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TABLES OF CURVES WITH MANY POINTS

GERARD VAN DER GEER AND MARCEL VAN DER VLUGT

Abstract. These tables record results on curves with many points over finite
fields. For relatively small genus (0 ≤ g ≤ 50) and q a small power of 2 or 3 we
give in two tables the best presently known bounds for Nq(g), the maximum
number of rational points on a smooth absolutely irreducible projective curve
of genus g over a field Fq of cardinality q. In additional tables we list for a
given pair (g, q) the type of construction of the best curve so far, and we give
a reference to the literature where such a curve can be found.

Introduction

In recent years the question of how many points a curve of genus g over a finite
field Fq can have has attracted a lot of attention. This was motivated partly by
possible applications in coding theory and cryptography, but also by the fact that
the question represents an attractive mathematical challenge.

It is well known that a smooth absolutely irreducible projective curve of genus
g over a finite field Fq can possess at most q + 1 + 2g

√
q rational points. By

a curve we shall mean in this paper a smooth absolutely irreducible projective
curve defined over a finite field. The bound mentioned is the celebrated Hasse-Weil
bound, proved by Hasse for g = 1 and by Weil in general. We denote by Nq(g) the
maximum number of rational points on a curve of genus g over Fq. The Hasse-Weil
bound implies

Nq(g) ≤ q + 1 + [2g
√
q],

where [x] is the integer part of x ∈ R.
After Weil proved his bound around 1940, the question of how many rational

points may lie on a curve over a finite field Fq remained untouched for many years.
In 1980 Goppa came up with the beautiful idea of associating an error-correcting
code to a linear system on a curve over a finite field, see [G]. In order to construct
good codes one needs curves with many points, and thus Goppa’s work led to
a revival of interest in rational points on curves over finite fields. Applications
in cryptography and recent constructions of quasi-random point sets also require
curves with many points, and added a further impetus to work in the field.

In 1981 Ihara showed in [I] by a simple and elegant argument that

Nq(g) ≤ q + 1 + [(
√

(8q + 1)g2 + 4(q2 − q)g − g)/2].(1)
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For g > (q−√q)/2 this bound is better than Weil’s bound and gives the asymptotic
bound

A(q) := lim sup
g→∞

Nq(g)
g
≤
√

2q +
1
4
− 1

2
.(2)

Ihara also showed that if q is a square one has A(q) ≥ √q − 1, using a sequence
of modular curves. Refining Ihara’s idea to derive (1), Drinfeld and Vladut proved
that

A(q) ≤ √q − 1.(3)

In [S1] Serre started the investigation of the actual value of Nq(g). One has
Nq(0) = q + 1. For g = 1, 2 there are explicit formulas for Nq(g). From [S2], [S4]
we quote the following result:

Proposition 1. Let q = pm and set µ = [2
√
q]. For g = 1 one has Nq(1) =

q + 1 + µ, except when m is odd, m ≥ 3 and p divides µ, in which case we have
Nq(1) = q + µ. Similarly, for g = 2 we have Nq(2) = q + 1 + 2µ except in the
following cases:

i) N4(2) = 10, N9(2) = 20;
ii) m odd, p divides µ;
iii) m odd and q of the form x2 + 1, x2 + x+ 1 or x2 + x+ 2 for x ∈ Z.

In cases ii) and iii) we have Nq(2) = q + 2µ if 2
√
q − µ > (

√
5 − 1)/2, or

Nq(2) = q + 2µ− 1 else.
In [S1] Serre used a little arithmetic to show that the Hasse-Weil bound may be

sharpened to

Nq(g) ≤ q + 1 + g[2
√
q].

In the same paper Serre introduced the idea of using a ‘formule explicite’ in analogy
with number theory for obtaining a better upper bound for Nq(g). Oesterlé used
methods from linear programming to perfect this idea, see [S4].

In the tables we shall use as upper bound for Nq(g) the best bound that these
estimates of Hasse-Weil, Ihara, Serre and Oesterlé provide. We also take into
account slight improvements by 1, 2, or 3 of these upper bounds. They result from
the following facts.

