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ON THE CONVERGENCE
OF CERTAIN GAUSS-TYPE QUADRATURE FORMULAS

FOR UNBOUNDED INTERVALS

A. BULTHEEL, C. DÍAZ-MENDOZA, P. GONZÁLEZ-VERA, AND R. ORIVE

Dedicated to Professor Nácere Hayek Calil on the occasion of his 75th birthday

Abstract. We consider the convergence of Gauss-type quadrature formulas
for the integral

∫∞
0
f(x)ω(x)dx, where ω is a weight function on the half line

[0,∞). The n-point Gauss-type quadrature formulas are constructed such that

they are exact in the set of Laurent polynomials Λ−p,q−1 = {
∑q−1
k=−p akx

k},
where p = p(n) is a sequence of integers satisfying 0 ≤ p(n) ≤ 2n and q =
q(n) = 2n − p(n). It is proved that under certain Carleman-type conditions
for the weight and when p(n) or q(n) goes to∞, then convergence holds for all
functions f for which fω is integrable on [0,∞). Some numerical experiments
compare the convergence of these quadrature formulas with the convergence
of the classical Gauss quadrature formulas for the half line.

1. Introduction

In this paper, we consider the very classical and yet up-to-date problem of ap-
proximating a definite integral

Iα(f) =
∫ b

a

f(x)dα(x),(1.1)

where α is a distribution function, i.e. a real valued, bounded, nondecreasing func-
tion with infinitely many points of increase on (a, b). Many approaches have been
proposed to estimate (1.1), especially when [a, b] is a finite interval and dα(x) ≡ dx
on (a, b).

Most of these methods yield estimates of the form

In(f) =
n∑
j=1

Ajf(xj)(1.2)
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with n a natural number, {xj}nj=1 points on (a, b), and {Aj}nj=1 coefficients or
weights, determined such that

Iα(f) = In(f)

for all f belonging to a certain class of functions with special features. Assume that
for the distribution α all the moments

ck =
∫ b

a

xkdα(x)(1.3)

exist for all nonnegative integers k. Under this condition, it can be assured that
there exist n distinct nodes x1, . . . , xn on (a, b) and n positive weights A1, . . . , An
so that

Iα(f) = In(f) =
n∑
j=1

Ajf(xj), ∀f ∈ Π2n−1,

where Πk, k ≥ 0, denotes the space of all polynomials of degree at most k. This
gives rise to the well known Gauss-Christoffel quadrature formulas [14], and these
are studied together with the intimately related problems of orthogonal polynomials
and Padé approximation. This can be seen as follows. Let Qn denote the nth
orthogonal polynomial with respect to the distribution α, i.e. Qn ∈ Πn and∫ b

a

xjQn(x)dα(x) = 0, j = 0, 1, . . . , n− 1,

while this integral is nonzero for j = n. Then the nodes xj are the zeros of Qn.
Moreover, Qn is the denominator of the [n − 1/n] Padé approximant at ∞ of the
Cauchy transform Fα of the distribution α:

Fα(z) =
∫ b

a

dα(x)
z − x .

Note that Fα has the asymptotic expansion

L∞(z) =
∞∑
j=1

cj−1z
−j, z →∞,

and the [n − 1/n] Padé approximant is of the form Pn−1/Qn with Pn−1 ∈ Πn−1,
and it is defined by the condition

Fα(z)− Pn−1(z)
Qn(z)

= O(z−(2n+1)), z →∞.

The convergence of the sequence {In(f)} to the integral Iα(f) for all functions
f in a class that is as large as possible is a problem that was almost completely
solved in the case of a finite interval (a, b) by Stieltjes [21]. However, the case of
an infinite interval needs special care. A first contribution was given by Stieltjes in
[22], where the special case f(x) = 1/(z − x) is considered for z 6∈ [a, b) = [0,∞).

Other contributions in this field are the papers by Uspenski in 1916 [23] and
1928 [24]. Further details, as well as a long list of references, can be found in the
comprehensive survey by Gautschi [9] and the book by Davis and Rabinowitz [7].

In the sequel we shall assume for the sake of simplicity that α is absolutely
continuous on (a, b), so that we have

dα(x) = ω(x)dx
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with ω(x) > 0 almost everywhere on (a, b), and we shall write

Iα(f) = Iω(f) =
∫ b

a

f(x)ω(x)dx, 0 ≤ a < b ≤ +∞.

If α is not absolutely continuous, then the Riemann integrals should be replaced by
Riemann-Stieltjes integrals, but the results are basically the same. Furthermore,
we shall assume that all the moments

ck =
∫ b

a

xkω(x)dx

exist for k = 0,±1,±2, . . . . This gives rise to quadrature formulas like (1.2) in-
tegrating exactly, not only polynomials, but more general functions, namely the
Laurent polynomials (or L-polynomials), which are given by

Λp,q = {L(z) =
q∑
j=p

βjz
j}, p, q ∈ Z, p ≤ q.

As far as we know, quadrature formulas valid in certain subspaces of Λ, the space
of all Laurent polynomials, were first introduced by Jones, Thron and Waadeland
in connection with the strong Stieltjes moment problem [13].

In a similar way as for the Gauss formulas, two topics immediately arise here:
the orthogonal Laurent polynomials (or equivalently orthogonal polynomials with
respect to a varying weight function on intervals contained in [0,∞)) and two-point
approximants to

Fω(z) =
∫ b

a

ω(x)
z − xdx

in the points 0 and ∞. Now, Fω allows two asymptotic expansions: one at the
origin and one at ∞:

L0 =
∞∑
j=0

c−(j+1)z
j (z → 0); L∞ =

∞∑
j=1

cj−1z
−j, (z →∞).

Among the most relevant works in this field, we can mention the contributions by
W.B. Jones, O. Nj̊astad and W. Thron [12, 11], L. Cochran and S. Cooper [6], S.
Ranga [19], and G. López-Lagomasino [15].

Very deep investigations of the special case f(z) = 1/(z − x) with z 6∈ (0,∞), a
parameter, were given in [15] as a compilation of several papers [16, 17, 18] by López-
Lagomasino. His results were derived in the framework of Padé approximation
for meromorphic functions of Stieltjes type. This work can be considered as the
unbounded equivalent of Stieltjes’ work [21].

The present paper can also be considered as a continuation of the previous papers
[4, 2, 3] by the present authors. In [3] we proved, under appropriate conditions, the
convergence of the quadrature formulas In(f) to Iω(f) for any function f in the
class CB [0,∞) of continuous functions on [0,∞) such that limx→+∞ f(x) exists and
is finite. The aim of this paper is to extend the convergence to a class of functions
f which is larger than CB[0,∞). We shall make use of the ideas used by Uspensky
in [24].

