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A NEW SUMMATION METHOD
FOR POWER SERIES

WITH RATIONAL COEFFICIENTS

SILVIA DASSIÈ, MARCO VIANELLO, AND RENATO ZANOVELLO

Abstract. We show that an asymptotic summation method, recently pro-
posed by the authors, can be conveniently applied to slowly convergent power
series whose coefficients are rational functions of the summation index. Several
numerical examples are presented.

1. Asymptotic summation

Consider a power series
∞∑
j=1

fjz
j ,(1)

where z ∈ C and fj ∈ C. In [3] we proved that, when the coefficients fj possess an
asymptotic expansion

fj ∼ a1j
−p1 + a2j

−p2 + ... , j →∞ , 0 < p1 < p2 < ... ,(2)

and pk+1 − pk ∈ N, then also the remainder of (1) has an asymptotic expansion
∞∑
j=n

fjz
j ∼ znn−q{b1(z)n−1 + b2(z)n−2 + · · · } , n→∞ ,(3)

where q = p1 − 1 if |z| ≤ 1 and z 6= 1, and q = p1 − 2 if z = 1. In particular,
we provided explicit formulas for the computation of the coefficients bk(z), which
allow for a direct use of expansion (3) for the numerical summation of (2). It is
worth recalling that in [11] Sidi already showed the mere existence of an asymptotic
expansion for the remainder, as a basis for acceleration of convergence by means of
Levin’s T-transformation. Convergence of the series (2), in fact, can be very slow
(when p1 is “small”) for z on (or close to) the boundary of the unit circle.

When pk+1−pk ≡ 1, which is the most common case in applications, the quoted
formulas are simple and easy to implement. In fact, for z 6= 1 we have

bk(z) = −
k−1∑
i=0

ak−i ϕi(k, z) ,(4)
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where the ϕi are recursively defined by

ϕ0(k, z) =
1

z − 1
,

ϕi(k, z) =
z

1− z

i−1∑
r=0

(
i+ 1− k − p1

i− r

)
ϕr(k, z) , i = 1, 2, ... ,

(5)

while for z = 1 we have

bk(1) =
k∑
i=1

ai
p1 + i− 2

(
2− p1 − i
k − i

)
Bk−i ,(6)

where Bk are the Bernoulli numbers; cf. [2], [3, Formula (24)]. Observe that the
more general formula (5) of [3] contains a misprint: the number k + p` − p1 − 1 in
the binomial coefficient, should be k + p1 − p` − 1 instead.

As a numerical application, we considered in [3] the evaluation of the special
function

S(z; j0, ν, a, b, p) =
∞∑
j=j0

zj(j + b)ν−1(j + a)−p , |z| ≤ 1 ,

0 < ν ≤ 1 , a, b ∈ C \ {−j0,−j0 − 1, ...} ,
(7)

generalizing various summation problems that appeared in the recent literature on
convergence acceleration of numerical and power series; cf., e.g., [1, 4, 5, 6, 8, 9, 10].
When z is on or close to the boundary of the unit circle, summation of (7) was
accomplished by a numerical algorithm based directly on the expansion (3) and the
formulas (4)-(6).

2. The case of rational coefficients

In the present work, we show that the approach briefly described in the previous
section can be also applied to the numerical summation of series whose coefficients
are rational functions of the index , i.e.,

S = S(z) =
∞∑
j=j0

zj(j + b)ν−1r(j) , |z| ≤ 1 ,

0 < ν ≤ 1 , b ∈ C \ {−j0,−j0 − 1, ...} , r(j) =
α(j)
β(j)

=
αsj

s + · · ·+ α0

βtjt + · · ·+ β0
,

(8)

where t − s > ν if z = 1, t − s > ν − 1 if |z| ≤ 1 and z 6= 1, and β(j) 6= 0 for all
integers j ≥ j0.

A possible approach to the summation of (8) in instances of slow convergence
is given by partial fraction decomposition of the rational function, together with
suitable algorithms for the computation of (7). The series involved in the partial
fractions are indeed of that form, with p ∈ N. This represents a motivation for the
development of special summation methods for the series in (7), as pointed out in
several recent papers (cf. [4, 6, 8]). On the other hand, though the basic step of
partial fraction decomposition can be accomplished in an efficient manner (cf. [7,
§7.1]), it is still quite costly.