Proposition 2 ([F-T]). If q is a square and if C is a curve of genus g which attains
the Hasse-Weil bound, then

g ≤ (
√
q − 1)2/4 or g = (q −√q)/2.

Proposition 3 ([S4]). A curve of genus ≥ 3 with #C(Fq) < q+1+g[2
√
q] satisfies

#C(Fq) ≤ q − 1 + g[2
√
q].

Proposition 4. One has the following explicit results:
1) N2(7) = 10;
2) N3(5) ≤ 13, N3(7) = 16, N8(6) ≤ 35, and N9(5) ≤ 35;
3) N4(4) = 15 and N9(4) = 30;
4) N27(3) = 56.

Here 1) and 2) are obtained by an analysis of the Frobenius eigenvalues and are
due to Serre [S4] and Lauter [L2], [L3] respectively. Result 3) was proved by Serre
for q = 4 and follows from [S-V] for q = 9. Also 4) is due to Serre. Each of these
improvements involves detailed considerations.
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Proposition 5 ([L3]). 1) For pairs q = 8, g ≥ 4 and q ∈ {27, 32}, g ≥ 3 we have
Nq(g) ≤ q − 1 + g[2

√
q]. 2) For q = 2m with even m ≥ 4 and (

√
q − 1)2/4 < g <

(q −√q)/2 we have Nq(g) ≤ q − 2 + 2g
√
q.

Though it seems very difficult to improve the upper bounds for Nq(g), one cannot
expect in general that Nq(g) equals the upper bound that we have, as examples
over F2 and F3 already show. Therefore, to test how good these bounds really are,
one tries to come as close to these bounds as one can by constructing curves with
as many points as possible. With an eye towards feasibility of applications, it is
important to have such curves in a form as explicit as possible.

The methods used for the construction of curves with many points are rather
diverse, but roughly speaking one can distinguish the following approaches:

I Methods from general class field theory;
II Methods from class field theory based on Drinfeld modules of rank 1;

III Fibre products of Artin-Schreier curves;
IV Towers of curves with many points;
V Miscellaneous methods such as:

1) formulas for Nq(1) and Nq(2);
2) explicit curves, e.g. Hermitean curves, Klein’s quartic, Artin-Schreier

curves, Kummer extensions or curves obtained by computer search;
3) elliptic modular curves X(n) associated to the full congruence subgroups

Γ(n);
4) Deligne-Lusztig curves;
5) quotients of curves with many points.

Methods from general class field theory were used by Serre, Schoof, Lauter,
Niederreiter and Xing, and Auer. They exploit subfields of Hilbert class fields or
more generally of ray class fields of the function field of a given curve C in which a
substantial number of the rational points of C split completely. General class field
theory is a powerful weapon, but has the drawback that often it produces a mere
existence result and not an explicit curve.

Constructing curves with many points by employing properties of Drinfeld mod-
ules of rank 1 was introduced by Niederreiter and Xing. When such a construction
is applied to the case where the base curve C is the projective line P1, one can
produce good subfields of cyclotomic function fields which have the advantage of
being explicit. For general base curves the curves produced correspond to subfields
of narrow ray class fields, and explicit forms of these function fields are then much
harder to find.

Fibre products are used by Stichtenoth, by van der Geer and van der Vlugt, and
by Shabat. The method yields defining equations for the curves thus constructed.
In category IV one finds mainly towers consisting of a combination of Kummer and
Artin-Schreier extensions or composita of Kummer extensions. The function fields
are explicit.

