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CAN A FINITE ELEMENT METHOD
PERFORM ARBITRARILY BADLY?

IVO BABUŠKA AND JOHN E. OSBORN

Abstract. In this paper we construct elliptic boundary value problems whose
standard finite element approximations converge arbitrarily slowly in the en-
ergy norm, and show that adaptive procedures cannot improve this slow con-
vergence. We also show that the L2-norm and the nodal point errors converge
arbitrarily slowly. With the L2-norm two cases need to be distinguished, and
the usual duality principle does not characterize the error completely. The
constructed elliptic problems are one dimensional.

1. Introduction

The classical finite element method approximates the exact solution u of an el-
liptic boundary value problem by piecewise polynomials (or pull-back polynomials
when curvilinear elements are used). Denoting by uN the finite element approx-
imation with N degrees of freedom (i.e., the approximate solution for which N
unknowns have to be determined), for reasonable meshes we have ‖u− uN‖E → 0
(‖ · ‖E denotes the energy norm) as N →∞, provided u ∈ H1. If u has additional
smoothness, then typically ‖u− uN‖E ≤ CN

−µ
n , where µ depends on the smooth-

ness of u and the degree of the elements, and n is the dimension of the problem. If
the solution u has additional properties, e.g., u is the solution of Laplace’s equation
in a polygonal or polyhedral domain and is singular at the corners or edges, and the
mesh is properly selected a priori or by an adaptive procedure, then we typically
have ‖u− uN‖E ≤ CN

−p
n , where p is the degree of the elements.

Hence the question arises whether that there are problems for which the classical
finite element method converges arbitrarily slowly. We show that there are such
problems, and furthermore that the convergence cannot be improved with adaptiv-
ity. Specifically, we show that given a sequence of nonincreasing positive numbers
χN , with χ1 = 1, that converges to 0, there is a problem with solution u ∈ H1 such
that
• there are constants C1 and C2, independent of {χN}, such that

C1χN ≤ ‖u− uN‖E ≤ C2χN , for all N

(briefly, the energy norm error is of order χN );
• there is a sequence 1 ≤ N1 < N2 < · · · such that ‖u − uNi‖L2 is the order

of χ2
Ni

, provided χN converges to 0 “very slowly” (in a sense to be made
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more precise later); the usual duality principle does not characterize the error
completely; and
• the nodal point errors are the order of χ2

N .
These results are proved for a family of uniform meshes. We also show that the
errors behave in the same way for adaptively constructed meshes.

The example we construct is a one-dimensional boundary value problem, with a
homogeneous differential equation, a homogeneous Dirichlet condition at one end,
and a non-homogeneous Neumann condition at the other end. The differential
equation has a rough coefficient a(x), satisfying 0 < α ≤ a(x) ≤ β, which is
constructed in terms of the sequence {χN}. We expect that the results we obtain
also hold for general boundary value problems: boundary value problems in one or
more dimensions, with general Dirichlet, Neumann, or mixed Dirichlet/Neumann
boundary conditions.

Problems with rough coefficients are typical in problems with heterogeneous
materials. The example we construct shows that finite element methods based on
piecewise polynomial elements lead to unacceptable results when applied to these
problems. In addition, it shows that the comparison of results computed with
coarser and finer meshes cannot be used as a basis for assessing the accuracy of the
results. This example also shows the importance of developing special methods for
these problems; the special element method introduced and analyzed in [2], [5] is
an example of such a method.

Section 2 describes the specific boundary value problem we consider. In Section
3 we construct the specific coefficient a(x), and state and prove the estimates for
the energy norm of the error. The estimates for the nodal point errors are proved
in Section 4. In Section 5, the L2-error is analyzed. Remark 7, in Section 5,
discusses the relation of the L2-error to L2-error estimates proved with the usual
duality argument. Remark 8, in Section 5, discusses the error in the L∞-norm and
superconvergence at the nodes. Section 6 discusses adaptively constructed meshes
for our example. Section 7 summarizes our conclusions.

2. A model boundary value problem

and its finite element approximation

We consider the specific model boundary value problem−
d

dx
(a(x)

du

dx
) = 0, 0 < x < 1,

u(0) = 0, au′(1) = 1,
(2.1)

where a(x) is a measurable function on I = (0, 1) satisfying

0 < α ≤ a(x) ≤ β.(2.2)

The solution u(x) of (2.1) can be interpreted as the longitudinal displacement of
a heterogeneous bar with (local) modulus of elasticity a(x) that is subject to no
longitudinal load, with left end fixed, and with the stress at the right end equal
to 1.

We will understand (2.1) in the weak or variational sense:
u ∈ H1

0l(I),

B(u, v) =
∫ 1

0

a(x)u′v′dx = v(1), ∀v ∈ H1
0l(I),

(2.3)
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where

H1(I) = {u : ‖u‖2H1(I) =
∫ 1

0

[(u′)2 + u2]dx <∞}

and

H1
0l(I) = {u ∈ H1(I) : u(0) = 0}.

(The superscript l indicates that the functions in H1
0l(I) are required to be 0 at the

left endpoint of the interval I.) The solution of (2.3), or (2.1), exists and is unique,
and is given by

u(x) =
∫ x

0

dt

a(t)
.(2.4)

Sometimes we will indicate the dependence of u on the coefficient a by writing ua.
On H1

0l(I) we will also use the energy norm

‖u‖E = [B(u, u)]1/2 =
[ ∫ 1

0

a(u′)2dx
]1/2

and the norm

|u|H1(I) =
[ ∫ 1

0

(u′)2dx
]1/2

.