The paper has the following structure: first we give some preliminary results in
Section 2, then Section 3 gives the results about convergence, and in Section 4 we
give some numerical examples.
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2. Preliminary results

Throughout the remainder of the paper, we shall deal with the unbounded in-
terval (a, b) = (0,∞), so that we shall treat the integral

Iω(f) =
∫ ∞

0

f(x)ω(x)dx,(2.1)

where ω is a weight function on (0,∞) such that the moments

ck =
∫ ∞

0

xkω(x)dx(2.2)

exist for all integer k.
Let p and n be nonegative integers with 0 ≤ p ≤ 2n. Then it can be proved (see

e.g. [2]) that there exist nodes x1,n, x2,n, . . . , xn,n (xj,n 6= xi,n for i 6= j) in (0,∞)
and positive weights A1,n, A2,n, . . . , An,n such that

In(f) :=
n∑
j=1

Aj,nf(xj,n) = Iω(f), ∀f ∈ Λ−p,2n−1−p.(2.3)

We refer to In(f) as the n-point Gauss-type quadrature formula for the subspace
Λ−p,2n−1−p.

Set Qn(x) = γn(x − x1,n) · · · (x − xn,n) (γn 6= 0); then it is known that Qn(x)
represents the nth orthogonal polynomial with respect to x−pω(x), i.e.,∫ ∞

0

xjQn(x)
ω(x)
xp

dx = 0, j = 0, 1, . . . , n− 1.

Furthermore,Qn is the denominator of the [p/n] two-point Padé approximant (2PA)
in the points 0 and ∞ for the Cauchy transform

Fω(z) =
∫ ∞

0

ω(x)
z − xdx.

This means that there exists a unique polynomial Pn−1 ∈ Πn−1 such that the
rational function Pn−1(z)/Qn(z) satisfies

Fω(z)− Pn−1(z)
Qn(z)

= O(zp), z → 0,

Fω(z)− Pn−1(z)
Qn(z)

= O(z−(2n−p+1)), z →∞.

For further details concerning 2PA, we refer to [4]. Observe that when we take
p = 0, 2PA at z = 0 and z = ∞ become one point Padé approximants at z = ∞
and thus the classical Gauss-Christoffel quadrature formulas arise as a special case.

For a given sequence {p(n)}∞1 of nonnegative integers such that 0 ≤ p(n) ≤ 2n,
we are interested in convergence of the Gauss-type formula In(f) in Λ−p(n),2n−1−p(n)

to Iω(f) as n → ∞. This convergence should hold for all f in a class of functions
that is as large as possible.

Some preliminary results for p(n) = n were given by Jones et al. [11] in the case
of a bounded interval. As for the classical case (p(n) = 0 for all n), an infinite
interval is more difficult than a finite one. In the work of López-Lagomasino [15],
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some Carleman type conditions on the moments ck and conditions on the numbers
p(n) were assumed, namely

lim
n→∞

2n− p(n) =∞ and
∞∑
j=1

c
− 1

2j
j =∞

or

lim
n→∞

p(n) =∞ and
∞∑
j=1

c
− 1

2j
−j =∞.

Under these conditions, it can be deduced (see [3]) that the corresponding se-
quence of Gauss-type formulas In(f) in Λ−p(n),2n−1−p(n) will converge to Iω(f) for
any function f in the class CB [0,∞) of continuous functions on [0,∞) such that
limx→+∞ f(x) exists and is finite. To extend the convergence to a larger class, we
need some preliminary results.

Theorem 2.1 (see [3]). Let {p(n)} be a sequence of integers such that 0 ≤ p(n) ≤
2n. Let ω be a weight function on [0,∞) and let In(f) =

∑n
j=1 Aj,nf(xj,n) denote

the corresponding n-point Gauss-type formula for Λ−p(n),2n−1−p(n). Define Qn(x) =
(x− x1,n) · · · (x− xn,n). Then, if f ∈ C(2n)[0,∞),

Iω(f) = In(f) +
γn

(2n)!

[
xp(n)f(x)

](2n)

x=θn
,

where θn ∈ [0,∞) and

γn =
∫ ∞

0

Qn(x)2 ω(x)
xp(n)

dx.

Remark 2.1. Clearly, this theorem implies that

In(L) = Iω(L), ∀L ∈ Λ−p(n),q(n)−1,

where p(n) + q(n) = 2n.

Observe that the classical polynomial case corresponds to p(n) = 0 for all n.
The case p(n) = 2n is similar because a simple change of variables x → 1/x will
reduce it to the polynomial case. To deal with quadrature formulas which are
valid in subspaces of proper Laurent polynomials, we will assume in the sequel that
0 ≤ p(n) < 2n

Furthermore, we recall that the weights Aj,n are positive, and, because 1 ∈
Λ−p(n),2n−1−p(n) for any n, one has

n∑
j=1

Aj,n = c0, n = 1, 2, . . . .

We will now give extensions of the Chebyshev inequalities [5] that are applicable
in our situation. Therefore, we need two lemmas.

Lemma 2.2. Let p̃, k and n be integers such that 0 ≤ p̃ ≤ 2n−1 and 1 ≤ k ≤ n−1,
and set q̃ = 2n − 2 − p̃. Consider the positive numbers {xj}nj=1, ordered so that
0 < x1 < x2 < · · · < xn. Then there exists an L ∈ Λ−p̃,q̃ satisfying

1. L(xi) = 1, i = 1, . . . , k,
2. L(xi) = 0, i = k + 1, . . . , n,
3. L(x) ≥ 0, ∀x > 0,
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Figure 1. The function L(x)

4. L(x) ≥ 1, ∀x ∈ (0, xk].

Proof. Take into account that dim(Λ−p̃,q̃) = p̃+ q̃+1 = 2n−1 since q̃ = 2n−2− p̃.
Thus, there exists a unique L ∈ Λ−p̃,q̃ satisfying the interpolation conditions (all
the xi are nonzero and different from each other)

L(xi) = 1, i = 1, . . . , k,
L(xi) = 0, i = k + 1, . . . , n,
L′(xi) = 0, i = 1, . . . , n, i 6= k.

We now prove that this L satisfies the requirements of the lemma.
For p̃ = 0, we have the polynomial situation, and in this case the lemma is

known. It can be found for example in [5].
Thus assume 0 < p̃. Using Rolle’s theorem, it can be seen that L′(x) vanishes

at at least 2n− 3 points on (0, xn).
If p̃ = 2n − 2, then L′(x) = x−(p̃+1)P̃ (x), P̃ ∈ Π2n−3; thus L′(x) has exactly

2n − 3 zeros in (0, xn), and it can only behave as in Figure 1. Therefore L(x)
satisfies the conditions of the lemma.