For this reason, it is worth pursuing a direct use of asymptotic summation via (3)-
(5), provided an asymptotic expansion like (2) exists for the coefficient (j+b)ν−1r(j)
and can be easily constructed. This is indeed the case for a rational function
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r(z) = α(z)/β(z), which admits an asymptotic expansion in powers of z−1, the
convergent Laurent expansion, in a suitable neighborhood of ∞ which omits the
poles of r(z). Thus the following asymptotic relation holds:

α(j) = js−tβ(j)

(
m∑
k=0

ckj
−k +O(j−m−1)

)
, m = 0, 1, 2, ... , j ≥ ñ ,(9)

where ñ is the least positive integer such that r(z) has no poles for |z| ≥ ñ, and the
ck’s are the coefficients of the Laurent expansion of r(z).

From (9) we can compute recursively the coefficients ck by means of the αi’s and
βi’s (cf. (8)). In fact, substituting from (8) the explicit expressions for α(j) and
β(j) and comparing the coefficients of like powers of j on the left and right of (9),
we obtain the infinite triangular system∑̀

k=0

ckβt−`+k =
{
αs−` if 0 ≤ ` ≤ s,
0 if ` > s,

(10)

and, by forward substitution, we find that

ck =


(
αs−k −

∑k−1
i=0 ciβt−k+i

)
/βt if 0 ≤ k ≤ s,

−
∑k−1
i=0 ciβt−k+i/βt if k > s .

(11)

In this way we get the asymptotic expansion

fj := (j + b)ν−1r(j) =
m∑
k=1

akj
−pk +O(j−pm+1) , m = 1, 2, ... , j ≥ n∗ ,(12)

with

ak =
k∑
i=1

(
ν − 1
k − i

)
ci−1b

k−i , pk = k + t− s− ν , k = 1, 2, ... ,(13)

and

n∗ =

 ñ if b ∈ C \ (−∞,−j0],

max {ñ, [ |b| ] + 1} if b ∈ (−∞, j0] \ {−j0,−j0 − 1, ...} .
(14)

In (13), indeed, ak is the kth coefficient of the product of the asymptotic expansions
for r(j) and (j + b)ν−1. The fact that (j + b)ν−1 = jν−1(1 + b/j)ν−1 possesses an
asymptotic expansion in powers of j−1 is a trivial consequence of the Maclaurin
formula for the binomial function (1 +w)ν−1 when w = b/j ∈ C \ (−∞,−1] (where
j > |b| when b < 0).

From (3)-(6) we can finally write the representation

S = Sn +Rn =
n−1∑
j=j0

zj(j + b)ν−1r(j) + σn,m + εn,m , m = 1, 2, ... ,

σn,m = znn−q
m∑
k=1

bk(z)n−k , εn,m = znO
(
n−(m+q+1)

)
, n ≥ n∗ ,

(15)

where q = t− s− ν if z 6= 1, and q = t− s− ν − 1 if z = 1.
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3. The summation algorithm

The representation (15) gives rise to the problem of constructing an algorithm
that finds a pair (n,m) such that the relative error |εn,m/S| is below a given toler-
ance and at the same time the computational cost is low. Recall that, because of
the asymptotic nature of the approximation in (15), the error term εn,m tends to 0
as n→∞, but is not infinitesimal as m→∞; indeed, |εn,m| exhibits for each fixed
value of n a minimum in m which is infinitesimal as n → ∞. As in [3], however,
we forgo a procedure based on finding (empirically) such a minimum for a given
subsequence of indices {ns}: in fact, the complexity in the computation of σn,m
increases quadratically (z = 1) or cubically (z 6= 1) with m, so that this approach
turns out to be quite costly.

An alternative strategy, which is that adopted in [3], consists in trying to balance
the computational cost of the partial sum Sn with that of σn,m in terms of the
order of magnitude of the respective flops number. While the computation of σn,m
requires basically only elementary arithmetic operations, that of Sn may involve
the evaluation of logarithms (when ν < 1). In this regard we have assumed that
the computation of a logarithm corresponds to 10 flops: this value was obtained by
averaging the results obtained with various programming languages and compilers,
on various processors.

