Using Lemmas (4.5)–(4.8) and the interpolant Ih,ku, we are now ready to prove
our main theorem.

Proof of Theorem 3.1. Estimate (3.2) follows immediately from (4.14) and Lemmas
4.5 and 4.7. To prove (3.3), we write

Πu = Π1(u− Ih,ku) + Π2(u − Ih,ku) + Ih,ku.
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Since u− Ih,ku ∈ H1
0 (Ii), we may apply Lemmas 4.6 and 4.8 to it, to obtain

||(Πu)′||0 ≤ C

k2

(
N∑
i=0

h−2
i ||u− Ih,ku||20,Ii

) 1
2

+ k
1
2

(
N∑
i=0

||(u− Ih,ku)′||20,Ii

) 1
2


+ ||(Ih,ku)′||0 .
The first two terms on the right hand side are estimated using (4.64), and the last

term can be estimated using (4.62), (4.63). These then give (3.3) by the Poincaré
inequality.

Remark 4.1. The powers k
1
2 and k in (3.2)–(3.3) seem to be sharp, as has been

verified computationally via an eigenvalue analysis in [20, 21].

5. An hp extension theorem

In this section, we prove the following slightly more general form of Theorem
3.2.

Theorem 5.1. Let Ω0 be a polygonal domain and let {Th} be a shape regular family
of meshes on Ω0, consisting of parallelograms and triangles, with Th(Γ) denoting the
trace mesh on Γ = ∂Ω0. Let Vh,k(Ω0) be the set of continuous piecewise polynomials
of degree ≤ k on Th (for parallelograms, degree ≤ k in each variable) and let Sh,k(Γ)
be the corresponding trace space on Th(Γ). Then, given z ∈ Sh,k(Γ), there exists
v ∈ Vh,k(Ω0) satisfying, for any ε > 0,

v = z on Γ, ||v||1 ≤ C||z|| 1
2 +ε,Γ,(5.1)

with C a constant independent of z, h, k but depending on ε.

We start with a technical lemma whose proof is adapted from Section 3.2.2 of
[26].

Lemma 5.1. Let z ∈ Sh,k(Γ). Then there exists v ∈ Vh,k(Ω0) satisfying,

v = z on Γ, ||v||1,Ω0 ≤ C||z|| 12 ,Γ,(5.2)

where C is a constant independent of h but depending on k.

Proof. Let V be the extension of z satisfying

−∆V + V = 0 in Ω0, V = z on Γ .(5.3)

Then by a standard regularity estimate, for 0 ≤ ε ≤ ε0 ( ε0 > 0 depending on Ω0),

||V ||1+ε,Ω0 ≤ C||z|| 12 +ε,Γ .(5.4)

Define v ∈ Vh,k(Ω0) to be a discrete extension of z satisfying

(∇v,∇w)Ω0 + (v, w)Ω0 = 0 ∀w ∈ V 0
h,k = Vh,k ∩H1

0 (Ω0), v = z on Γ .(5.5)

Now let Πk
hV ∈ Vh,k(Ω0) be an (averaging) interpolant of V that satisfies

Πk
hV = z on Γ, ||Πk

hV ||1,Ω0 ≤ C(k)||V ||1,Ω0 .(5.6)

Such interpolants have been established in [19] for shape regular (not necessarily
quasiuniform) meshes. Then by (5.5), since v −Πk

hV ∈ V 0
h,k, we have

(∇v,∇(v −Πk
hV ))Ω0 + (v, v −Πk

hV )Ω0 = 0,
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from which we get

||v||1,Ω0 ≤ C||Πk
hV ||1,Ω0 .(5.7)

The lemma follows if we use (5.6) and (5.4) (with ε = 0) to bound (5.7).

The proof of the following lemma follows easily using the construction of V in
the proof above.

Lemma 5.2. Let z ∈ Sh,k(Γ), and let z̄ ∈ Sh,1(Γ) be its piecewise linear inter-
polant. Then, for any ε > 0, there exists a constant C(ε) such that,

||z̄|| 1
2 ,Γ
≤ C(ε)||z|| 1

2 +ε,Γ.

Proof. Let V be as in (5.3) and define V to be its piecewise linear interpolant at
mesh points of Th. Then (using shape regularity) the following interpolation result
holds for any ε > 0:

||V − V ||1,Ω0 ≤ C(ε)

( ∑
K∈Th

h2ε
K |V |21+ε,K

) 1
2

,

so that

||V ||1,Ω0 ≤ C(ε)||V ||1+ε,Ω0 .(5.8)

Now V |Γ = z̄, so that, by a standard embedding theorem,

||z̄|| 1
2 ,Γ

= ||V || 1
2 ,Γ
≤ C||V ||1,Ω0 .(5.9)

The result follows by combining (5.9) with (5.8) and using (5.4).