So far the curves constructed by method V-5 are all quotients of the Hermitean
curve defined over Fq2 by

xq+1 + yq+1 + zq+1 = 0.
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The tables

For g ≤ 50 and for q = 2m with 1 ≤ m ≤ 7 and q = 3m with 1 ≤ m ≤ 4 we
present tables which list values of Nq(g) or an interval in which Nq(g) lies. Note
that g = 50 is the largest value for which the actual value N2(g) is known. We
therefore restricted ourselves to g ≤ 50. Of course Nq(0) = q + 1 for all q, and
it is omitted from the tables. If the precise value of Nq(g) is not known, we give
either an interval [a, b] = [aq(g), bq(g)] or nothing. The meaning of the interval [a, b]
is: we know that there exists a curve with at least a rational points over Fq, and
the best upper bound by Hasse-Weil, Serre, Ihara, Oesterlé or other means says
Nq(g) ≤ b. In the lion’s share of the cases the value of a represents a curve with
exactly a rational points; in about 20 cases (mostly constructed with method II), a
represents a lower bound for Nq(g). Sometimes we entered no value. This happens
if no curve with at least [b/

√
2] rational points is known, i.e. if

aq(g) < [bq(g)/
√

2].

The reason for this is that for g ≤ 50 in many cases the upper bound bq(g) is Ihara’s
bound (1). Since the Drinfeld-Vladut asymptotic bound (3) is approximately 1/

√
2

times the asymptotic Ihara bound (2), we think it is reasonable to impose this
qualification requirement for g ≤ 50 to filter out curves which should be considered
‘poor’.

Two main tables, ‘Table p = 2’ and ‘Table p = 3’, present values of the function
Nq(g) or an interval in which Nq(g) lies. In additional tables q = x: sources we
list the construction method of a curve producing the value of aq(g) and the source
where this curve occurs first.

Remarks. i) For q = 2 one can find explicit curves realizing the lower bound for
g ∈ {5, 6, 7, 8, 9, 12, 13, 14, 15} in [N-X2], for g = 10 in [G-V7] and for g = 11 in
[N-X1]. For q = 3, 4, g = 4 there are explicit curves in [N-X3].

ii) A result communicated to us by R. Schoof (see [G-V4]) gives values for the
lower bound aq(g) for the pairs (q = 2, g ∈ {26, 27, 32, 33, 38, 40, 46, 47, 48}), (q =
4, g ∈ {6, 16, 44, 45}) and (q = 8, g ∈ {16, 22, 23, 45}).

iii) The modular curves X(9), X(11) and X(13) yield the results for (q = 4, g ∈
{10, 26, 50}), and X(8), X(10), X(11) and X(13) yield the results for (q = 9, g ∈
{5, 13, 26, 50}).

The results collected in our tables represent the work of many mathematicians.
We tried to give credit to whom it is due, but may have failed due to ignorance. A
closer look at the tables will convince the reader that there is still ample room for
improvement. The tables should be seen as an attempt to record the state of the
art. If the reader knows an improvement of an entry we shall appreciate if he/she
let us know so that we can update or correct the tables.
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Table p = 2

g\q 2 4 8 16 32 64 128

1 5 9 14 25 44 81 150
2 6 10 18 33 53 97 172
3 7 14 24 38 63–64 113 191–195
4 8 15 25–27 45–46 70–75 129 200–217
5 9 17–18 29–32 49–54 76–86 130–145 227–239
6 10 20 33–35 65 86–97 161 225–261
7 10 21–22 33–39 63–70 90–108 177 258–283
8 11 21–24 34–43 61–76 97–119 169–193 257–305
9 12 26 45–47 72–81 108–130 209 258–327

10 13 27–28 42–50 81–87 225 289–349

11 14 26–30 48–54 80–92 113–152 201–241
12 14–15 29–31 49–57 68–97 129–163 257 321–393
13 15 33 56–61 97–103 129–174 225–270
14 15–16 32–35 65 97–108 146–185 241–286 353–437
15 17 33–37 56–68 98–113 158–196 258–302 386–459
16 17–18 36–38 56–71 93–118 147–204
17 17–18 40 62–74 112–124 154–212
18 18–19 41–42 65–77 113–129 161–220 281–350
19 20 37–43 60–80 121–134 172–228
20 19–21 37–45 68–83 121–140 177–236 297–382