‖u‖E and |u|H1(I) are equivalent on H1
0l :

√
α|u|H1 ≤ ‖u‖E ≤

√
β|u|H1 .

We will also use the L2(I)- and L∞(I)-norms.
We are interested in the approximation of the solution of (2.3) by a usual (poly-

nomial based) finite element method. Toward this end we let ∆ = {0 = x∆
0 < x∆

1 <
· · · < x∆

N = 1}, where N = N∆ is a positive integer, be an arbitrary mesh on I,
and let Ij = I∆

j = (x∆
j−1, x

∆
j ), j = 1, . . . , N , and h = h∆ = max1≤j≤N (x∆

j − x∆
j−1).

Further, let

V∆ = {u ∈ H1
0l(I) : u

∣∣
I∆
j
∈ P1(I∆

j ), j = 1, . . . , N∆},(2.5)

where P1(I∆
j ) is the set of polynomials of degree less than or equal to 1 (considered

on I∆
j ), be the associated finite element space. Then, as usual, the corresponding

finite element approximation u∆ to the solution u of (2.3) is characterized by:{
u∆ ∈ V∆,

B(u∆, v) = v(1), ∀v ∈ V∆.
(2.6)

Clearly, u∆ exists and is unique.
It is known that

lim
h∆→0

‖u− u∆‖E = 0,(2.7a)

and hence that

lim
h∆→0

‖u− u∆‖L2(I) = 0 and lim
h∆→0

‖u− u∆‖L∞(I) = 0,(2.7b)

provided a(x) satisfies (2.2), and furthermore that ‖u − u∆‖E = O(h∆) if a(x) is
smooth. We are interested, however, in rough a(x), and in assessing the accuracy
of u∆ for such a(x). We will see that essentially nothing beyond (2.7a,b) is true
without additional assumptions on a(x).
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Throughout most of the paper we will consider uniform meshes. Specifically,
consider the family of uniform meshes given by

∆ = ∆k = {xk,0 =
0
2k

= 0 < xk,1 =
1
2k

< · · · < xk,2k =
2k

2k
= 1}, k = 0, 1, . . . ,

and let

Vk = V∆k .

Then N = N∆k = 2k; Ij = Ik,j = I∆k
j = (xk,j−1, xk,j), j = 1, . . . , 2k; and h =

hk = h∆k = N−1 = 2−k. The corresponding finite element approximation uk to u
is characterized by {

uk ∈ Vk,
B(uk, v) = v(1), ∀v ∈ Vk;

(2.8)

cf. (2.6). Note that degrees of freedom = dimVk = N = 2k.

3. Analysis of the error in the energy norm

Let u be the exact solution of the boundary value problem (2.3), or (2.1), and let
uk be the finite element approximation determined by the uniform mesh ∆k with
2k elements and hk = 2−k described in Section 2. In this section we assess the error
in the energy norm.

Theorem 1. Let {χk}∞k=0, with χ0 = 1, be a sequence of nonincreasing positive
numbers converging to 0. Then there is a coefficient a(x) satisfying (2.2) (with
α = 0.9 and β = 1.1) such that

(3 · 10−2)χk ≤ ‖u− uk‖E ≤ 1.9χk, for all k.(3.1)

Remark 1. We have chosen to present the constants in our estimates as explicit
(decimal) numbers. We have adopted this somewhat unusual practice in part to
show that the constants are absolute, in particular that they do on not depend on
the sequence {χk}, and in part to make the proofs of the estimates easier to follow.
The coefficient a(x) naturally depends on {χk}.

Remark 2. The sequence {χk} is indexed by k and not by N = degrees of freedom.
The result can, however, be recast in terms of N using the relation N = 2k; cf.
Section 1. The same is true for Theorems 2 and 3 below.

Proof. Let uk be the approximate solution, as characterized by (2.8). Writing

uk =
2k∑
i=1

uk,iφi,
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where φ1, . . . , φ2k are the standard basis functions for Vk (φi ∈ Vk, φi(xk,j) =
δij , i, j = 1, . . . , 2k), we easily see from (2.8) that uk,j = uk(xk,j) satisfy



−
∫
Ik,j

adx

hk
uk,j−1 +

(∫
Ik,j

adx

hk
+

∫
Ik,j+1

adx

hk

)
uk,j −

∫
Ik,j+1

adx

hk
uk,j+1

hk
= 0,

j =1, . . . , 2k − 1,
−
∫
I
k,2k

adx

hk
uk,2k−1 +

∫
I
k,2k

adx

hk
uk,2k

hk
= 1.

(3.2)

Letting ak,j =

∫
Ik,j

adx

hk
and zk,j = (uk,j−uk,j−1)ak,j

hk
, equations (3.2) can be written

zk,j − zk,j+1 = 0, j = 1, . . . , 2k − 1, zk,2k = 1.

Hence zk,j = 1 for j = 1, . . . , 2k, and equations (3.2) reduce to

(uk,j − uk,j−1)
hk

ak,j = 1, j = 1, . . . , 2k,

and so, since uk,0 = 0,

uk,j = uk(xk,j) = hk

j∑
i=1

1
ak,i

.(3.3)

Let

ak,j =

(∫
Ik,j

dx
a

hk

)−1

.