If p̃ 6= 2n − 2, then L′(x) = x−(p̃+1)Q̃(x), with Q̃(x) ∈ Π2n−2. Thus L′ has
2n − 2 zeros, of which 2n − 3 are as in Figure 1. Our aim is to prove that the
remaining zero of L′(x) cannot be on (0, xn). This is immediate for p̃ > 2n − 2
because L(∞) = 0 and L(xn) = 0, so that there should exist some ξ > xn such
that L′(ξ) = 0. Finally, assume 0 < p̃ < 2n − 2. We know that Q̃(x) has at least
2n − 3 positive zeros. If the other one were positive too, then we know that by
the Cardan-Vieta formulas, the coefficients of Q̃(x) should all be nonzero. Set for
0 < p̃ ≤ 2n− 3

L(x) = x−p̃P (x), P (x) =
2n−2∑
j=0

bjx
j ∈ Π2n−2.

Hence

L′(x) = x−(p̃+1)Q̃(x), Q̃(x) = −p̃P (x) − xP ′(x) =
2n−2∑
j=0

ajx
j ,

where a0 = −p̃b0 and aj = bj(j − p̃) for 1 ≤ j ≤ 2n− 2. Thus ap̃ = 0, which is a
contradiction. Therefore, the remaining zero in the case 1 ≤ p̃ ≤ 2n− 3 should be
negative. We thus find that the behavior of L is again as in Figure 1.

The following lemma can be proved in a similar way.
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Lemma 2.3. Let p̃, k and n be integers satisfying 0 ≤ p̃ ≤ 2n−1 and 1 ≤ k ≤ n−1,
and define q̃ by p̃+ q̃ = 2n− 2. Let 0 < x1 < x2 < · · · < xn be real numbers. Then
there exists an R ∈ Λ−p̃,q̃ satisfying the conditions

1. R(xi) = 1, i = 1, . . . , k,
2. R(xi) = 0, i = k + 1, . . . , n,
3. R(x) ≤ 0, ∀x ≥ xk+1,
4. R(x) ≤ 1, ∀x > 0.

Now we can state the following

Theorem 2.4 (Chebyshev inequality). Let In(f) =
∑n
j=1 Aj,nf(xj,n) be the n-

point Gauss-type formula in Λ−p̃,2n−1−p̃ (0 ≤ p̃ ≤ 2n−1) with respect to the weight
function ω(x). Then∫ xk,n

0

ω(x)dx < A1,n +A2,n + · · ·+Ak,n <

∫ xk+1,n

0

ω(x)dx,

where k is a fixed integer such that 1 ≤ k ≤ n− 1.

Proof. Take the Laurent polynomial L as in Lemma 2.2, where the points xj are
replaced by the nodes of the quadrature formula. Because L ∈ Λ−p̃,2n−1−p̃, the
quadrature is exact for L, so that∫ ∞

0

L(x)ω(x)dx =
n∑
j=1

Aj,nL(xj,n) =
k∑
j=1

Aj,n.

Thus ∫ xk,n

0

ω(x)dx ≤
∫ xk,n

0

L(x)ω(x)dx <
k∑
j=1

Aj,n.

On the other hand, using the L-polynomial R of Lemma 2.3, we obtain in a similar
way that

k∑
j=1

Aj,n <

∫ xk+1,n

0

R(x)ω(x)dx ≤
∫ xk+1,n

0

ω(x)dx.

This proves the theorem.

3. Convergence

We start this section with a general result on convergence of Gauss-type quad-
rature formulas which is inspired by the work of Stieltjes [22].

Theorem 3.1. Let {p(n)} be a sequence of nonnegative integers with 0 ≤ p(n) ≤
2n− 1. Let In(f) =

∑n
j=1 Aj,nf(xj,n), n = 1, 2, . . . , be the sequence of Gauss-type

formulas in Λ−p(n),q(n)−1, where p(n) + q(n) = 2n. Then limn→∞ In(f) = Iω(f)
for any f such that f(x)ω(x) is integrable on [0,∞), if and only if limn→∞ Aj,n = 0
uniformly in j.

Proof. “⇐” Assume that limn→∞ Aj,n = 0 uniformly in j, and take any f such
that f(x)ω(x) is integrable on [0,∞). Set h(x) =

∫ x
0 ω(t)dt. Since ω(x) > 0

a.e., this h(x) is strictly increasing in (0,∞) and h(∞) =
∫∞

0 ω(t)dt = c0. Define
yj,n = h(xj,n), j = 1, . . . , n; n = 1, 2, . . . . Then, by Theorem 2.4, it is seen that

0 < y1,n < A1,n < y2,n < A1,n +A2,n < y3,n < A1,n +A2,n + A3,n < · · · .
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Since h(x) is continuous, there exist θj,n such that

A1,n +A2,n + · · ·+Aj,n = h(θj,n) =: ỹj,n

and ỹj+1,n − ỹj,n = Aj,n → 0 uniformly in j. Now the function f̃(y) = f(h−1(y))
is integrable on [0, c0], and since

∑n
j=1 f̃(yj,n)(ỹj+1,n − ỹj,n) is a Riemann sum on

[0, c0], we can write

Iω(f) =
∫ ∞

0

f(y)ω(x)dx =
∫ c0

0

f̃(y)dy

= lim
n→∞

n∑
j=1

f̃(yj,n)(ỹj+1,n − ỹj,n) = lim
n→∞

n∑
j=1

Aj,nf(xj,n) = lim
n→∞

In(f).

“⇒” Let us take f(x) = χ[a,b](x), the characteristic function for an arbitrary
interval [a, b] ⊂ [0,∞), i.e.,

f(x) = χ[a,b](x) =

{
1, x ∈ [a, b],
0, x 6∈ [a, b].

Then

lim
n→∞

∑
a<xj,n<b

Aj,n =
∫ b

a

ω(x)dx > 0.

Let us assume that there exists a sequence {l(n)} of natural numbers such that

lim
n→∞

Al(n),n = A 6= 0.

Recall that for any j, 1 ≤ j ≤ n, Aj,n <
∑n

k=1 Ak,n = c0. Now let the sequence
xl(n),n (or possibly a subsequence) converge to x, i.e. limn→∞ xl(n),n = x. This x
is either finite or infinite. If x is finite, then we can choose ε, ε′ > 0 such that∫ x+ε

x−ε′
ω(ξ)dξ <

A

2
,

and this yields a contradiction since

A ≤ lim
n→∞

∑
x−ε′≤xj,n≤x+ε

Aj,n =
∫ x+ε

x−ε′
ω(ξ)dξ.

Similarly, if x = ∞, we choose M > 0 such that
∫∞
M
ω(x)dx < A/2, which leads

again to a contradiction. Thus limn→∞Aj,n = 0 uniformly in j.