21 21 41–47 72–86 129–145 185–244
22 21–22 41–48 74–89 129–150 321–414
23 22–23 41–50 68–92 126–155
24 21–23 49–52 81–95 129–161 337–446 513–657
25 24 51–53 84–97 144–166
26 24–25 55 82–100 150–171 385–478
27 22–25 49–56 96–103 145–176 209–290 401–494
28 25–26 51–58 97–106 145–181 257–298 513 577–745
29 25–27 52–60 97–109 161–187 227–306
30 25–27 53–61 96–112 162–192 273–313 401–536 609–789

31 27–28 60–63 89–115 165–197 386–547 578–811
32 26–29 57–65 90–118
33 28–29 65–66 92-121 193–207
34 27–30 57–68 98–124 156–213
35 29–31 64–69 112–127 253–352
36 30–31 64–71 107–130 185–223
37 29–32 66–72 121–132 208–228
38 28–33 64–74 129–135 193–233 289–375 449–627
39 33 65–75 120–138 194–239
40 32–34 75–77 103–141 197–244 293–390 489–560

41 33–35 65–78 118–144 216–249 308–398
42 33–35 68–80 129–147 209–254 307–405 513–672
43 33–36 72–81 116–150 226–259 306–413
44 33–37 68–83 130–153 226–264 325–420
45 33–37 80–84 144–156 242–268 304–428
46 34–38 81–86 129–158 243–273
47 36–38 73–87 120–161
48 34–39 77–89 126–164
49 36–40 81–90 130–167
50 40 91–92 130–170 225–291 561–762
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Table p = 3

g\q 3 9 27 81

1 7 16 38 100
2 8 20 48 118
3 10 28 56 136
4 12 30 64–66 154
5 12–13 32–35 69–76 156–172
6 14–15 35–40 76–86 190
7 16 40–43 76–96 160–208
8 15–18 38–47 92–106 226
9 19 48–51 88–116 244

10 19–21 54–55 91–126 226–262

11 20–22 55–59
12 22–24 55–63 109–146 298
13 24–25 60–66 136–156 224–316
14 24–26 56–70
15 28 64–74 136–171 292–352
16 27–29 74–78 136–178 370
17 24–30 64–82
18 26–31 67–85
19 28–32 84–88
20 30–34 68–91

21 32–35 88–95 163–214 352–458
22 30–36 78–98
23 30–37 92–101
24 31–38 91–104 190–235
25 36–40 82–108 196–242
26 36–41 110–111
27 39–42 91–114
28 37–43 105–117
29 42–44 104–120
30 37–46 91–123

31 40–47 101–127 460–638
32 38–48 92–130
33 46–49 109–133 220–238
34 44–50 111–136
35 47–51 101–139
36 46–52 118–142 244–319 730
37 48–54 120–145
38 105–149
39 46–56 119–152 271–340
40 54–57 110–155 244–346

41 50–58 119–158
42 49–59 118–161 280–360
43 55–60 120–164
44 119–167
45 49–62 128–170
46 55–63 162–173
47 54–65 154–177 299–395
48 55–66 163–180 325–402 676–885
49 63–67 168–183
50 56–68 182–186 299–416
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q = 2: sources

genus N type source

1 5 V-1 S1,4
2 6 V-1 S1,4
3 7 V-2 D
4 8 V-2 S1,4
5 9 I S1,4
6 10 I S1,4
7 10 I S1,4
8 11 I S1,4
9 12 I S1,4

10 13 I S5

11 14 I S5
12 14–15 I S2,4
13 15 I S5
14 15–16 I S2,4
15 17 I S1,4
16 17–18 I A
17 17–18 I S2,4
18 18–19 I S2,4
19 20 I S1,4
20 19–21 I S2,4

21 21 I S1,4
22 21–22 I Sch
23 22–23 I X-N
24 21–23 III G-V5
25 24 I X-N
26 24–25 I G-V4
27 22–25 I G-V4
28 25–26 I A
29 25–27 II X-N
30 25–27 I A