From (2.4) we see that

uj = u(xk,j) =
∫ xk,j

0

dx

a

= hk

{∫ xk,1
0

dx
a

hk
+

∫ xk,2
xk,1

dx
a

hk
+ · · ·+

∫ xk,j
xk,j−1

dx
a

hk

}
= hk

j∑
i=1

1
ak,i

.

(3.4)

We will define a(x) in terms of the following L2(I)–orthonormal sequence, which
is closely related to the Haar basis (cf. [10]):

g0(x) = 1, 0 < x < 1,

g1(x) =

{
1, 0 < x < 1

2 ,

−1, 1
2 < x < 1,
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and, in general,

gl(x) =



1, 0 < x < 1
2l
,

−1, 1
2l
< x < 2

2l
,

1, 2
2l
< x < 3

2l
,

−1, 3
2l
< x < 4

2l
,

...
1, 2l−2

2l
< x < 2l−1

2l
,

−1, 2l−1
2l < x < 1.

Let γ = 1/20. Then let 0 = l0 < l1 < · · · be inductively selected so that li+1 is the
least index ≥ li + 1 such that

χli+1 ≤ γχli .(3.5a)

It is immediate that

χl(i+1)−1 > γχli .(3.5b)

We then define a(x) by

a(x) =
∞∑
l=0

dlgl(x),(3.6)

where
dl0 = d0 = 1;
dli = γχli−1 for i = 1, 2, . . . ;
and dl = 0 for l 6= l0, l1, . . . .

(3.7)

We see immediately that dli ≤ γiχ0 = γi, and hence that∣∣∣ ∞∑
i=1

dligli(x)
∣∣∣ ≤ ∞∑

i=1

γi =
γ

1− γ ≤ 0.1.(3.8)

Hence the series defining a(x) converges uniformly and

α = 0.9 ≤ a(x) ≤ 1.1 = β.(3.9)

The series defining a(x) is of lacunary, or gap, type.
If l ≤ k, we see that gl(x) is constant on each Ik,j , j = 1, . . . , 2k. Hence, if we

write

a(x) =
k∑
l=0

dlgl(x) +
∞∑

l=k+1

dlgl(x)

= φk(x) + ηk(x),

(3.10)

we see that φk(x) = φk,j is constant on each Ik,j , j = 1, . . . , 2k. Furthermore, if
l > k, then ∫

Ik,j

gl(x)dx = 0, for j = 1, . . . , 2k;(3.11a)

if l ≤ k, then ∫
Ik,j

gl(x)dx = ±hk, for j = 1, . . . , 2k;(3.11b)
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if l,m > k, l 6= m, then∫
Ik,j

gl(x)gm(x)dx = 0, for j = 1, . . . , 2k;(3.11c)

and if l ≥ 0, then ∫
Ik,j

g2
l (x)dx = hk, for j = 1, . . . , 2k.(3.11d)

From (3.10) and (3.11a,c,d) we see that∫
Ik,j

ηk(x)dx = 0(3.12a)

and ∫
Ik,j

ηk(x)2dx = hk

∞∑
l=k+1

d2
l .(3.12b)

We also have (cf. (3.8) and (3.9))

α = 0.9 ≤ φk(x) ≤ 1.1 = β(3.13)

and

|ηk(x)| ≤ 0.1.(3.14)

From (3.10) and (3.12a), recalling that φk(x) = φk,j is constant on each Ik,j , we
see that ak,j = φk,j . Thus, from (2.4), (3.3), and (3.10), for x ∈ Ik,j we have

du

dx
− duk

dx
=

1
a(x)

− 1
ak,j

=
1

φk,j + ηk(x)
− 1
φk,j

=
−ηk(x)

φ2
k,j

(
1 + ηk(x)

φk,j

)
=

1
φ2
k,j

(
− ηk(x) + ψ(k, j, x)

η2
k(x)
φk,j

)
,

(3.15)

where, as a consequence of (3.13) and (3.14),

|ψ(k, j, x)| ≤ 1.2.(3.16)

From (3.9) and (3.15) we have[ ∫
Ik,j

a(x)
(du
dx
−duk
dx

)2

dx
]1/2

≥
√
α|u− uk|H1(Ik,j)

≥
√
α

φ2
k,j

[(∫
Ik,j

η2
k(x)dx

)1/2

− 1
φk,j

(∫
Ik,j

ψ2(k, j, x)η4
k(x)dx

)1/2]
.(3.17)

Using (3.13), (3.14), and (3.16), we see that

1
φk,j

(∫
Ik,j

ψ2(k, j, x)η4
k(x)dx

)1/2

≤ 0.14
(∫

Ik,j

η2
k(x)dx

)1/2

.
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Thus from (3.12b), (3.13), and (3.16) we have

[ ∫
Ik,j

a(x)
(du
dx
− duk

dx

)2

dx
]1/2

≥ 0.6
(∫

Ik,j

η2
k(x)dx

)1/2

= 0.6h1/2
k

( ∞∑
l=k+1

d2
l

)1/2

,

and hence

‖u− uk‖E ≥ 0.6
( ∞∑
l=k+1

d2
l

)1/2

, for all k.(3.18)

For k = 0, 1, . . . let i be such that li ≤ k ≤ li+1 − 1. Then, using (3.7), we have
∞∑

l=k+1

d2
l =

∞∑
m=i+1

d2
lm = γ2

∞∑
m=i

χ2
lm ≥ γ

2χ2
li ≥ γ

2χ2
k.(3.19)

Combining this estimate with (3.18), we get

‖u− uk‖E ≥ 0.6γχk ≥ (3 · 10−2)χk,(3.20)

which is the first estimate in (3.1).