As an immediate consequence we have

Corollary 3.2. Let p(n) and In(f) be as in Theorem 3.1 and assume furthermore
that limn→∞Aj,n = 0 uniformly in j. Let f be a function satisfying either

1. f(x) is integrable on any subset [0, a] ⊂ [0,∞) and there exist M and m such
that

|f(x)| ≤ xm, ∀x ≥M, M ≥ 0, m ∈ N
or

2. f(x) is integrable on any subset [b,∞) ⊂ (0,∞) and there exist k and h such
that

|f(x)| ≤ x−k, ∀x ≤ h, h ≥ 0, k ∈ N.
Then limn→∞ In(f) = Iω(f).
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Observe that this convergence result holds under very general conditions on the
moments ck. That is why we allow f to behave like powers of x in the neighborhood
of 0 and ∞. To allow other types of behavior in these points, we need to impose
more restrictions on the moments.

So our key problem boils down to the question: Under what conditions on the
moments ck (i.e. on the weight ω(x)) and on the sequence of integers p(n) with
0 ≤ p(n) ≤ 2n − 1, does it hold that limj→∞ Aj,n = 0 uniformly in j? Here the
Aj,n are the weights for the Gauss-type quadrature formula for Λ−p(n),q(n)−1 (where
p(n) + q(n) = 2n).

From now on, we will assume that either

cn ≤ CΓ((n+ θ + 1)γ)Rnγ , n ∈ N,(3.1)

or

c−n ≤ ĈΓ((n− θ̂ − 1)γ)R̂nγ , n ∈ N,(3.2)

where θ > −1, θ̂ < −1, C, Ĉ, R and R̂ are positive constants, 0 < γ ≤ 2, and Γ(s)
is the gamma function. Note that by these conditions, the moments ck, and hence
the integrals Iω(f) and the quadrature formulas In(f), will depend on γ.

The following theorem involves the Mittag-Leffler function, which is defined as

Eγ(y) =
∞∑
k=0

yk

Γ(γk + 1)
, ∀y ∈ C.(3.3)

(Note that Eγ is an entire function.) Its proof follows closely the techniques used
in [24].

Theorem 3.3. Let ω(x) be a weight function whose moments satisfy condition
(3.1). Let {p(n)} and {q(n)} be sequences of nonnegative integers such that p(n) +
q(n) = 2n and limn→∞ q(n) =∞. Then

lim
n→∞

In(Eγ(sγx)) = Iω(Eγ(sγx))

uniformly in compact subsets of the region {s ∈ C : |s| < 1/R}.
Proof. Set

φn(s) =
n∑
k=1

Ak,nEγ(sγxk,n) =
n∑
k=1

Ak,n

( ∞∑
m=0

sγmxmk,n
Γ(γm+ 1)

)

=
∞∑
m=0

sγm

Γ(γm+ 1)

n∑
k=1

Ak,nx
m
k,n =

∞∑
m=0

sγm

Γ(γm+ 1)
hm,n,

where

hm,n =
n∑
k=1

Ak,nx
m
k,n ≤ cm, m = 0, 1, . . . ,

as follows from Theorem 2.1. Thus

|φn(s)| ≤
∞∑
m=0

|s|γm
Γ(γm+ 1)

cm,

and from (3.1) it follows that

|φn(s)| ≤ C
∞∑
m=0

Γ(γ(m+ θ + 1))
Γ(γm+ 1)

(|s|R)mγ .
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Now, by the Stirling formula (see e.g. [1, (6.1.37)] or [8])

Γ(z) = e−zzz−1/2(2π)1/2

[
1 +

B1

z
+
B2

z2
+ · · ·

]
, z →∞ in |Arg(z)| < π,(3.4)

and therefore

Γ(γ(m+ θ + 1))
Γ(γm+ 1)

and
1

m1−γ(θ+1)

are equivalent as m → ∞ in the sense that their ratio tends to a nonzero finite
number. Therefore the series

∞∑
m=0

Γ(γ(m+ θ + 1))
Γ(γm+ 1)

(sR)γm

is absolutely and uniformly convergent in the region |s| < 1/R. Thus |φn(s)| is
uniformly bounded in s and n, so that

φ(s) = lim
n→∞

φn(s) = lim
n→∞

n∑
k=0

Ak,nEγ(sγxk,n) =
∞∑
k=0

sγkck
Γ(γk + 1)

.

Recall that limn→∞ hk,n = ck when hk,n is as defined above.
On the other hand (recall that Eγ is an entire function, so that the series ex-

pansion converges uniformly on [a, b] so that summation and integration can be
interchanged in the second line below),∫ ∞

0

Eγ(sγx)ω(x)dx = lim
b→∞

∫ b

0

( ∞∑
k=0

sγkxk

Γ(γk + 1)

)
ω(x)dx

= lim
b→∞

(
lim
n→∞

n∑
k=0

∫ b

0

sγkxk

Γ(γk + 1)
ω(x)dx

)

= lim
b→∞

lim
n→∞

n∑
k=0

sγk

Γ(γk + 1)

∫ b

0

xkω(x)dx.(3.5)

We note that
∞∑
k=0

∣∣∣∣∣ sγk

Γ(γk + 1)

∫ b

0

xkω(x)dx

∣∣∣∣∣ ≤
∞∑
k=0

|s|γkck
Γ(γk + 1)

.

Since the series
∑∞
k=0 s

γkck/Γ(γk + 1) converges absolutely and uniformly in |s| <
1/R, limits can be interchanged in (3.5), giving

Iω(Eγ(sγx)) = lim
n→∞

lim
b→∞

n∑
k=0

sγk

Γ(γk + 1)

∫ b

0

xkω(x)dx

=
∞∑
k=0

sγkck
Γ(γk + 1)

= φ(s) = lim
n→∞

φn(s) = lim
n→∞

In(Eγ(sγx)).
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Remark 3.1. Note that by (3.3) E2(y) = cosh(y1/2). Thus, Theorem 3.3 with γ = 2
implies that with In(f) the Gauss-type formula for Λ−p(n),q(n)−1 and p(n)+ q(n) =
2n, we have

lim
n→∞

In(cosh sx1/2) = Iω(cosh sx1/2), s ∈ C, |s| < 1/R,(3.6)

where convergence is uniform in compact subsets of the indicated region. On the
other hand, suppose that in (3.1) we take γ < 2. Then, taking into account that
now

Γ(γ(m+ θ + 1))
Γ(2m+ 1)

and
(
γγ

4

)m 1
m(2−γ)mm1−γ(θ+1)

are of the same order at infinity, i.e., their ratio tends to a nonzero finite number as
m→∞, it can be shown, by paralleling the proof of Theorem 3.3, that convergence
in (3.6) holds uniformly on compact subsets of C.

We finally observe that Theorem 3.3 was proved by Uspensky [24] in the case
γ = 2 and p(n) = 0, n = 1, 2, . . . (polynomial situation).

