
MATHEMATICS OF COMPUTATION
Volume 69, Number 230, Pages 767–773
S 0025-5718(99)01141-2
Article electronically published on March 4, 1999

A MODIFICATION OF SHANKS’
BABY-STEP GIANT-STEP ALGORITHM

DAVID C. TERR

Abstract. I describe a modification to Shanks’ baby-step giant-step algo-
rithm for computing the order n of an element g of a group G, assuming n
is finite. My method has the advantage of being able to compute n quickly,
which Shanks’ method fails to do when the order of G is infinite, unknown,
or much larger than n. I describe the algorithm in detail. I also present the
results of implementations of my algorithm, as well as those of a similar algo-
rithm developed by Buchmann, Jacobson, and Teske, for calculating the order
of various ideal classes of imaginary quadratic orders.

1. Introduction

Shanks’ baby-step giant-step algorithm [1, 2] is a well-known procedure for find-
ing the order n of an element g of a finite group G. Running it involves 2

√
K+O(1)

group multiplications (GM), and
√
K + O(1) table lookups (TL), where K is an

upper bound on n (for instance, one often uses K = |G|). Often, however, K is
unknown or much larger than n. In this case, a faster algorithm is desired. Here is
my main result, to be proven later:

Theorem 1.1. Let G be a group for which it is possible to compute the product of
any two elements, to determine whether two elements are equal, and to determine
whether a given element is equal to 1, the identity of G, and let g be an element
of G of finite order n > 2. Then there exists a deterministic algorithm which
determines the order n of g, using GM = 2d

√
2(n− 1)c − 2 group multiplications

and TL = d
√

2(n− 1)c − 1 table lookups. (Here, dxc denotes the nearest integer to
x.)

2. The order algorithm

My algorithm is similar to Shanks’ in that one still compares powers gtj of g
(giant steps) to an updated hash table of pre-computed consecutive powers gi for
1 ≤ i ≤ v (baby steps). However, with my algorithm, one does not need an
upper bound on n. Instead, the giant steps are not constant, but grow linearly.
Specifically, the sequence (tj)∞j=0 is defined recursively as follows:

t0 = 2v;

tj+1 = tj + j + v + 1 (j ≥ 0).
(1)

Received by the editor September 4, 1996 and, in revised form, May 30, 1998.
1991 Mathematics Subject Classification. Primary 68P10, 20C40.

c©2000 American Mathematical Society

767

768 DAVID C. TERR

It is straightforward to show that the solution of this recurrence is

tj = (j + 2)v + 1
2j(j + 1).(2)

The hash table serves two purposes. First, after each step, one must use the last
entry gj+v in the table to compute gtj from gtj−1 , since tj = tj−1 + j + v. Second,
the table of baby steps serves the same purpose as in Shanks’ algorithm, i.e. every
positive integer n can be expressed as the difference tj − i, where tj is the least
number in the sequence (tj) not exceeding n and 0 ≤ i < j + v. The algorithm
proceeds as follows. (My notation is the same as in [1].)

Algorithm 2.1. Input: g ∈ G, v ∈ Z, v ≥ 2
Output: n = |〈g〉|

(1) if (g == 1) then /* trivial case */

(2) return (1)

(3) else

(4) n = 0; i = 1; R = {(1, 0), (g, 1)}; a = g
/* initialization */

(5) while (n == 0 and i < v) do

(6) a = g ∗ a; i = i+ 1 /* baby steps */

(7) if (a == 1) then

(8) n = i /* found order among baby steps */

(9) return (n)

(10) else

(11) R = R ∪ {(a, i)} /* update hash table */

(12) fi

(13) od

(14) j = 0; b = a ∗ a; t = 2 ∗ v /* initialize giant steps (t = tj) */

(15) while (n == 0) do

(16) if (there exists a number i such that (b, i) ∈ R) then
/* table lookup */

A MODIFICATION OF SHANKS’ BABY-STEP GIANT-STEP ALGORITHM 769

(17) n = t− i /* order of g */

(18) return (n)

(19) break while

(20) else

(21) a = g ∗ a; j = j + 1; R = R ∪ {(a, j + v)}
/*baby step */

(22) b = a ∗ b; t = t+ j + v /* giant step */

(23) fi

(24) od

(25) fi

(26) fi

Theorem 2.2. For the above algorithm, we have

GM = 2d
√

2n+ v(v − 3)c − v
and

TL = d
√

2n+ v(v − 3)c − v + 1
if n > v. If n ≤ v, we have GM = n− 1 and TL = 0. The algorithm also requires
storing a total of

|R| = d
√

2n+ v(v − 3)c+ 1
group elements in the hash table in the case n > v.