The summation algorithm can then be summarized as follows:

(i) k := 1, n0 := j0 − 1, Sn0 := 0, c0 := αs/βt;
(ii) compute the coefficient ak by (11), (13), and bk(z) by (4)-(6);

(iii) compute the partial sum Snk as

Snk := Snk−1 +
nk∑

j=nk−1+1

zj(j + b)ν−1r(j) ,(16)

where nk is choosen in such a way as to balance the cost of (ii) with the cost
of (16), as described above;

(iv) for i = 1, ..., k
• compute σnk,i as in (15);
• if i < k, then if

µk,i

∣∣∣εnk,i
S

∣∣∣ ∼= ∣∣∣∣Snk − Snk−1 + σnk,i − σnk−1,i

Snk + σnk,i

∣∣∣∣ ≤ µk,i · reltol ,
where µk,i =

∣∣∣∣∣1− znk−1−nk
(

nk
nk−1

)q+i+1
∣∣∣∣∣ ,

(17)

then EXIT;
(v) go to step (ii) with k := k + 1.

A key observation is now in order. In principle, representation (15) can be used
only for n ≥ n∗ (cf. (14)), so that in step (i) one should choose n0 ≥ n∗ and
compute the initial sum Sn0 to start the iterative process, making an appropriate
use of the a posteriori estimate (17). Such an estimate is strongly based on the
asymptotic nature of (15): in fact by (15) we obtain εn,i ∼= zn bi+1(z)n−(q+i+1) for
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n > n∗ sufficiently large, and moreover, we have∣∣Snk − Snk−1 + σnk,i − σnk−1,i

∣∣ =
∣∣εnk,i − εnk−1,i

∣∣
∼=

∣∣∣∣∣
(

1− znk−1−nk
(

nk
nk−1

)q+i+1
)
εnk,i

∣∣∣∣∣(18)

for k sufficiently large.
This implies that a (possibly sharp) overestimate of ñ should be produced (cf.

(9)), for example by using for the denominator β(z) one of the well-known a priori
bounds of the complex zeros of a polynomial, or by applying a suitable localization
algorithm for the zeros; cf. [7, Ch.6] for an extensive treatment of these topics. In
fact, in excluding the zeros of β(z) we exclude a fortiori the poles of r(z).

In practice, however, the summation algorithm sketched above turns out to be
“robust” in the sense that it gives a correct answer also starting from n0 = j0 − 1,
Sn0 = 0: our numerical experiments confirmed that in every case the exit index
nk is greater than n∗. On the other hand, it should also be noticed that this
dependence on the value of n∗ can represent a possible drawback of the method,
when b� −1 or when r(z) exhibits poles with very large modulus.

4. Numerical examples

In this section we present the results of the application of the asymptotic sum-
mation method to several series of the form (8). In all the examples we set a
relative tolerance reltol = 10−14 in the termination test (17): in Tables I-X below
(n, i) = (nk, i) is the first pair which satisfies (17).

All computations have been carried out in double-precision arithmetic within
the Turbo Pascal programming framework, on a Pentium-based personal computer.
The accuracy and (empirical) stability of the method are witnessed by the fact that
the actual errors are always below the prescribed tolerance; the errors have been
computed by comparison with the values obtained by the numerical summation
tool NSum of Mathematica [12, §3.9.4].

Tables I-VIII refer to the summation of
∞∑
j=1

zj jν−1 j
s + · · ·+ 1
jt + · · ·+ 1

, z = eiωπ/2 , ω ∈ [0, 2] ,(19)

for various admissible quadruples ν, s, t, ω corresponding to very slow convergence.
Observe that the algorithm behavior gets worse in the neighborhood of z = 1 (i.e.,
for ω “small”), while it works satisfactorily at z = 1 (ω = 0); as already pointed
out in [3], this could be ascribed to the discontinuity of the coefficients bk(z) at
z = 1, since bk(z) ∼ const/(z − 1)k+2 as z → 1, cf. (4)-(6) and [3, Remark 1.4].