By using (3.6) and proceeding as in [24], we arrive at

Theorem 3.4. With the same notation and under the same conditions as in The-
orem 3.3,

lim
n→∞

Aj,n = 0

uniformly in j.

Proof. Define Φn(s) = In(cosh sx1/2) and Φ(s) = Iω(cosh sx1/2). By Remark 3.1,
we know that limn→∞Φn(s) = Φ(s) uniformly in compact subsets of |s| < 1/R and
independently of γ ∈ (0, 2].

Next we show uniform convergence for s in the region (0, b)×R with 0 < b < 1/R.
Therefore we should check that the sequence {Φn(s)} is uniformly bounded in this
region, and indeed it is because | cosh(a+ ib)| ≤ cosha, so that for all s ∈ (0, b)×R
we have |Φn(s)| ≤ Φn(Res) ≤ Φn(b′), where b′ < b < 1/R.

Now, for any integer p > 0 and real a, 0 < a < 1/R,

1
2πi

∫ a+i∞

a−i∞

ews

s1+p
ds =

{
wp/Γ(1 + p), w > 0,
0, w ≤ 0,

so that for t > 0 (interchanging integration and summation is justified by Fubini’s
theorem and the fact that |Φ(s)| ≤ Φ(a))

1
2πi

∫ a+i∞

a−i∞

e−ts

s1+p
Φn(s)ds =

1
2Γ(1 + p)

∑
xk,n≥t2

Ak,n(x1/2
k,n − t)p

and
1

2πi

∫ a+i∞

a−i∞

e−ts

s1+p
Φ(s)ds =

1
2Γ(1 + p)

∫ ∞
t2

(x1/2 − t)pω(x)dx.

Thus, by the uniform convergence of the sequence {Φn(s)} in (0, b)× R, it follows
that for any positive t and p

lim
n→∞

∑
xk,n≥t2

Ak,n(x1/2
k,n − t)

p =
∫ ∞
t2

(x1/2 − t)pω(x)dx.(3.7)
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Next we consider, for a positive integer n, the function

fn(t, p) =
∑

xk,n≥t2
Ak,n(x1/2

k,n − t)
p

of the variable p, with t a parameter. If 0 ≤ p ≤ 1, we have

|x1/2
k,n − t|

p ≤ (|x1/2
k,n |+ |t|)

p ≤
{
|x1/2
k,n |+ |t|, if |x1/2

k,n |+ |t| > 1,
1, if |x1/2

k,n |+ |t| ≤ 1.

Hence, we define

I1 = {k : xk,n ≥ t2, x1/2
k,n + |t| > 1} and I2 = {k : xk,n ≥ t2, x1/2

k,n + |t| ≤ 1},

so that

|fn(t, p)| ≤
∑
k∈I1

Ak,n(x1/2
k,n + |t|) +

∑
k∈I2

Ak,n ≤
∑
k

Ak,nx
1/2
k,n + (|t|+ 1)

∑
k

Ak,n.

But
n∑
k=1

Ak,nx
1/2
k,n ≤

(
n∑
k=1

Ak,nxk,n

)1/2( n∑
k=1

Ak,n

)1/2

≤ (c1c0)1/2.

Thus for arbitrary t > 0, but fixed, we have

|fn(t, p)| ≤ (c0c1)1/2 + (1 + t)c0, ∀n ≥ 1.(3.8)

By (3.7) and (3.8), we see that fn(t, p) converges uniformly with respect to p on
[0, 1] to

f(t, p) =
∫ ∞
t2

(x1/2 − t)pω(x)dx.

Therefore,

lim
p→0+

(
lim
n→∞

fn(t, p)
)

= lim
n→∞

(
lim
p→0+

fn(t, p)
)

= f(t, 0),

or, equivalently,

lim
n→∞

∑
xk,n≥t2

Ak,n =
∫ ∞
t2

ω(x)dx.

So, for any α, β > 0, we conclude that

lim
n→∞

∑
α≤xk,n≤β

Ak,n =
∫ β

α

ω(x)dx > 0.(3.9)

From (3.9), we see that for sufficiently large n, and for any given interval (α, β) in
R+, we can always find nodes xj,n inside that interval.

Finally, by (3.9), we also see that the sequence of quadrature formulas {In(f)}∞n=1

converges for any characteristic function f , which implies convergence for any func-
tion f for which f(x)ω(x) is integrable on [0,∞). Therefore, the proof follows by
Theorem 3.1.

It is a direct consequence of Theorems 3.1 and 3.4 that
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Corollary 3.5. With the same notation and under the same conditions as in The-
orem 3.3, we have

lim
n→∞

In(f) = Iω(f)

for any function f for which f(x)ω(x) is integrable on [0,∞).

Now we are in a position to give our main results about the class of functions
f for which the Gauss-type quadrature formulas converge if the moments satisfy
either (3.1) or (3.2).

Theorem 3.6. Let ω be a weight function on [0,∞) whose moments satisfy (3.1),
i.e.

cn ≤ CΓ(γ(n+ 1 + θ))Rγn, n ∈ N,

with θ > −1, C,R ∈ R+, and 0 < γ ≤ 2. Let {p(n)} be a sequence of integers such
that 0 ≤ p(n) ≤ 2n− 1, and define q(n) = 2n− p(n). Assume that limn→∞ q(n) =
∞. Let {In(f)}∞1 be the sequence of Gauss-type formulas in Λ−p(n),q(n)−1, n =
1, 2, . . . . Then, for any locally integrable function f satisfying for sufficiently large
x

|f(x)| ≤ erx
1/γ

x1+θ+ρ
, 0 < r < 1/R, 0 < ρ < 1, θ > −1,(3.10)

we have

lim
n→∞

In(f) = Iω(f).

Proof. Let us consider the Mittag-Leffler function Eγ(y), as given in (3.3). Our
first aim is to prove that the integral

Iω

(
Eγ(sγx)

1 + x1+θ+ρ

)
, s ∈ C, |s| < 1/R,

exists. Recall from (3.3) that

Eγ(sγx) =
∞∑
l=0

sγlxl

Γ(γl+ 1)
.(3.11)

Take b > 0; then by the uniform convergence of the series (3.11) on [0, b] we can
write ∫ b

0

|Eγ(sγx)|
1 + x1+θ+ρ

ω(x)dx ≤ lim
n→∞

n∑
l=0

|s|γl
Γ(γl + 1)

∫ b

0

xl

1 + x1+θ+ρ
ω(x)dx

=
∞∑
l=0

|s|γl
Γ(γl+ 1)

∫ b

0

xl

1 + x1+θ+ρ
ω(x)dx(3.12)

≤
∞∑
l=0

|s|γl
Γ(γl+ 1)

∫ ∞
0

xl

1 + x1+θ+ρ
ω(x)dx.
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But the series (3.12) is convergent for any complex s in |s| < 1/R. Indeed, with
δ = 1 + ρ+ θ > 0 we have∫ ∞

0

xl

1 + x1+θ+ρ
ω(x)dx ≤

∫ ∞
0

xl−δω(x)dx

=
∫ 1

0

xl

xδ
ω(x)dx +

∫ ∞
1

xl

xδ
ω(x)dx

≤
∫ 1

0

ω(x)
xδ

dx+
∫ ∞

1

xlω(x)dx.