Remark 3. It follows from the definitions of a(x), the mesh family {∆k}, and the
finite element approximation uk that

u1 = · · · = ul1−1, ul1 = · · · = ul2−1, . . . , uli = · · · = ul(i+1)−1, . . . .

By a similar argument we get an upper estimate. In fact, we get(∫
Ik,j

a(x)
(du
dx
− duk

dx

)2

dx
)1/2

≤
√
β|u− uk|H1(Ik,j)

≤
√
β

φ2
k,j

[(∫
Ik,j

η2
k,jdx

)1/2

+
1
φk,j

(∫
Ik,j

ψ2(k, j, x)η4
k(x)dx

)1/2]
≤ 1.8

(∫
Ik,j

η2
k,j(x)dx

)1/2

= 1.8h1/2
k

( ∞∑
l=k+1

d2
l

)1/2

.

(3.21)

Now, with li ≤ k ≤ l(i+1) − 1, using (3.5a), (3.5b), and (3.7), we have

∞∑
l=k+1

d2
l = γ2

∞∑
m=i

χ2
lm ≤ γ

2χ2
li

∞∑
m=0

γ2m =
γ2χ2

li

1− γ2
<
χ2
l(i+1)−1

1− γ2
≤ χ2

k

1− γ2
.(3.22)

Combining this estimate with (3.21), we get

‖u− uk‖E ≤
1.8χk√
1− γ2

≤ 1.9χk, for all k,(3.23)

which is the second estimate in (3.1).

Remark 4. It is possible to base Theorem 1 on a standard result in approximation
theory. It is known [8], [16] that given any sequence {χk}, there is a u ∈ H1

0l(I)
such that infφ∈Vk |u− φ|H1 = χk for all k, i.e., there is a function u with specified
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approximation properties. Now, we are interested in a solution u that corresponds
to a coefficient a(x) : u = ua. It immediate from (2.1) that a(x) must be given by

a(x) =
1

du(x)/dx
.(3.24)

It is clear that a(x), defined by (3.24), satisfies (2.2) if and only if du(x)/dx is
bounded away from 0 and ∞. Now, it is not clear that the function u constructed
in [16] is in L∞, but with an alternate construction by P. Oswald [13], this is
clear. Then by considering ũ(x) = u(x) + cx, for an appropriate value for c, we
get a solution ũ(x) that has specified approximations properties, and such that
the corresponding a(x) satisfies (2.1). In this way we obtain an alternate proof of
Theorem 1.

We have chosen to prove Theorem 1 as we did, however, because it leads naturally
to the proofs of Theorems 2 and 3 below. We thank Peter Oswald for pointing out
the approximation theory result [8], [16] and the construction [13] mentioned above.

Remark 5. With χk = 2−2k, Theorem 1 shows that ‖u − uk‖E is of order χk =
2−2k = h2

k. This might seem to contradict the well known result that the highest
possible rate of convergence with piecewise linear elements is O(h), which is proved
using the theory of N -widths (see, e.g., [14]) and a saturation theorem (see, e.g.,
[9]). But the theory of N -widths is concerned with the worst possible case, and
saturation theorems assume sufficient smoothness, so there is no contradiction.

4. Analysis of the error at the nodal points

We again let u be the solution of (2.3) and let uk be the finite element ap-
proximation determined by ∆k. In this section we assess the error at the nodal
points.

Theorem 2. Let {χk}∞k=0, with χ0 = 1, be a sequence of nonincreasing positive
numbers converging to 0. Assume that the coefficient a(x) is defined by (3.5a),
(3.6), and (3.7). Then

(1.5 · 10−3)χ2
kxk,j ≤ |(u− uk)(xk,j)| ≤ 1.7χ2

kxk,j , j = 1, 2, . . . , 2k, for all k.(4.1)

Proof. We begin with a refinement of equation (3.15): For x ∈ Ik,j ,
du

dx
− duk

dx
=

−ηk(x)

φ2
k,j

(
1 + ηk(x)

φk,j

)
=

1
φ2
k,j

(
− ηk(x) +

η2
k(x)
φk,j

− ψ(k, j, x)
η3
k(x)
φ2
k,j

)
,

(4.2)

where ψ satisfies (3.16). Thus, using (3.12a), we have∫
Ik,j

(du
dx
− duk

dx

)
dx =

1
φ3
k,j

[ ∫
Ik,j

η2
k(x)dx −

∫
Ik,j

ψ(k, j, x)η3
k(x)dx

φk,j

]
.(4.3)

Now, using (3.13), (3.14), and (3.16), we have∣∣∣ ∫Ik,j ψ(k, j, x)η3
k(x)dx

φk,j

∣∣∣ ≤ 0.14
∫
Ik,j

η2
k(x)dx.
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Thus, from (3.12b) and (3.14) we have∫
Ik,j

(du
dx
− duk

dx

)
dx ≥ 0.6

∫
Ik,j

η2
k(x)dx

= 0.6hk
∞∑

l=k+1

d2
l , for all k.