Proof. In the case where 1 < n ≤ v, the order n of g will be found after computing
the first n baby steps, which requires n−1 group multiplications, no table lookups,
and no storage. (If n = 1, no work is required, other than noting that g = 1.)
If n > v, the order n of g will be found after j + v + 1 entries of the table are
computed, as well as gtj , where j is the least integer such that n ≤ tj . We have

tj−1 = (j + 1)v + 1
2j(j − 1) < n ≤ tj = (j + 2)v + 1

2j(j + 1).

Using straightforward algebra, we find that

j = d
√

2(n− 1) + (v − 3
2)2 − 1

2e − v = d
√

2n+ v(v − 3)c − v.

To compute the last j + v − 1 entries of the table as well as gti for 0 ≤ i ≤ j, a
total of

GM = 2j + v = 2d
√

2n+ v(v − 3)c − v
group multiplications and

TL = j + 1 = d
√

2n+ v(v − 3)c − v + 1

table lookups are required. (The first two elements of the table are not computed,
just initialized.) It is also necessary to store the |R| = j+v+1 = d

√
2n+ v(v − 3)c+

1 group elements gi (0 ≤ i ≤ j + v) in the table. QED

770 DAVID C. TERR

Setting v = 2, we find that

GM = 2d
√

2(n− 1)c − 2

and
TL = d

√
2(n− 1)c − 1,

if n > 2, proving Theorem 1.1. QED

The speed of my algorithm can be improved slightly, since gi need not be com-
puted twice if i belongs to the sequence (tj) of giant steps. This will reduce GM
by O(

√
j) = O((n + v2)

1
4), without affecting TL. However, it also requires that

one store an additional j group elements, so that as n gets large, the storage re-
quirements are nearly doubled, whereas the computing time is only reduced by a
fraction which tends to zero. Thus, this improvement is impractical for large n.

3. Comparison with algorithm

of Buchmann, Jacobson, and Teske [1]

Here I present results of the implementation of my algorithm to the calculation
of the orders of four ideal classes of each of three imaginary quadratic number
fields with discriminiants ∆ = −4(108 + 1), −4(1010 + 1), and −4(1012 + 1). I
wrote the program myself in Java, using Metrowerks CodeWarrior. I also wrote
a version which implements the algorithm of Buchmann, Jacobson, and Teske [1],
which I will refer to henceforth as the BJT algorithm. Both programs appear as
Java applets on my webpage; the interested reader can run both algorithms and
look at the source code [3]. For each of the twelve ideal classes I considered, I ran
each algorithm with five different values of v, the initial giant step size, namely
v = 2, |∆| 14 /8, |∆| 14 /4, |∆| 14 /2, and |∆| 14 .

In each of the following tables, Ip denotes the prime ideal lying above the rational
prime p of the imaginary quadratic number field K with discriminant ∆, and (Ip)
is the ideal class of the class group G=Cl(K) containing Ip. The numbers in bold
indicate which algorithm involves the lesser of the quantity shown. In the case of a
tie, each value is printed in italics. The numbers in brackets indicate which of the

Table 1. Order algorithm, v = 2

∆
−4(108 + 1)

−4(1010 + 1)

−4(1012 + 1)

p

5
3
7

11
5
3

13
7

11
59
5
3

|〈(Ip)〉|
228
456

1368
4104
4033

16132
24198
48396
13040
23472
29340

117360

My algorithm
GM

40
58

102
180
178
358
438
620
320
432
482
966

TL
20
29
51
90
89

179
219
310
160
216
241
483

|R|
[22]
[31]
[53]
[92]
[91]

[181]
[221]
[312]
[162]
[218]
[243]
[485]