Lemma 5.1 is useful for the case of the pure h version over arbitrary meshes but
not for the hp version, since the constant C depends on the degree. For the pure p
version over a fixed mesh, the following lemma gives the same result.

Lemma 5.3. [4, 2] Let Ω0 be a triangle (parallelogram). Let z ∈ C(Γ) be such that
for any side γ of Γ, z|γ ∈ Pk(γ). Then there exists v ∈ Pk(Ω0)(Qk(Ω0)) satisfying
(5.2) (with C a constant depending on Ω0).

In order to prove our main result, we need one more lemma.

Lemma 5.4. For any 0 < ε ≤ 1
2 , there exists a constant C(ε) such that for all

z ∈ H 1
2 +ε(I), I = [0, 1],

inf
p∈P0(I)

||z − p|| 1
2 +ε,I ≤ C(ε)|z| 1

2 +ε,I.

Proof. The proof is similar to that of Theorem 3.1.1 in [11], where the lemma is
established for ε = 1

2 . For ε < 1
2 , we use the following definitions [24],

|u|21
2 +ε,I =

∫
I

∫
I

|u(x)− u(y)|2
|x− y|2(1+ε)

dxdy,

||u||21
2 +ε,I = ||u||20,I + |u|21

2 +ε,I .

Because |u| 1
2 +ε,I = 0 implies u ∈ P0(I), the proof then follows exactly as the proof

for ε = 1
2 in Theorem 3.1.1 of [11].
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Proof of Theorem 5.1. Let {Ni} be the nodes of Th on Γ, and let Ii = [Ni−1, Ni]
have length hi. Denote by z̄ the linear interpolant of z on Γ. We use Lemma 5.1
to find a v̄ ∈ Vh,1(Ω0) satisfying

v̄ = z̄ on Γ, ||v̄||1,Ω0 ≤ C||z̄|| 12 ,Γ ≤ C||z|| 12 +ε,Γ,

where we have used Lemma 5.2 for the last inequality.
Next, let τi be the element whose side coincides with Ii. Define ξ ∈ C(∂τi) by

ξ = z − z̄ on Ii, ξ = 0 on ∂τi\Ii .

Assume τi is a triangle (the parallelogram case follows similarly). Let

τ = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x}

be the reference triangle and denote I = {(x, 0) | 0 ≤ x ≤ 1}. We map τ onto τi
affinely so that I is mapped onto Ii.

For any function v defined on τi (or Ii), we denote by v̂ the corresponding image
on τ (or I). For any ε > 0, an imbedding result gives

||ξ̂|| 1
2 ,∂τ
≤ C||ẑ − ¯̂z||

H
1
2
00(I)

≤ C(ε)||ẑ − ¯̂z|| 1
2 +ε,I .(5.10)

Defining Π̂1 to be the linear interpolation operator on the interval I, we obtain, for
any p̂ ∈ P0(I),

||ẑ − ¯̂z|| 1
2 +ε,I = ||(ẑ − p̂)− Π̂1(ẑ − p̂)|| 1

2 +ε,I

≤ ||ẑ − p̂|| 1
2 +ε,I ||I − Π̂1||L

(
H

1
2 +ε(I),H

1
2 +ε(I)

) .(5.11)

Since ||Π̂1||L
(
H

1
2 +ε(I),H

1
2 +ε(I)

) is bounded, we may use (5.10), (5.11) and Lemma

5.4 to obtain

||ξ̂|| 1
2 ,∂τ
≤ C(ε)|ẑ| 1

2 +ε,I .(5.12)

Applying Lemma 5.3 to ξ̂, we find v̂i ∈ Pk(τ) (Qk(τ) for τi, τ parallelograms)
satisfying

v̂i = ξ̂ on ∂τ, ||v̂i||1,τ ≤ C||ξ̂|| 1
2 ,∂τ
≤ C(ε)|ẑ| 1

2 +ε,I .(5.13)

Then we may use a standard scaling argument to obtain

vi = ξ on ∂τi, ||vi||1,τi ≤ Chεi |z| 12 +ε,Ii .

Defining ṽ ∈ Vh,k to be vi on elements adjacent to Γ and 0 otherwise, we see that

||ṽ||21,Ω0
≤
∑
i

||vi||21,τi ≤ C(ε)
∑
i

||z||21
2 +ε,Ii

≤ C(ε)||z||21
2 +ε,Γ.

The theorem follows by taking v = v̄ + ṽ.
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Figure 2. (a) L-shaped domain; (b) Tensor product mesh for
m = n = 2

6. Numerical experiments

In this section, we perform calculations for problem (2.1) on the L-shaped domain
shown in Figure 2, which is divided into two rectangular subdomains Ω1 and Ω2,
by the interface AO. This domain will result in a strong singularity of the form r

2
3

at the reentrant corner O, and to obtain good convergence, the subdomain meshing
must be suitably refined around O. In order to be able to numerically calculate the
error, we take ∂ΩN = ∅ and choose f so that the exact solution is

u(x, y) = (1 − x2)(1 − y2)r
2
3 sin

(
2θ
3

)
,

where (r, θ) are polar coordinates with origin at O. We now show that the mortar
FEM is stable and performs as well as the conforming FEM, even for high p and for
strongly non-quasiuniform meshes. (Additional experiments, including the case of
Neumann boundary conditions, which works just as well, may be found in [20, 21].)