Take p ∈ N such that p > δ. Then xδ ≥ xp for all x ∈ [0, 1], thus∫ ∞
0

xl

1 + x1+θ+ρ
ω(x)dx ≤

∫ 1

0

x−pω(x)dx +
∫ ∞

1

xlω(x)dx ≤ c−p + cl = A+ cl

with A a constant. Therefore, the series (3.12) is less than or equal to
∞∑
l=0

|s|γl
Γ(γl + 1)

[A+ cl] = A

∞∑
l=0

|s|γl
Γ(γl + 1)

+
∞∑
l=0

cl|s|γl
Γ(γl + 1)

= Eγ(|s|γ) +
∞∑
l=0

cl|s|γl
Γ(γl + 1)

.

Now by (3.1)
∞∑
l=0

cl|s|γl
Γ(γl + 1)

≤ C
∞∑
l=0

Γ(γ(l + 1 + θ))
Γ(γl+ 1)

Rγl|s|γl,

which by (3.4) is convergent if [R|s|]γ < 1, i.e., if |s| < 1/R.
Thus it follows from (3.12) that the integral

Iω

(
|Eγ(sγx)|

1 + x1+θ+ρ

)
, hence also Iω

(
Eγ(sγx)

1 + x1+θ+ρ

)
,

exists. Using the asymptotic behavior for Eγ(z) (see [8])

Eγ(z) =
1
γ

exp(z1/γ) +O

(
1
|z|

)
, z →∞ in |Arg(z)| ≤ γπ/2,

we find that

lim
x→∞

∣∣∣∣ γEγ(x)
exp(x1/γ)

∣∣∣∣ = 1.(3.13)

Thus, from (3.10) and (3.13) we have that Iω(f) exists, and by Corollary 3.5 the
proof now follows.

Remark 3.2. From the proof of Theorem 3.6 and from Theorems 3.1 and 3.4, we
see that

lim
n→∞

In

(
Eγ(sγx)

1 + x1+θ+ρ

)
= Iω

(
Eγ(sγx)

1 + x1+θ+ρ

)
, s ∈ C, |s| < 1/R.(3.14)

On the other hand, proceeding as in Theorem 3.3, it can be easily checked that
convergence in (3.14) holds uniformly on compact subsets of |s| < 1/R.

Now if instead of condition (3.1) we have that (3.2) holds, a similar result can
be proved in an analogous way. We give it for completeness.
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Theorem 3.7. Let ω be a weight function whose moments satisfy (3.2), i.e.

c−n ≤ ĈΓ(γ(n− 1− θ̂))R̂γn, n ∈ N,

with θ̂ < −1, Ĉ, R̂ ∈ R+, and 0 < γ ≤ 2. Let {p(n)} be a sequence of integers such
that 0 ≤ p(n) ≤ 2n− 1, and define q(n) = 2n− p(n). Assume that limn→∞ p(n) =
∞. Let {In(f)}∞1 be the sequence of Gauss-type formulas in Λ−p(n),q(n)−1, n =
1, 2, . . . . Then, for any locally integrable function f on [a,∞) (a > 0) satisfying for
sufficiently small x

|f(x)| ≤ er̂/x
γ

x1+θ̂−ρ
, r̂ < 1/R, 0 < ρ < 1, θ̂ < −1,

we have

lim
n→∞

In(f) = Iω(f).

Remark 3.3. Recall that by setting p(n) = 0 for all n = 1, 2, . . . , we recover the
classical Gaussian quadrature formulas.

If we set γ = 2 and θ = 0, we obtain the convergence result of Uspensky [24].
Other results for the convergence of Gauss-type formulas in Λ−p,2n−p−1 were

given in [10] for the “balanced” situation, i.e. for p = n and for γ = 2 and θ = 0.
We also note that the weight functions studied by López-Lagomasino and

Mart́ınez-Finkelshtein in [15] are of the form

ω(x) = xαe−(τ(x))(3.15)

such that

lim
x→0+

(sx)γ1τ(x) = lim
x→+∞

(sx)−γ2τ(x) = A > 0,(3.16)

where α ∈ R, s > 0, with γ1 > 1/2 and γ2 > 1/2. These weights satisfy both (3.1)
and (3.2) for appropriate choices of θ and θ̂ (see Section 4).

4. Numerical results

Let us now illustrate this with some numerical examples. We restrict ourselves
to the weight function

ω(x) =
e−(x+1/x)

√
x

, x ∈ (0,∞).(4.1)

It is a special case of (3.15)-(3.16) and therefore is included in the class mentioned
in Remark 3.3. We first prove that the weight functions considered by López-
Lagomasino satisfy (3.1) and (3.2). Take

h(x) = xγ2 +
1
xγ1

, γ1, γ2 ≥
1
2

;(4.2)

then by (3.15)-(3.16), there exist positive real numbers r, R and D such that

exp(−τ(x)) ≤ exp(−Dh(x)), ∀x ∈ (0, r) ∪ (R,∞).(4.3)

For each integer k, consider the moments

dk =
∫ ∞

0

xkxα exp(−τ(x))dx.
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These dk satisfy (3.1) and (3.2), since indeed for 0 < r < 1 < R,

dk =
∫ r

0

xkxα exp(−τ(x))dx +
∫ R

r

xkxα exp(−τ(x))dx +
∫ ∞
R

xkxα exp(−τ(x))dx,

which yields

dk ≤ 2
∫ ∞

0

xkxα exp(−Dh(x))dx + Fk(R, r),(4.4)

where

Fk(R, r) =

{
d0R

α+k, α+ k ≥ 0,
d0r

α+k, α+ k < 0.

Setting

ck =
∫ ∞

0

xkxα exp(−D(xγ2 +
1
xγ1

))dx,

we see by (4.4) that it suffices to check that the moments {ck} satisfy (3.1) and
(3.2). For the sake of simplicity, we assume that D = 1 and γ1 = γ2 = γ, i.e.

ck =
∫ ∞

0

xkxα exp(−(xγ +
1
xγ

))dx, α ∈ R, γ ≥ 1/2.

First, we consider the moments ck with k ∈ N. We distinguish between two cases.
1. α > −1. Then

ck =
∫ ∞

0

xkxαe−x
γ

e−1/xγdx ≤
∫ ∞

0

xkxαe−x
γ

dx.