(4.4)

Hence

(u − uk)(xk,1) = (u− uk)(xk,0) +
∫ xk,1

xk,0

(du
dx
− duk

dx

)
dx

≥ 0.6
( ∞∑
l=k+1

d2
l

)
hk

= 0.6
( ∞∑
l=k+1

d2
l

)
xk,1,

(u − uk)(xk,2) = (u− uk)(xk,1) +
∫ xk,2

xk,1

(du
dx
− duk

dx

)
dx

≥ 0.6
( ∞∑
l=k+1

d2
l

)
(xk,1 + hk)

= 0.6
( ∞∑
l=k+1

d2
l

)
xk,2,

and, in general,

(u− uk)(xk,j) ≥ 0.6
( ∞∑
l=k+1

d2
l

)
xk,j , j = 1, . . . , 2k, for all k.(4.5)

Combining (3.19) and (4.5), we get

(u− uk)(xk,j) ≥ 0.6γ2χ2
kxk,j = (1.5 · 10−3)χ2

kxk,j ,(4.6)

which is the first estimate in (4.1).
A similar argument yields

(u− uk)(xk,j) ≤ 1.6
( ∞∑
l=k+1

d2
l

)
xk,j .

Combining this estimate with (3.22) yields

(u− uk)(xk,j) ≤ 1.7χ2
kxk,j ,(4.7)

which is the second estimate in (4.1).

Remark 6. From the usual finite element error analysis, we know that the nodal
point errors are 0 if a(x) = constant, and are O(h2) if a(x) is smooth. We note
that neither of these results applies to our example. Note that we obtained ar-
bitrarily low rates of convergence by appropriately selecting the sequence χk; the
corresponding coefficient a(x) is nearly constant (cf. (3.9)), but is not smooth.
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5. Analysis of the error in the L2-norm

The usual duality argument [1], [11], [12] shows that

‖u− uk‖L2(I) ≤ η(h)‖u− uk‖E ,(5.1a)

where

η(h) = sup
φ∈L2(I)

infτ∈Vk ‖wφ − τ‖E
‖φ‖L2(I)

,(5.1b)

wφ being the solution of−
d

dx
(a(x)

dwφ
dx

) = φ, 0 < x < 1,

wφ(0) = 0, aw′φ(1) = 0.

If a(x) is smooth, specifically if a(x) ∈ C1[0, 1], then η(h) ≤ Ch, and thus

‖u− uk‖L2(I) ≤ Ch‖u− uk‖E(5.2)

and

‖u− uk‖L2(I) ≤ C‖u− uk‖2E .(5.3)

Estimate (5.3) follows from (5.2) and the estimate ‖u− uk‖E ≥ Ch, which is valid
under a mild hypothesis on u (in addition to smoothness) [6]. But if a(x) is rough,
if we are assuming it is merely measurable, then, although limh→0 η(h) = 0, no
estimate of the form η(h) ≤ Chρ with ρ > 0 may hold. In this situation, we may
know [5], [15] only that

‖u− uk‖L2(I) = o(‖u− uk‖E).(5.4)

In this section we derive estimates on the L2(I)–error. Following their derivation,
we discuss their relation with L2–estimates derived via duality. We will also state
estimates on the L∞–error, and discuss their relation with superconvergence at the
nodes.

Theorem 3. Let {χk}∞k=0, with χ0 = 1, be a sequence of nonincreasing positive
numbers converging to 0. Assume that the coefficient a(x) is defined by (3.5a) and
(3.6), and (3.7). Then

max{(1.4 · 10−3)χli−1hli−1, (0.53 · 10−3)χ2
li−1 − 0.36χli−1hli−1}

≤ ‖u− uli−1‖L2(I)

≤ 1.7χ2
li−1 + 0.5χli−1hli−1, for all i ≥ 2.

(5.5)

Proof. Using (4.2) with k = li − 1, for x ∈ Ili−1,j we have

(u− uli−1)(x) = (u − uli−1)(xli−1.j−1) +
∫ x

xli−1.j−1

[u′(t)− u′li−1(t)]dt

= (u − uli−1)(xli−1.j−1)− 1
φ2
li−1,j

∫ x

xli−1,j−1

ηli−1(t)dt

+
1

φ3
li−1,j

∫ x

xli−1,j−1

η2
li−1(t)dt

− 1
φ4
li−1,j

∫ x

xli−1,j−1

ψ(li − 1, j, t)η3
li−1(t)dt.

(5.6)
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From (5.6) and the definition of ηli−1(x) (equation (3.10)) we get

‖u− uli−1‖L2(Ili−1,j)

=
∥∥∥(u− uli−1)(xli−1,j−1)− dli

φ2
li−1,j

∫ x

xli−1,j−1

gli(t)dt

− 1
φ2
li−1,j

∞∑
m=i+1

dlm

∫ x

xli−1,j−1

glm(t)dt

+
1

φ3
li−1,j

∫ x

xli−1,j−1

η2
li−1(t)dt

− 1
φ4
li−1,j

∫ x

xli−1,j−1

ψ(li − 1, j, t)η3
li−1(t)dt

∥∥∥
L2(Ili−1,j)

≥ dli
φ2
li−1,j

∥∥∥∫ x

xli−1,j−1

gli(t)dt−
φ2
li−1,j

dli
(u− uli−1)(xli−1,j−1)

∥∥∥
L2(Ili−1,j)

− 1
φ2
li−1,j

∞∑
m=i+1

dlm

∥∥∥∫ x

xli−1,j−1

glm(t)dt
∥∥∥
L2(Ili−1,j)

− 1
φ3
li−1,j

∥∥∥∫ x

xli−1,j−1

η2
li−1(t)dt

∥∥∥
L2(Ili−1,j)

− 1
φ4
li−1,j

∥∥∥∫ x

xli−1,j−1

ψ(li − 1, j, t)η3
li−1(t)dt

∥∥∥
L2(Ili−1,j)

= A−B − C −D.

