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THE APOLAR BILINEAR FORM IN GEOMETRIC MODELING

GERT VEGTER

Abstract. Some recent methods of Computer Aided Geometric Design are
related to the apolar bilinear form, an inner product on the space of homo-
geneous multivariate polynomials of a fixed degree, already known in 19th
century invariant theory. Using a generalized version of this inner product, we
derive in a straightforward way some of the recent results in CAGD, like Mars-
den’s identity, the expression for the de Boor-Fix functionals, and recursion
schemes for the computation of B-patches and their derivatives.

1. Introduction

A common problem in Computer Aided Geometric Design (CAGD) and ap-
proximation theory is the construction of suitable bases for the space of piecewise
polynomials, defined over simplices in some higher dimensional euclidean space.
Several methods have been designed to obtain algorithmically convenient bases.
The constraint to work with basis polynomials having local support leads to the
construction of the well-known B-splines in the univariate case. Traditionally, these
are defined in terms of a recursion scheme, see e.g. de Boor [7] and Schumaker [25].
(There are other, equivalent constructions, like the approach based on finite differ-
ences [8], and Schoenberg’s geometric construction; see [5] and [17].)

More recent methods employ polarization (also called blossoming), a classical
mathematical tool, first introduced into the realm of CAGD by de Casteljau in his
seminal work [2], and also [3], and by Ramshaw [21]. These polarization techniques
greatly simplified the derivation of many results in the theory of Bézier and B-spline
curves. Cavaretta, Dahmen, Micchelli and Seidel [4, 6, 17] succesfully applied the
blossoming technique to construct B-patches, which can be considered as local
multivariate generalizations of B-splines. Experience with the implementation of
this scheme in two dimensions is described in [11]. A multivariate generalization of
Marsden’s equality (see [16] for the original univariate version) plays an important
role in the development of a recursion scheme for B-patches. Multivariate versions
of the de Boor-Fix functionals have been considered by Lodha and Goldman [14]
and [15] to derive some of the important properties of B-patches.

In this paper we relate some of these recent results of computer aided geometric
design and constructive approximation to techniques from mathematical disciplines
like 19th century invariant theory and differential algebra. The key tool is a general-
ization of the apolar bilinear form defined on the space of homogeneous polynomials
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(of a certain degree, and with a fixed number of variables). This bilinear form, used
extensively in the symbolic method of the classical theory of invariants, has been
revitalized by Rota and his co-workers, cf. [9] and [13]. A similar binary form on the
space of univariate polynomials of a fixed degree has been studied by Goldman [12].

In this paper we introduce a bilinear pairing between the spaces of homogeneous
polynomials of degrees n and m, where n ≥ m, with values in the space of polynomi-
als of degree n−m. This pairing, introduced in Section 2, coincides with the apolar
bilinear form mentioned above in case n = m. In Section 3 some simple properties
of this pairing are used to derive in a straightforward way some of the recent results
in multivariate approximation theory mentioned above. Among these are straight-
forward proofs of the equivalence of Marsden’s equality and duality for any pair
of bases of the space of homogeneous polynomials, and the relation of this apolar
inner product to the de Boor-Fix functionals. These results are applied to derive
well-known results of multivariate Bernstein-Bézier theory, like degree elevation,
expressions for derivatives, and recurrence relations for Bernstein polynomials.

In Section 4 we introduce a general criterion for deciding whether a collection of
polynomials forms a basis for the space of multivariate polynomials of a fixed degree.
These results are applied to study so-called lineal polynomial bases and their dual
bases. The B-patch basis is introduced in [6] as the dual of a special lineal basis.
Starting from this definition, we almost mechanically obtain the recursion schemes
for B-patches and the generalized de Casteljau/de Boor algorithms for evaluation
of a polynomial in B-patch form.

In Section 5 we announce future research concerned with applications of the
methods of this paper to problems like solving constant coefficient polynomial
PDE’s, and degree reduction of Bézier patches.

2. Vector spaces of forms

2.1. Introduction and terminology. Let e1, . . . , es be the standard basis vec-
tors on Rs, and let x = (x1, . . . , xs) be the standard coordinates on Rs. The
standard inner product on Rs is denoted by (·, ·), i.e., (u, v) = u1v1 + · · · + usvs,
for u, v ∈ Rs.