For programming convenience, we use the mixed form described in Remark 2.1.
Also, we consider tensor product meshes, where Ω2 is divided into n2 rectangles
and Ω1 is divided into 2m2 rectangles (see Figure 2). Since the mesh on Ω1 is
symmetric about y = 0, in the sequel we only describe the mesh on the top half.
We remark that although the radical and geometrical families of meshes described
below are not shape regular as m,n→∞, our numerical results still turn out to be
in excellent agreement with the theorems developed in this paper. Note that the
optimal versions of these meshes (see e.g. [16]) are, in fact, shape regular – we use
tensor product meshes here strictly for ease of implementation.

First, we consider the h version on radical meshes, by taking the n grid points
given by (3.13) along both the x and y axes for Ω2, and similarly for Ω1, but with
m points instead of n. We consider the combinations (m,n) ∈ {(2, 3), (4, 6), . . . ,
(14, 21)} to get incompatible meshes. (We could also take m = n and different
β, which gives similar results). Since our mesh is a tensor product one, it does
not fit exactly into the optimized 2-d radical mesh framework described in [5]. We
therefore determine β experimentally – it is found that for k = 1, β ≈ 2 is optimal,
and for k = 2, 3 the optimal value β ≈ 3. For β = 1, we get a uniform mesh on
each Ωi.

In Figure 3 we show the results for the case k = 2, where the percentage relative
error in the discrete H1(Ω) norm (2.4) is plotted vs N , the degrees of freedom. For
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the choices of (m,n) above and β = 1, our mortar FEM results agree well with the
theoretical rate of O(N−

1
3 ), while for β = 3, we observe a rate of about O(N−1),

as predicted in Section 3. Moreover, for this case, we have also plotted the choice
m = n, for which the mortar FEM (2.6) simply reduces to the usual conforming
FEM in this particular case. We see clearly that the mortar FEM performs as
well as the conforming FEM (the slightly better result observed for the conforming
FEM is to be expected, since in the above experiment, the mortar FEM cannot have
better approximation properties overall than the min{m,n} mesh over Ω1 and Ω2).
(Let us remark that for k = 3, we were only able to get O(N−1) convergence, both
for the conforming and non-conforming radical mesh cases. This non-optimality is
possibly due to the use of non-optimized tensor product meshes).

Next, we turn to the p and hp mortar FEM on geometric meshes. We now take
m = n, and along the x and y axes, take the grid points,

x0 = 0, xj = σn−ji j = 1, . . . , n

where σi is the geometric ratio used on Ωi. The optimal value is 0.15 ([15]), but
we take σ1 = 0.17 and σ2 = 0.13 to make the method non-conforming.

In Figure 4, we plot the results of increasing the degree k for various n. We see
typical p convergence – initial exponential convergence, followed by the flattened
algebraic rate of O(k−2α) (α = 2

3 here). Let us note that Theorem 3.4 suggested
a possible loss of O(k

3
4 ) in the asymptotic rate due to the projection Πγ not being

completely stable. For our problem, at least, this loss is not visible, as seen from
Figure 5. Here, we have plotted the case σ1 = 0.17, σ2 = 0.13 for n = 4 together
with the conforming cases σ1 = σ2 = 0.13 and 0.17. The results indicate that the
p version mortar FEM behaves almost identically to the conforming FEM.

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

slope=−0.3276

slope=−0.9863

Degrees of freedom

P
er

ce
nt

ag
e 

R
el

at
iv

e 
D

is
cr

et
e 

H
1 

E
rr

or

beta=1(mortar)    
beta=3(mortar)    
beta=3(conforming)

Figure 3. The relative error in the energy norm in dependence
on h for radical meshes (k = 2)
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Figure 4. The relative error in the energy norm in dependence
on N for geometric meshes (σ1 = 0.17, σ2 = 0.13)
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Figure 6. Exponential convergence for the hp mortar FEM

Finally, in Figure 6, we plot the envelope of the curves in Figure 4. By chang-
ing both n and k simultaneously, we can always remain in the exponential phase,
resulting in exponential convergence of Ce−γN

1
4 . The reason we get N

1
4 rather

than N
1
3 here is that we have a tensor product mesh which contains extra degrees

of freedom compared to the optimal geometric mesh described in Section 3. In
Figure 6, we plot log(relative error) vs N

1
4 , which gives a straight line, showing the

exponential rate (the curve vs N
1
3 is also plotted).
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