(5.7)

We will estimate each of the terms on the right side of (5.7) in turn.
Let

Glm(x) =
∫ x

xli−1,j−1

glm(t)dt.

The graph of Gli(x) on the interval Ili−1,j is shown in Figure 1.
A direct calculation shows that

‖Gli‖L2(Ili−1,j) =
h

3/2
li−1

2
√

3
.(5.8)

Now ∫
Ili−1

|Gli(x) − c|2dx

is minimized by

c = c =

∫
Ili−1,j

Gli(x)dx

hli−1
.
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Thus, another direct calculation yields

[ ∫
Ili−1,j

∣∣∣Gli(x)−
φ2
k,j

dli
(u− uli−1)(xli−1,j−1)

∣∣∣2dx]1/2

≥
√∫

Ili−1,j

|Gli(x)− c|2dx

=
h

3/2
li−1

4
√

3
.

Hence, using (3.7) and (3.13), we have

A =
dli
φ2
k,j

∥∥∥∫ x

xli−1,j−1

gli(t)dt−
φ2
k,j

dli
(u− uli−1)(xli−1,j−1)

∥∥∥
L2(Ili−1,j)

=
γχli−1

φ2
k,j

[ ∫
Ili−1,j

∣∣∣Gli(x)−
φ2
k,j

dli
(u − uli−1)(xli−1,j−1)

∣∣∣2dx]1/2

≥ (5.9 · 10−3)h3/2
li−1χli−1 .

(5.9)
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The graphs of Gli(x) and Gli+1(x) on the interval Ili−1,j are shown in Figure 2.
Another direct calculation shows that

‖Gli+1‖2L2(Ili−1,j)
=
h3
li+1−1

12
hli−1

hli+1−1

= ‖Gli‖2L2(Ili−1,j)

(hli+1−1

hli−1

)2

= ‖Gli‖2L2(Ili−1,j)

( 1
2(li+1−li)

)2

≤ 1
4
‖Gli‖2L2(Ili−1,j)

;

and, in general,

‖Gli+s‖L2(Ili−1,j) ≤
1
2s
‖Gli‖L2(Ili−1,j).
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So, using (3.5a), (3.7), and (5.8), we have

∞∑
m=i+1

dlm

∥∥∥∫ x

xli−1,j−1

glm(t)dt
∥∥∥
L2(Ili−1,j)

=
∞∑

m=i+1

dlm‖Glm‖L2(Ili−1,j)

≤ ‖Gli‖L2(Ili−1,j)

∞∑
m=i+1

dlm
2m−i

= ‖Gli‖L2(Ili−1,j)

∞∑
m=i+1

γχlm−1

2m−i

≤ ‖Gli‖L2(Ili−1,j)

γ2χli−1

2

∞∑
m=0

(γ
2

)m
=

γ2

2
√

3(2− γ)
h

3/2
li−1χli−1 .

Hence

B ≤ (4.6 · 10−4)h3/2
li−1χli−1 .(5.10a)

In a similar way we get

B′ =
1

φ2
li−1,j

∞∑
m=i

dlm

∥∥∥∫ x

xli−1,j−1

glm(t)dt
∥∥∥
L2(Ili−1,j)

≤ (2 · 10−2)h3/2
li−1χli−1 ;

(5.10b)

this estimate will be used later.
Using (3.5a), (3.7), and (3.12b), we have∫

Ili−1,j

∣∣∣ ∫ x

xli−1,j−1

η2
li−1(t)dt

∣∣∣2dx ≤ ∫
Ili−1,j

∣∣∣ ∫
Ili−1,j

η2
li−1(t)dt

∣∣∣2dx
≤
( ∫

Ili−1,j

η2
li−1(t)dt

)2

hli−1

= h3
li−1

( ∞∑
m=i

d2
lm

)2

= h3
li−1

( ∞∑
m=i

γ2χ2
lm−1

)2

≤ h3
li−1γ

4χ4
li−1

( ∞∑
m=i

γ2(m−i)
)2

=
( γ2

1− γ2

)2

h3
li−1χ

4
li−1

=
( 1

399

)2

h3
li−1χ

4
li−1

.

(5.11)

Hence

C ≤ (3.5 · 10−3)h3/2
li−1χli−1 .(5.12)
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Using (3.14), (3.16), and (5.11), we get∫
Ili−1,j−1

∣∣∣∫ x

xli−1,j−1

ψ(li − 1, j, t)η3
li−1(t)dt

∣∣∣2dx
≤ (0.12)2

∣∣∣ ∫
Ili−1,j−i

∫ x

xli−1,j−1

η2
li−1(t)dt

∣∣∣2dx
≤
(0.12

399

)2

h3
li−1χ

4
li−1.