In Tables IX-X we report the results corresponding to the summation of
∞∑
j=1

jν−1 α1j + α0

β2j2 + β0
,(20)

for ν = 1/2 and ν = 9/10, varying the relative weights of the coefficients of the ra-
tional function within a range of two orders of magnitude. Only the values of these
coefficients which are not related by a scaling of the series have been considered.
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Table I. Summation of (19) for ν = 1, s = 1, t = 2

ω 2 1 0.8 0.6 0.4 0.2 0.1 0.05 0.01
n 67 90 90 117 149 230 336 547 2246
m 9 9 10 10 10 11 14 17 21

Table II. Summation of (19) for ν = 1, s = 1, t = 3

ω 2 1 0.8 0.6 0.4 0.2 0.1 0.05 0.01 0
n 60 81 81 105 134 167 300 490 2010 54
m 8 9 9 9 10 13 13 16 17 8

Table III. Summation of (19) for ν = 1, s = 9, t = 10

ω 2 1 0.8 0.6 0.4 0.2 0.1 0.05 0.01
n 31 52 65 65 97 138 253 468 2027
m 10 11 11 13 13 17 18 20 27

Table IV. Summation of (19) for ν = 1, s = 9, t = 11

ω 2 1 0.8 0.6 0.4 0.2 0.1 0.05 0.01 0
n 29 48 48 60 73 127 203 386 1516 16
m 10 10 12 11 13 13 17 15 16 9

Table V. Summation of (19) for ν = 1/2, s = 1, t = 2

ω 2 1 0.8 0.6 0.4 0.2 0.1 0.05 0.01 0
n 40 52 65 65 97 138 253 468 2027 20
m 10 11 11 13 12 16 17 18 20 11

Table VI. Summation of (19) for ν = 1/2, s = 1, t = 3

ω 2 1 0.8 0.6 0.4 0.2 0.1 0.05 0.01 0
n 30 49 49 62 76 133 211 401 1693 19
m 10 10 12 12 14 14 20 18 19 11

As a confirmation of the robustness of the summation algorithm, it is also interesting
to quote the following result. For α1 = 1, α0 = 1, β2 = 1, and β0 = 104 we obtained
(n,m) = (198, 37) with reltol = 10−14, and (n,m) = (119, 23) with reltol = 10−4,
both starting from n0 = 0, Sn0 = 0: observe that n > n∗ = ñ = 100 for two very
different values of the relative tolerance.
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Table VII. Summation of (19) for ν = 1/2, s = 9, t = 10

ω 2 1 0.8 0.6 0.4 0.2 0.1 0.05 0.01 0
n 31 39 48 58 83 133 224 428 1909 13
m 10 13 13 14 14 17 21 21 25 12

Table VIII. Summation of (19) for ν = 1/2, s = 9, t = 11

ω 2 1 0.8 0.6 0.4 0.2 0.1 0.05 0.01 0
n 30 38 47 57 68 112 119 379 1653 12
m 10 12 12 12 15 19 17 21 19 9

Table IX. Summation of (20) for ν = 1/2

α1 1 1 1 1 1 1 1 1 1 1 10 10 10
α0 1 1 1 1 1 10 10 10 10 10 1 1 1
β2 1 1 1 10 102 1 1 1 10 102 1 1 1
β0 1 10 102 1 1 1 10 102 1 1 1 10 102

n 21 32 50 18 10 21 28 50 18 18 21 32 50
m 11 13 18 10 10 11 13 18 10 10 11 12 18

α1 10 10 1 1 1 1 1 102 102 102 102 102

α0 1 1 102 102 102 102 102 1 1 1 1 1
β2 10 102 1 1 1 10 102 1 1 1 10 102

β0 1 1 1 10 102 1 1 1 10 102 1 1
n 18 18 21 32 50 18 18 21 32 50 18 18
m 9 9 11 13 18 10 10 11 12 18 9 9

Table X. Summation of (20) for ν = 9/10

α1 1 1 1 1 1 1 1 1 1 1 10 10 10
α0 1 1 1 1 1 10 10 10 10 10 1 1 1
β2 1 1 1 10 102 1 1 1 10 102 1 1 1
β0 1 10 102 1 1 1 10 102 1 1 1 10 102

n 21 32 50 18 18 21 28 50 18 18 21 32 50
m 10 13 18 10 10 11 13 18 10 10 11 12 18

α1 10 10 1 1 1 1 1 102 102 102 102 102

α0 1 1 102 102 102 102 102 1 1 1 1 1
β2 10 102 1 1 1 10 102 1 1 1 10 102

β0 1 1 1 10 102 1 1 1 10 102 1 1
n 18 18 24 32 55 18 18 21 28 50 18 15
m 9 9 11 13 18 10 10 11 12 18 9 9
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