BJT
GM

41
66

122
230
164
324
485
580
299
482
505

1005

TL
21
29
52
95
94

189
221
316
164
218
241
484

|R|
[16]
[32]
[64]

[128]
[64]

[128]
256
256
[128]
256
256
512

A MODIFICATION OF SHANKS’ BABY-STEP GIANT-STEP ALGORITHM 771

Table 2. Order algorithm, v = |∆| 14 /8

∆
−4(108 + 1)

−4(1010 + 1)

−4(1012 + 1)

p

5
3
7

11
5
3

13
7

11
59
5
3

|〈(Ip)〉|
228
456

1368
4104
4033

16132
24198
48396
13040
23472
29340

117360

My algorithm
GM
[36]
[50]
92

166
[154]
320
398
576

[299]
[381]
[421]
853

TL
10
17
38
75
50

133
172
261
62

103
123
339

|R|
28
35
56
93

106
189
228
317
239
280
300
516

BJT
GM
[35]
63

124
162
184
389
425
533
[259]
[318]
[351]
783

TL
12
21
45
83
64

156
192
300
74

133
166
421

|R|
18
36
72
72

112
224

[224]
[224]
176
[176]
[176]
[352]

Table 3. Order algorithm, v = |∆| 14 /4

∆
−4(108 + 1)

−4(1010 + 1)

−4(1012 + 1)

p

5
3
7

11
5
3

13
7

11
59
5
3

|〈(Ip)〉|
228
456

1368
4104
4033

16132
24198
48396
13040
23472
29340

117360

My algorithm
GM

45
55

[89]
159
172

[310]
[380]
548
422
474
502
[844]

TL
6

11
28
63
31

100
135
219
35
61
75

246

|R|
41
46
63
98

143
212
247
331
389
415
429
600

BJT
GM

48
[54]
115
153
[156]
361
397
505
401
431
447
[696]

TL
6

12
36
74
36

128
164
272
36
66
82

331

|R|
36
36
72
72

112
224

[224]
[224]
354
354
354
354

five giant-step sizes used was optimal for the given ideal class and algorithm. Note
that in the case of ∆ = −4(1010 + 1), and v = 2, |∆| 14 /2, and |∆| 14 (middle four
rows of Tables 1, 4, and 5) my results for the BJT algorithm agree with those in
[1].

As can be seen from the above tables, the speed and storage of my algorithm are
very close to that of Buchmann et al. In most cases, GM and TL are within 10%
of each other. My method seems to have the advantage of requiring fewer table
lookups; in each case, TL for my algorithm is no greater than for BJT. GM appears
to comparable for the two algorithms, although mine seems to involve fewer group
multiplications for small v than theirs. For larger v, their algorithm appears to work
better. In the case of calculating orders of ideals of imaginary quadratic fields, my
algorithm appears to be optimal for v near |∆| 14 /4, whereas the BJT algorithm

772 DAVID C. TERR

Table 4. Order algorithm, v = |∆| 14 /2

∆
−4(108 + 1)

−4(1010 + 1)

−4(1012 + 1)

p

5
3
7

11
5
3

13
7

11
59
5
3

|〈(Ip)〉|
228
456

1368
4104
4033

16132
24198
48396
13040
23472
29340

117360

My algorithm
GM

75
81

103
[157]
256
348
402

[540]
741
769
785

1005

TL
3
6

17
44
17
63
90

159
18
32
40

150

|R|
74
77
88

115
241
287
314
383
725
739
747
857

BJT
GM

81
84

[97]
[136]
251
[305]
[341]
[449]
738
753
761
885

TL
3
6

19
58
18
72

108
216
18
33
41

165

|R|
70
70
70
[70]
224
224
[224]
[224]
708
708
708
708

Table 5. Order algorithm, v = |∆| 14

∆
−4(108 + 1)

−4(1010 + 1)

−4(1012 + 1)

p

5
3
7

11
5
3

13
7

11
59
5
3

|〈(Ip)〉|
228
456

1368
4104
4033

16132
24198
48396
13040
23472
29340

117360

My algorithm
GM
141
145
157
191
461
513
547
639

1430
1444
1452
1572

TL
[1]
[3]
[9]

[26]
[8]

[34]
[51]
[97]
[9]