Hence

D ≤ (4.6 · 10−4)h3/2
li−1χli−1 .(5.13)

Finally, combining (5.7), (5.9), (5.10a), (5.12), and (5.13), we get

‖u− uli−1‖L2(Ili−1,j) ≥ (1.4 · 10−3)h3/2
li−1χli−1,(5.14)

where in the last inequality we have used the fact that li−1 ≤ li − 1, which implies
χli−1 ≥ χli−1. It follows immediately from (5.14) that

‖u− uli−1‖L2(I) ≥ (1.4 · 10−3)hli−1χli−1.(5.15)

We now prove another lower bound. From (5.6) we have

‖u− uli−1‖L2(Ili−1,j)

≥ ‖(u− uli−1)(xli−1,j−1)‖L2(Ili−1,j)

−
∥∥∥ 1
φ2
li−1,j

∞∑
m=i

dlm

∫ x

xli−1,j−1

glm(t)dt

− 1
φ3
li−1,j

∫ x

xli−1,j−1

η2
li−1(t)dt

+
1

φ4
li−1,j

∫ x

xli−1,j−1

ψ(li − 1, j, t)η3
li−1(t)dt

∥∥∥
L2(Ili−1,j)

≥ |(u− uli−1)(xli−1,j−1)|h1/2
li−1

− 1
φ2
li−1,j

∞∑
m=i

dlm

∥∥∥∫ x

xli−1,j−1

glm(t)dt
∥∥∥
L2(Ili−1,j)

− 1
φ3
li−1,j

∥∥∥∫ x

xli−1,j−1

η2
li−1(t)dt

∥∥∥
L2(Ili−1,j)

− 1
φ4
li−1,j

∥∥∥∫ x

xli−1,j−1

ψ(li − 1, j, t)η3
li−1(t)dt

∥∥∥
L2(Ili−1,j)

= A′ −B′ − C −D.

(5.16)

From (4.6) with k = li − 1 we have

A′ ≥ (1.5 · 10−3)χ2
li−1xli−1,j−1h

1/2
li−1.(5.17)

From (3.5b), (5.10b), (5.12), and (5.13) we have

B′ + C +D ≤ (2.4 · 10−2)h3/2
li−1χli−1 < (2.4 · 10−2)h3/2

li−1γ
−1χli−1 ≤ 0.5h3/2

li−1χli−1.

(5.18)
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Combining (5.16), (5.17), and (5.18), we have

‖u− uli−1‖L2(Ili−1,j) ≥
[
(1.5 · 10−3)xli−1,j−1χ

2
li−1 − 0.5hli−1χli−1

]
h

1/2
li−1.

Now consider intervals Ili−1,j such that xli−1,j−1 ≥ 1/2, i.e., consider j’s satis-
fying 2li−2 + 1 ≤ j ≤ 2li−1. There are 2li−2 such j’s if i ≥ 2, and for each of them
we have

‖u− uli−1‖L2(Ili−1,j) ≥
[
(1.5 · 10−3)

1
2
χ2
li−1 − 0.5hli−1χli−1

]
h

1/2
li−1.

Suppose (0.75 · 10−3)χli−1 − 0.5hli−1 > 0. Then

‖u− uli−1‖2L2(I) ≥ ‖u− uli−1‖2L2(1/2,0)

=
∑

2li−2+1≤j≤2li−1

‖u− uli−1‖2L2(Ili−1,j)

≥
[
(0.75 · 10−3)χ2

li−1 − 0.5hli−1χli−1

]2
hli−12li−2

=
1
2

[
(0.75 · 10−3)χ2

li−1 − 0.5hli−1χli−1

]2
, for i ≥ 2.

Hence

‖u− uli−1‖L2(I) ≥ (0.53 · 10−3)χ2
li−1 − 0.36hli−1χli−1.(5.19)

We easily see that (5.19) is valid without the assumption that (0.75 · 10−3)χli−1 −
0.5hli−1 > 0. Estimates (5.15) and (5.19) prove the first estimate in (5.5).

Now we prove the second estimate in (5.5). From (5.6) we have

‖u− uli−1‖L2(Ili−1,j) ≤ A′ +B′ + C +D.(5.20)

Estimate (4.7) with k = li − 1 yields

A′ ≤ 1.7χ2
li−1h

1/2
li−1.(5.21)

Combining (5.18), (5.20), and (5.21) yields

‖u− uli−1‖L2(Ili−1,j) ≤
[
1.7χ2

li−1 + 0.5χli−1hli−1

]
h

1/2
li−1.

Thus

‖u− uli−1‖L2(I) ≤ 1.7χ2
li−1 + 0.5χli−1hli−1,

which is the second estimate in (5.5).

Remark 7. It is informative to consider the following two cases:
Case 1. The sequence χk converges rapidly to 0;
Case 2. The sequence χk converges slowly to 0
Suppose we are in Case 1. Then the li’s are not so large (we could, e.g., have

li = i), and χli−1 � hli−1. Thus from (5.5) we see that ‖u− uli−1‖L2(I) is of order
hli−1χli−1. Combining this result with (3.1) shows that

‖u− uli−1‖L2(I) is of order hli−1‖u− uli−1‖E .(5.22)

Suppose next we are in Case 2, which we are mainly interested in. Then the li’s
are very large, so χli−1 � hli−1. Thus (5.5) shows that ‖u− uli−1‖L2(I) is of order
χ2
li−1 Combining this result with (3.1) shows that

‖u− uli−1‖L2(I) is of order ‖u− uli−1‖2E .(5.23)
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We can relate these results to estimates (5.2), (5.3), and (5.6). We see that in
Case 1, an estimate of type (5.2) holds, but not (5.3). In Case 2, an estimate of
type (5.3) holds, but not (5.2). The duality argument used to prove (5.2) and (5.3)
is, of course, not valid for our example, since it is not smooth. We have given direct
alternate proofs of (5.22) and (5.23).

Although (5.3) is proved only for smooth problems, if it is formally considered
for a rough problem, it is similar to (5.4) in that the upper bound is a quantity
that goes to zero—possibly very slowly—times ‖u − uk‖E. In this sense (5.23) is
compatible with (5.4).