Setting xγ = t, x = t1/γ , dx = γ−1t1/γ−1dt, we get

ck ≤
1
γ

∫ ∞
0

tγ
−1(k+α+1)−1e−tdt =

1
γ

Γ(γ−1(k + α+ 1)).

2. α ≤ −1. For an arbitrary given ε > 0, we can find ρ ≥ 0 such that α + ρ =
−1 + ε, so that we have

ck =
∫ ∞

0

xkxα+ρe−x
γ e−1/xγ

xρ
dx.

Now x−ρe−1/xγ ≤ K for all x ∈ [0,∞), and therefore

ck ≤
K

γ
Γ(γ−1(k + ε)) =

K

γ
Γ(γ−1(k + θ + 1))

with θ ∈ R such that ε = 1 + θ, hence θ > −1.
Next, let us consider the moments c−k with k ∈ N, i.e., with the sucstitution

x = t−1,

c−k =
∫ ∞

0

x−kxαe−(xγ+1/xγ)dx =
∫ ∞

0

tk−2−αe−(tγ+1/tγ)dt.

Again we distinguish between two cases.
1. α < −1. Then

c−k ≤
∫ ∞

0

tk−2−αe−t
γ

dt = γ−1Γ(γ−1(k − 1− α)).

Thus, it is sufficient to take θ = α and thus θ < −1.
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2. α ≥ −1. Set δ = −(α+ 2) ≤ −1; then

c−k =
∫ ∞

0

tk+δe−(tγ+1/tγ)dt.

Now, given ε > 0, there exists a ρ ≥ 0 such that δ + ρ = −1 + ε. Therefore

c−k ≤ K
∫ ∞

0

tkt−1+εe−t
γ

dt =
K

γ
Γ(γ−1(k + ε)),

where K is a positive constant. Since ε is arbitrary, we can take ε = −1 − θ̂ with
θ̂ < −1, so that it finally results that

c−k ≤
K

γ
Γ(γ−1(k + θ̂ − 1)), θ̂ < −1.

Thus all the convergence results of Section 3 can be applied to the weight function
(3.15)-(3.16), and in particular to the one given in (4.1).

In order to compute the moments ck, let us introduce the auxiliary weight func-
tion studied by Ranga [20]:

ω̃(x) =
e−1/2(x+a/x)

√
x

, a ∈ R, a > 0, x ∈ (0,∞),(4.5)

and set

c̃n,a =
∫ ∞

0

xnω̃(x)dx, n ∈ Z.

It can be checked that

cn =
1

2n+1/2
c̃n,4, n ∈ Z.(4.6)

On the other hand, it is known that the sequence {c̃n,4} satisfies [20]

c̃0,4 =
√

2π
e2

, c̃−(n+1),4 =
c̃n,4

22n+1
, c̃n+1,4 − (2n+ 1)c̃n,4 − 4c̃n−1,4 = 0, n ≥ 1,

(4.7)

or explicitly

c̃n,4 =
√

2π
23ne2

[
n∑
r=0

(
2n+ 1
2r + 1

) r∑
s=0

(
r

s

)
26s (2n− 2s)!

(n− s)!

]
, n ≥ 0.(4.8)

In short, from (4.6) and (4.7) or (4.8), we see that the moments {ck} can be readily
computed.

Now we want to estimate the integral

Iω(f) =
∫ ∞

0

f(x)
e−(x+1/x)

√
x

dx(4.9)

for different choices of the integrands f(x). We shall use Gauss-type quadrature
formulas In(f) for Λ−p(n),q(n)−1 with p(n) and q(n) nonnegative integers such that
p(n)+q(n) = 2n. In the sequel, we restrict our attention to the “balanced” situation
where p(n) = n for all n ∈ N, so that the resulting quadrature formula is exact in
Λ−n,n−1 for n ∈ N.
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The nodes {xj,n} are the zeros of Qn(x), the (monic) orthogonal polynomial of
degree n with respect to the varying distribution x−nω(x)dx. From [20], we get the
following three-term recurrence relation for the sequence {Qn}:

Qn+1(x) = (x− 1)Qn(x)− n

2
xQn−1(x), n ≥ 1,

with initial conditions Q0(x) ≡ 1 and Q1(x) = x − 1. Let us consider the [n/n]
2PA for Fω(z) =

∫∞
0

ω(x)
z−x dx; then it is known that [n/n]Fω(z) = Pn−1(z)/Qn(z),

with Pn−1 ∈ Πn−1, and in this case it can be proved that Pn satisfies the same
recurrence as Qn+1 (see [20]), i.e.,

Pn(x) = (x− 1)Pn−1(x) − n

2
xPn−2(x), n ≥ 1,

with P−1 ≡ 0 and P0 = c0.
Now take into account that

[n/n]Fω(z) =
Pn−1(z)
Qn(z)

=
n∑
j=1

Aj,n
z − xj,n

.

Then one has

Aj,n =
Pn−1(xj,n)
Q′n(xj,n)

, j = 1, . . . , n.

Thus, we see that our Gauss-type formulas can be easily computed.
We shall compare these Gauss-type formulas with the classical Gauss formulas.

Therefore, we write

Iω(f) =
∫ ∞

0

f(x)
e−(x+1/x)

√
x

dx =
∫ ∞

0

f(x)e−1/x e
−x
√
x

dx =
∫ ∞

0

g(x)β(x)dx = Iβ(g),

with g(x) = f(x) exp(−1/x) and β(x) = exp(−x)/
√
x. Thus, the integral Iβ(g) will

be estimated by means of the Gauss-Laguerre quadrature formula of order −1/2.
We shall denote this formula as

Ĩn(g) =
n∑
j=1

λj,ng(tj,n).

It is well known that this formula is exact for all integrands g ∈ Π2n−1 while
our Gauss-type formula is exact for all f ∈ Λ−n,n−1. The construction of the
Gauss-Laguerre formulas Ĩn(g) require the moments δ0, . . . , δ2n−1 with δj =∫∞

0
(xj exp(−x)/

√
x)dx, while the Gauss-type formulas In(f) require the moments

c−n, . . . , cn−1. We will see that the inclusion of the moments ck both with positive
and with negative index yields excellent numerical results.

We shall take for f(x) the following functions:

i fi(x)
1 x−1

2 (x2 − 1)x−1 log(x)
3 x−1/2 log(x)
4 exp(− log(x)/

√
x)

5 sinx
6 x−3/2ex/ log(1 + x)
7 log(1 + x)e1/x
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Figure 2. The weights ω(x) = exp(−(x+ 1/x)) and β(x) = exp(−x)/
√
x

In Figure 2 we have plotted the weight functions ω(x) = x−1/2 exp(−(x+1/x)) and
β(x) = x−1/2 exp(−x). In Figures 3-6 (on the following pages) one can find the plots
of the integrands fi(x) of the table above, the functions gi(x) = fi(x) exp(−1/x)
and the functions hi(x) = ω(x)fi(x) = gi(x)β(x).