31 27–28 II X-N
32 26–29 I G-V4
33 28–29 I G-V4
34 27–30 II X-N
35 29–31 I A
36 30–31 II X-N
37 29–32 I A
38 28–33 I G-V4
39 33 I S1,4
40 32–34 I G-V4

41 33–35 I A
42 33–35 I A
43 33–36 II X-N
44 33–37 I A
45 33–37 III G-V5
46 34–38 I G-V4
47 36–38 I G-V4
48 34–39 I G-V4
49 36–40 II X-N
50 40 I S1,4

q = 4: sources

genus N type source

1 9 V-1 S2,4
2 10 V-1 S2,4
3 14 V-2 S2,4
4 15 IV S3
5 17–18 III St2
6 20 I G-V4
7 21–22 II N-X3
8 21–24 I N-X3
9 26 II N-X4

10 27–28 V-3 G-V4

11 26–30 III G-V5
12 29–31 I A
13 33 III St2
14 32–35 III G-V5
15 33–37 II N-X3
16 36–38 I G-V4
17 40 II N-X4
18 41–42 II N-X7
19 37–43 I A
20 37–45 I A

21 41–47 II N-X4
22 41–48 I A
23 41–50 I A
24 49–52 III Sh
25 51–53 II N-X4
26 55 V-3 G-V4
27 49–56 III G-V4
28 51–58 I A
29 52–60 III Sh
30 53–61 II N-X7

31 60–63 II N-X4
32 57–65 I A
33 65–66 I L1
34 57–68 III G-V4
35 64–69 III Sh
36 64–71 II N-X4
37 66–72 II N-X4
38 64–74 III Sh
39 65–75 III G-V7
40 75–77 II N-X4

41 65–78 III G-V4
42 68–80 III Sh
43 72–81 II N-X4
44 68–83 I G-V4
45 80–84 I G-V4
46 81–86 II N-X7
47 73–87 I A
48 77–89 II N-X4
49 81–90 II N-X4
50 91–92 V-3 G-V4
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q = 8: sources

genus N type source

1 14 V-1 S2,4
2 18 V-1 S2,4
3 24 V-2 S2,4
4 25–27 III G-V5
5 29–32 III G-V4
6 33–35 III St2
7 33–39 III G-V1
8 34–43 III Sh
9 45–47 II N-X7

10 42–50 III Sh

11 48–54 III G-V5
12 49–57 III G-V5
13 56–61 III Sh
14 65 V-4 H-S
15 56–68 III Sh
16 56–71 I G-V4
17 62–74 III Sh
18 65–77 III G-V5
19 60–80 III Sh
20 68–83 II N-X6

21 72–86 III G-V5
22 74–89 III Sh
23 68–92 I G-V4
24 81–95 III Sh
25 84–97 III Sh
26 82–100 III Sh
27 96–103 III Sh
28 97–106 III G-V5
29 97–109 III G-V4
30 96–112 III Sh

31 89–115 III Sh
32 90–118 III Sh
33 92–121 II N-X6
34 98–124 III Sh
35 112–127 III Sh
36 107–130 III Sh
37 121–132 III G-V5
38 129–135 III G-V5
39 120–138 III Sh
40 103–141 III Sh

41 118–144 III Sh
42 129–147 III G-V5
43 116–150 III Sh
44 130–153 III Sh
45 144–156 I G-V4
46 129–158 III G-V4
47 120–161 II N-X6
48 126–164 II N-X6
49 130–167 II N-X6
50 130–170 II N-X6

q = 16: sources

genus N type source

1 25 V-1 S2,4
2 33 V-1 S2,4
3 38 V-2 S3,4
4 45–46 V-2 M-Z-Z
5 49–54 III G-V4
6 65 V-2 Seg
7 63–70 II N-X6
8 61–76 III G-V4
9 72–81 II N-X6

10 81–87 II N-X6

11 80–92 II N-X6
12 68–97 III G-V5
13 97–103 III G-V4
14 97–108 III G-V4
15 98–113 III G-V1
16 93–118 III G-V4
17 112–124 III G-V5
18 113–129 III G-V5
19 121–134 II N-X6
20 121–140 III G-V4