[16]
[20]
[80]

|R|
142
144
150
167
455
481
498
544

1423
1430
1434
1494

BJT
GM
153
155
161
180
467
494
512
566
1437
1444
1448
1510

TL
[1]
[3]
[9]

[28]
[9]

[36]
[54]

[108]
[9]

[16]
[20]
[82]

|R|
142
142
142
142
448
448
448
448

1414
1414
1414
1414

appears to work better for v near |∆| 14 /2. Upon differentiating the equation for
GM in Theorem 2.2 with respect to v (neglecting the integer rounding), we find that

the optimal value of v should be asymptotic to
√

2
3n for my algorithm. When one

has no good lower bound on n, one should use v = 2, in which case my algorithm
appears to be faster than the BJT algorithm.

4. A bound for similar methods

It would be of interest to find a lower bound on GM for all similar methods. For
the purpose of this calculation, we will neglect table lookups; thus we will assume
that every power of g calculated is tabulated as soon as it is compared with all
previous table entries, assuming no match is found. Although this may make TL

A MODIFICATION OF SHANKS’ BABY-STEP GIANT-STEP ALGORITHM 773

unnecessarily high, it will ensure that GM is as small as possible. Let (ai)∞i=0 be the
chronological sequence of powers of g calculated in determining n, where a0 = 0
and a1 = 1. (The sequence (ai) must be infinite to allow for the determination
of arbitrarily large n.) Since every power of g is obtained by multiplying two
previously calculated powers of g, the sequence (ai) must be an addition sequence,
i.e. for every integer k ≥ 2, we must have ak = ai + aj for some positive integers
i , j < k, possibly with i = j. Also, every positive integer n must be expressible as
the difference between two elements of the sequence, i.e. we must have n = ai2−ai1
for some i1 and i2. Aside from these two restrictions, we make no further restrictions
on the sequence (ai). Let i(n) = min{max(i1, i2) : n = ai2 − ai1}. Then if the
order of g is n, we require i(n)− 1 group multiplications to determine n.

Theorem 4.1. There exist infinitely many positive integers m such that i(m) ≥√
2m.

Proof. Given a fixed positive integer n, let m be a positive integer not exceeding n
such that i(m) is maximal, i.e. we have i(m) = max{i(k) : 1 ≤ k ≤ n}. Then every
positive integer not exceeding n is the difference of two numbers in the sequence
whose indices do not exceed i(m). This implies

m ≤ n ≤
(
i(m)

2

)
=
i(m)(i(m)− 1)

2
≤ i(m)2

2
,

the binomial coefficient being an upper bound on the number of distinct differences
among the first i(m) terms of the sequence. Since the right side grows at least as
fast as n, infinitely many values of m are needed as n grows. Solving the above
inequality for i(m), we find that i(m) ≥

√
2m for each of these m. QED

Theorem 4.1 may be restated as follows: The number of group multiplications
required to calculate arbitrary n is bounded below by C

√
n, where

C := lim sup
m→∞

i(m)√
m
≥
√

2.

In the case v = 2, my method yields a constant C = 2
√

2, twice the theoretical
lower bound. Thus, any similar method would involve no less than half as many
group multiplications as mine.

Acknowledgment

I would like to thank my advisor, H. W. Lenstra Jr., for inspiring me to write
this paper and for providing me with some key ideas.

References

[1] J. Buchmann, M.J. Jacobson, Jr., and E. Teske, “On Some Computational Problems in Finite
Abelian Groups”, Math. Comp. 66 (1997), pp. 1663-1687. MR 98a:11185

[2] D. E. Knuth, “The Art of Computer Programming”, vol. 3 (1973), pp. 575-6 (prob. 17).
MR 56:4281

[3] “Dave’s Cool Java Home Page”, http://www.geocities.com/CapeCanaveral /Launch-
Pad/5318 (1998).

2614 Warring St. #7, Berkeley, CA 94704

E-mail address: davidcterr@aol.com

http://www.ams.org/mathscinet-getitem?mr=98a:11185
http://www.ams.org/mathscinet-getitem?mr=56:4281

	1. Introduction
	2. The order algorithm
	3. Comparison with algorithm\ of Buchmann, Jacobson, and Teske 1
	4. A bound for similar methods
	 Acknowledgment
	References