In Figure 7 we plot, as a function of n = 1, . . . , 10, the absolute values of the
absolute errors of the Gauss-Laguerre and the Gauss-type formulas of this paper.
The solid line corresponds to the classical Gauss formulas, while the dotted line
corresponds to the Gauss-type formulas of this paper.

In the example f6 we note that limx→0+ f(x) =∞ and limx→∞ f(x) =∞. It is
at the “boundary” of what can be integrated, because for the function

fε(x) =
ex

log(1 + x)x3/2+ε
, ε > 0,

the integral Iω(fε) is divergent. By our quadrature rules we do find convergence,
but it is extremely slow.

For the example f7, it should be noted that the factor e1/x is “absorbed” by the
weight. In fact, the integral reduces to

Iω(f7) =
∫ ∞

0

log(1 + x)
e−x√
x

dx,

and of course, this integral can be treated perfectly well by a classical Gauss-
Laguerre quadrature formula. The Gauss-type formulas of this paper are obviously
less appropriate. They still converge, but they are outperformed by the Gauss-
Laguerre formulas.

For f1 and f3, the errors for the Gauss-type formulas of this paper are zero.
There is an explanation for the surprising exactness. Observe that x−1 ∈

Λ−n,n−1 for any n ≥ 1. This is the explanation for f1. The explanation for f3

is as follows. We have

I = Iω(f) =
∫ ∞

0

f(x)ω(x)dx =
∫ ∞

0

log x
x

exp(−(x+ 1/x))dx

=
∫ 1

0

log x
x

exp(−(x + 1/x))dx+
∫ ∞

1

log x
x

exp(−(x+ 1/x))dx = I1 + I2.
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Figure 3. The integrands fi, gi(x) = exp(−1/x)fi(x), hi(x) =
fi(x)ω(x) = gi(x)β(x), i = 1, 2

Making the change of variable x = 1/t in I2, we see that I2 = −I1, so that I = 0.
Let us now explain why In(f) = 0 for all n ∈ N. This is partially due to a certain
symmetry in the weight function ω(x) = x−1/2 exp(−(x + 1/x)). In general, for
c > 0, it is said that ω(x) is c-inversive on (0,∞) [19] if

ω(c/x) =
x√
c
ω(x), ∀x ∈ (0,∞).

In [19] we can find the following result.
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Figure 4. The integrands fi, gi(x) = exp(−1/x)fi(x), hi(x) =
fi(x)ω(x), i = 3, 4

Theorem 4.1. Let In(f) =
∑n
j=1 Aj,nf(xj,n) be the n-point Gauss-type formula

in Λ−n,n−1 with respect to a c-inversive weight ω(x). Then

xj,n =
c

xn+1−j
, j = 1, . . . ,

⌊
n+ 1

2

⌋
, n ≥ 1,

Aj,n√
xj,n

=
An+1−j,n√
xn+1−j,n

, j = 1, . . . ,
⌊
n+ 1

2

⌋
, n ≥ 1,

where bxc is the integer part of x.
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Figure 5. The integrands fi, gi(x) = exp(−1/x)fi(x), hi(x) =
fi(x)ω(x) = gi(x)β(x), i = 5, 6

Clearly our weight function (4.1) is c-inversive with c = 1. Hence, the nodes of
the corresponding quadrature formula verify

xn+1−j,n = 1/xj,n, j = 1, . . . ,
⌊
n+ 1

2

⌋
.

Furthermore, when n is odd, say n = 2k + 1, then xk+1,n = 1. On the other hand,

An+1−j,n =
Aj,n
xj,n

, j = 1, . . . ,
⌊
n+ 1

2

⌋
,

and since f(x) = x−1/2 log x, we have f(1/x) = −xf(x). Therefore, we get for
In(f) the following results:
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Figure 6. The integrands fi, gi(x) = exp(−1/x)fi(x), hi(x) =
fi(x)ω(x) = gi(x)β(x), i = 7
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Figure 7. Errors as a function of n: |Iω(fi)−In(fi)| (dotted line)
and |Iβ(gi)− Ĩn(gi)| (solid line)
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Figure 8. Zeros and weights for 10 point formulas of Gauss-
Laguerre type (solid line) and Gauss-type formula of this paper
(dotted line)

1. n = 2k:

I2k(f) =
k∑
j=1

Aj,nf(xj,n) +
n∑

j=k+1

Aj,nf(xj,n)

=
k∑
j=1

[Aj,nf(xj,n) +An+1−j,nf(xn+1−j,n)]

=
k∑
j=1

[
Aj,nf(xj,n) +

Aj,n
xj,n

f(1/xj,n)
]

=
k∑
j=1

[Aj,nf(xj,n)−Aj,nf(xj,n)] = 0.

2. n = 2k + 1: As is the case of an even n, we find that

I2k+1(f) = Ak+1,nf(xk+1,n) = Ak+1,n log(1) = 0.

As a general conclusion from the examples above, we may say that the Gauss-
type formulas In(f) compete very favourable with the Gauss-Laguerre formulas,
taking into account that both require the same computational effort. In our opinion,
the reason for this good numerical behavior is to be found in the distribution of the
nodes. In Figure 8 we have plotted in the left figure the nodes xk,10 as a function
of k for the 10-point Gauss-Laguerre quadrature (full line) and of the 10-point
Gauss-type formula of this paper (dotted line). In the right figure, one can see
the corresponding weights. Aj are the weights Aj,10 and Bj are the weights of the
10-point Gauss-Laguerre formula.

As a final remark concerning the numerics, we should give a note of warning. The
limitations of classical Gaussian quadrature formulas are well known. Convergence
is especially slow when the integrand exhibits a non-smooth behaviour near the
interval of integration. Our examples confirm this: the integrand g(x) contains the
factor exp(−1/x), and when this is not compensated by a corresponding factor in
f(x), the convergence is slow indeed. Similar observations can be made for the
Gauss-type formulas studied in this paper. In general, however, convergence is
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faster, although it is possible to design examples where this is not true (see e.g. the
last one), where the above argument is in favour of the classical Gauss formula.

On the other hand, for many practical integration routines, one prefers to use
so-called automatic integration rules, which may be adaptive or not and iterative
or not, and which include many skillful techniques which go far beyond the kind
of integration rules that we have studied in this paper and in the papers [4, 2, 3].
For further details see [7, Chap. 6] and the references therein. The Gauss-type
formulas of our papers are not intended to compete with this kind of automatic
integrators. Our interest in the formulas and the numerical examples is therefore
mainly theoretical and because of the nice relation that exists with two-point Padé
approximation. On the other hand, we do not know about experiments testing
these rules in a numerical context.
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eds.), Birkhäuser Verlag, 1981, pp. 72–147. MR 83g:41031
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