21 129–145 III G-V5
22 129–150 III St2
23 126–155 II N-X6
24 129–161 III G-V5
25 144–166 II N-X6
26 150–171 II N-X6
27 145–176 I A
28 145–181 III Sh
29 161–187 III Sh
30 162–192 III Do

31 165–197 V-2 G-S
32
33 193–207 I A
34 156–213 II N-X6
35
36 185–223 II N-X7
37 208–228 II N-X7
38 193–233 I A
39 194–239 III Sh
40 197–244 III Sh

41 216–249 III Sh
42 209–254 I A
43 226–259 II N-X7
44 226–264 III Sh
45 242–268 III G-V5
46 243–273 II N-X6
47
48
49
50 225–291 I A
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q = 32: sources

genus N type source

1 44 V-1 S2,4
2 53 V-1 S2,4
3 63–64 V-2 M-Z-Z
4 70–75 V-2 M-Z-Z
5 76–86 IV Sem
6 86–97 III Do
7 90–108 III Do
8 97–119 III Sh
9 108–130 III Sh

10

11 113–152 I A
12 129–163 III G-V1
13 129–174 I A
14 146–185 III Do
15 158–196 V-2 H-Le B
16 147–204 III Sh
17 154–212 III Sh
18 161–220 I A
19 172–228 III Sh
20 177–236 III Sh

21 185–244 III Sh
22
23
24
25
26
27 209–290 I A
28 257–298 III G-V1
29 227–306 III Sh
30 273–313 III G-V1

31
32
33
34
35 253–352 III G-V5
36
37
38 289–375 I A
39
40 293–390 III Sh

41 308–398 III Sh
42 307–405 III Sh
43 306–413 III Sh
44 325–420 III Sh
45 304–428 III Sh
46
47
48
49
50

q = 64: sources

genus N type source

1 81 V-1 S2,4
2 97 V-1 S2,4
3 113 V-2 Wi
4 129 V-2 Wo
5 130–145 V-2 M-Z-Z
6 161 III G-V3
7 177 V-2 Wo
8 169–193 I A
9 209 V-5 G-S-X

10 225 V-5 E

11 201–241 III G-V5
12 257 V-2 Wi
13 225–270 I A
14 241–286 I A
15 258–302 III Do
16
17
18 281–350 I A
19
20 297–382 III Do

21
22 321–414 I A
23
24 337–446 I A
25
26 385–478 I A
27 401–494 III G-V5
28 513 V-2 H
29
30 401–536 III Do

31 386–547 III Do
32
33
34
35
36
37
38 449–627 I A
39
40 489–650 IV O-S

41
42 513–672 III Do
43
44
45
46
47
48
49
50 561–762 I A
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q = 128: sources

genus N type source

1 150 V-1 S2,4
2 172 V-1 S2,4
3 191–195 V-2 Su
4 200–217 V-2 Wi
5 227–239 V-2 M-Z-Z
6 225–261 V-2 Wi
7 258–283 III Do
8 257–305 V-2 Wi
9 258–327 III Do

10 289–349 III G-V3

11
12 321–393 III G-V1
13
14 353–437 III G-V3
15 386–459 III Do
16
17
18
19
20

21
22
23
24 513–657 III G-V1
25
26
27
28 577–745 III G-V1
29
30 609–789 III G-V3

31 578–811 III Do
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q = 3: sources

genus N type source

1 7 V-1 S1,4
2 8 V-1 S1,4
3 10 V-2 S2,4
4 12 V-2 S3
5 12–13 IV N-X3
6 14–15 IV N-X3
7 16 II N-X3
8 15–18 IV N-X3
9 19 III G-V4

10 19–21 III G-V4

11 20–22 I N-X3
12 22–24 I N-X3
13 24–25 I N-X3
14 24–26 IV N-X3
15 28 III G-V4
16 27–29 III G-V4
17 24–30 IV N-X5
18 26–31 IV N-X5
19 28–32 III G-V5
20 30–34 III G-V4