Finally we note that although our example is rough in both case, Case 1 does
have the following “smoothness”: The series defining a(x) is “less lacunary”, so
a(x), and hence u(x), is “smooth”.

Remark 8. With an analysis similar that used in the proof of Theorem 3, one can
obtain bounds for the L∞–error. These bounds have the same form as those in
(5.5). Specifically, one can show that

max{C1χli−1hli−1, C2χ
2
li−1 − C3χli−1hli−1} ≤ ‖u− uli−1‖L∞(I)

≤ C4χ
2
li−1 + C5χli−1hli−1.

(5.24)

In Case 1 (see Remark 7), (4.1) and (5.24) show that the L∞–error is of order
hli−1χli−1, and that the nodal point errors are of the higher order χ2

li−1, establishing
superconvergence at the nodes. This is the error-behavior we expect with a smooth
problem. In Case 2, the nodal point errors and the L∞–error are of order χ2

li−1,
showing that there is no superconvergence at the nodes. This is the error-behavior
we expect with a rough problem.

Remark 9. The same coefficient a(x) is used in all three theorems. To be precise,
with γ = 1/20 and with a(x) defined in (3.5a), (3.6), and (3.7), estimates (3.1),
(4.1), and (5.5) for the energy-norm error, the nodal point errors, and the L2–error,
respectively, hold simultaneously.

6. Adaptivity

So far we have worked with uniform meshes. Consider now a family of meshes
with nodes of the form j2−k, with j taking on a sequence of N + 1values between 0
and 2k, inclusive. Such mesh families are often constructed by adaptive procedures,
and in most practical situations these adaptive procedures produce mesh families
and associated approximate solutions whose rate of convergence, measured in the
energy norm, is O(1/N). Suppose we use the following, typical, adaptive procedure.
Starting from a uniform mesh, we consider the energy norm error on each subin-
terval of the mesh. We then refine, by dividing in two equal parts, each subinterval
whose error is greater than or equal to δ × (maximum subinterval error), where
0 < δ < 1 is a specified parameter. Following this refinement, we repeat the pro-
cess. The resulting mesh will in general depend on the solution u(x), and thus on
the coefficient a(x). We denote the meshes by ∆a

N . This approach is based on the
equilibrium principle, which tries to make the errors in the elements approximately
equal. This principle is used in all adaptive approaches. For an analysis of this and
similar approaches, we refer to [4], [7].

We examine this adaptive process for our boundary value problem, (2.1), with
the coefficient a(x) defined by (3.5a), (3.6), and (3.7). We claim that if δ < 1

2 , and
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we start with the uniform mesh ∆0 = {0, 1}, then the adaptive procedure produces
a uniform mesh family. To prove this, suppose that at some stage we have the
uniform mesh ∆k = {0, 2−k, · · · , 1}. It follows from (2.4), (3.3), (3.9), (3.10), and
(3.13) that ∫

Ik,j

a|(u − uk)′|2dx =
∫
Ik,j

|ak,j − a(x)|2
a(x)a2

k,j

dx

≤ (0.9)−3

∫
Ik,j

|ak,j − a(x)|2dx

= (0.9)−3

∫
Ik,j

|φk(x)− a(x)|2dx

= (0.9)−3

∫
Ik,j

|ηk(x)|2dx

and ∫
Ik,i

a|(u− uk)′|2dx ≥ (1.1)−3

∫
Ik,i

|ak,i − a(x)|2dx

= (1.1)−3

∫
Ik,i

|ηk(x)|2dx.

Now, it follows from (3.12b) that∫
Ik,j

|ηk(x)|2dx =
∫
Ik,i

|ηk(x)|2dx.

Hence,∫
Ik,j

a|(u− uk)′|2dx ≤
(1.1

0.9

)3
∫
Ik,i

a|(u− uk)′|2dx ≤ 2
∫
Ik,i

a|(u− uk)′|2dx

for any two subintervals Ik,j and Ik,i of ∆k. Thus, if δ < 1
2 , every subinterval

is subdivided, and the refined mesh is ∆k+1. So, starting with ∆0, the adaptive
procedure produces ∆1,∆2, . . . .

Since the adaptive procedure will produce only uniform meshes, we see that the
error in the energy norm, the nodal point errors, and the error in L2 are as indicated
in Theorems 1, 2 and 3.

7. Conclusions

a) We have shown that there are problems whose finite element approximations
converge arbitrarily slowly, and that adaptivity cannot improve this situation.
Specifically, if χk converges to 0, with χ0 = 1, then there is a problem such
that
• the energy norm error is of order χk;
• the nodal point errors are of order χ2

k; and
• ‖u − uli−1‖L2(I) is of order hli−1χli−1 if χk converges rapidly to 0, and

is of order χ2
li−1 if χk converges slowly.

Adaptivity does not improve the convergence.
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b) The cases χk → 0 rapidly (Case 1) and χk → 0 slowly (Case 2) need to
be distinguished; they lead to different behaviors. The relation between the
L2(I)-error and the energy norm error is compatible with the smooth problem
estimate,

‖u− uk‖L2(I) ≤ hk‖u− uk‖E
in Case 1, and it is compatible with the smooth problem estimate

‖u− uk‖L2(I) ≤ C‖u− uk‖2E
in Case 2.

c) We have shown that we have superconvergence at the nodes in Case 1, but
not in Case 2.
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5. I. Babuška and J. E. Osborn, Finite element-Galerkin approximation of the eigenvalues and
eigenvectors of selfadjoint problems, Math. Comp. 52 (1989), 275–297. MR 89k:65132
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