21 32–35 IV N-X5
22 30–36 III G-V5
23 30–37 III G-V5
24 31–38 I A
25 36–40 I N-X5
26 36–41 IV N-X5
27 39–42 I N-X5
28 37–43 IV N-X5
29 42–44 I N-X5
30 37–46 III G-V7

31 40–47 II N-X5
32 38–48 IV N-X5
33 46–49 I A
34 44–50 II N-X5
35 47–51 III G-V7
36 46–52 III G-V7
37 48–54 I N-X5
38
39 46–56 III G-V7
40 54–57 II N-X5

41 50–58 II N-X5
42 49–59 III G-V7
43 55–60 II X-N
44
45 49–62 III G-V7
46 55–63 III G-V4
47 54–65 I A
48 55–66 III G-V4
49 63–67 III G-V5
50 56–68 II N-X5

q = 9: sources

genus N type source

1 16 V-1 S2,4
2 20 V-1 S2,4
3 28 V-2 S2,4
4 30 IV G-V5
5 32–35 V-3 G-V4
6 35–40 II N-X7
7 40–43 IV O-S
8 38–47 III G-V2
9 48–51 IV O-S

10 54–55 III G-V5

11 55–59 III G-V2
12 55–63 III G-V2
13 60–66 V-3 G-V4
14 56–70 III G-V5
15 64–74 III Sh
16 74–78 III G-V5
17 64–82 IV O-S
18 67–85 III Sh
19 84–88 II N-X7
20 68–91 III Sh

21 88–95 IV O-S
22 78–98 II N-X7
23 92–101 II N-X7
24 91–104 II N-X7
25 82–108 III Sh
26 110–111 V-3 G-V4
27 91–114 III Sh
28 105–117 II N-X7
29 104–120 II N-X7
30 91–123 III Sh

31 101–127 III Sh
32 92–130 III Sh
33 109–133 III Sh
34 111–136 II N-X7
35 101–139 III Sh
36 118–142 III Sh
37 120–145 II N-X7
38 105–149 II N-X8
39 119–152 III Sh
40 118–155 III Sh

41 119–158 III Sh
42 118–161 III Sh
43 120–164 II N-X7
44 119–167 III Sh
45 128–170 III Sh
46 162–173 III Sh
47 154–177 II N-X7
48 163–180 III Sh
49 168–183 II N-X7
50 182–186 V-3 G-V4
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q = 27: sources

genus N type source

1 38 V-1 S2,4
2 48 V-1 S2,4
3 56 IV G-V5
4 64–66 III G-V2
5 68–76 IV Sem
6 76–86 III G-V2
7 76–96 IV Sem
8 92–106 III G-V5
9 88–116 IV Sem

10 91–126 I A

11
12 109–146 III G-V2
13 136–156 III G-V2
14
15 136–171 I A
16 136–178 I A
17
18
19
20

21 163–214 III G-V6
22
23
24 190–235 III Sh
25 196–242 II N-X7
26
27
28
29
30

31
32
33 220–298 II N-X7
34
35
36 244–319 III G-V2
37
38
39 271–340 III G-V6
40 244–346 III G-V5

41
42 280–360 II N-X7
43
44
45
46
47 299–395 III Sh
48 325–402 I A
49
50 299–416 III Sh

q = 81: sources

genus N type source

1 100 V-1 S2,4
2 118 V-1 S2,4
3 136 V-2 Wi
4 154 V-5 H
5 156–172 IV Sem
6 190 V-2 Seg
7 160–208 V-2 Wi
8 226 V-5 E
9 244 V-2 Wo

10 226–262 V-2 Wi

11
12 298 III G-V2
13 224–316 IV Sem
14
15 292–352 IV O-S
16 370 V-5 H
17
18
19
20

21 352–458 I A
22
23
24
25
26
27
28
29
30

31 460–638 I A
32
33
34
35
36 730 V-2 St1
37
38
39
40

41
42
43
44
45
46
47
48 676–885 I A
49
50
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