A central object in this paper is the space of real homogeneous polynomials
of degree n on Rs, denoted by Hn(Rs). A polynomial in Hn(Rs) is the sum of
monomials of the form cαx

α1
1 · · ·xαss , where cα ∈ R and α = (α1, . . . , αs) ∈ Zs≥0 is

a multi-index of weight |α| = α1+· · ·+αs. For convenience the monomial xα1
1 · · ·xαss

is denoted by xα. Linear homogeneous polynomials on Rs are of the form f(x) =
(u, x), for some u ∈ Rs. We denote f by (u, ·). A lineal polynomial of degreem is the
product of m linear polynomials, and hence of the form (u1, ·) · · · (um, ·) ∈ Hm(Rs),
for u1, . . . , um ∈ Rs.

For multi-indices α = (α1, . . . , αs) and β = (β1, . . . , βs) in Zs≥0 we define α � β
iff αi ≤ βi for i = 1, · · · , s. The relation � is a partial order on Zs≥0. The set of
multi-indices in Zs≥0 of weight n, denoted by Γs,n, is a finite set with

#Γs,n =
(
n+ s− 1

n

)
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elements. For α ∈ Γs,n the factorial function is defined by α! = α1! · · ·αs!, and the
multinomial coefficient

(
n
α

)
is defined by(

n

α

)
=

n!
α1! · · ·αs!

.

Let ∂ = (∂1, . . . , ∂s), with ∂i = ∂/∂xi. With a polynomial f(x) =
∑

α∈Γs,m
cα x

α

we associate the homogeneous differential operator f(∂) =
∑
α∈Γs,m

cα ∂
α, where

∂α = ∂α1
1 · · ·∂αss . The directional derivativeDu : Hn(Rs)→ Hn−1(Rs) with respect

to u ∈ Rs is the differential operator (u, ∂), i.e., Du = u1 ∂1 + · · · + us ∂s. Note
that ∂i = (ei, ∂) = Dei . Considering ei as a multi-index of weight one, we also have
∂i = ∂ei .

2.2. Apolar pairing. This subsection is concerned with a straightforward gener-
alization of the rather well-known apolar inner product [ f , g ] = f(∂)g, defined
on the space of homogeneous polynomials Hn(Rs). The main result concerns a
characterization of this inner product in terms of three simple properties, that will
be the basis for the construction of special bases of Hn(Rs) in later sections.

Definition 2.1. For fixed integers m and n, with 0 ≤ m ≤ n, the apolar pairing
is the map

[ · , · ]m,n : Hm(Rs)×Hn(Rs)→ Hn−m(Rs),

associating to the homogeneous polynomials f ∈ Hm(Rs) and g ∈ Hn(Rs) the
homogeneous polynomial [ f , g ]m,n of degree n−m, defined by

[ f , g ]m,n =
(n−m)!

n!
f(∂)g.

The constant (n −m)!/n! in the right hand side of the latter identity is chosen
in such a way that apolar pairing is a reproducing kernel, cf. Corollary 2.3.

Note that we have in fact a family of pairings, one for each pair of integers m
and n with 0 ≤ m ≤ n. In this paper, the term pairing refers to the whole family
of bilinear maps. From now on we shall drop the subscripts m and n, since they
are implicitly known as the degree of the first and second argument of the pairing
operator.

Theorem 2.2. The apolar pairing is the unique bilinear pairing with the following
properties.

1. Apolar pairing with constants. For f ∈ Hn(Rs):

[ 1 , f ] = f,

where 1 ∈ H0(Rs) is the constant homogeneous polynomial of degree 0.

2. Apolar pairing with linear forms. For f ∈ Hn(Rs) and u ∈ Rs:

[ (u, ·) , f ] =
1
n
Duf.

3. Transposition of a homogeneous factor. For f1 ∈ Hm1(Rs), f2 ∈
Hm2(Rs), and g ∈ Hn(Rs), with m1 +m2 ≤ n:

[ f1f2 , g ] = [ f1 , [ f2 , g ] ].
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Proof. It is obvious that apolar pairing is a bilinear operator, satisfying properties
1, 2 and 3. We prove uniqueness using mathematical induction. So assume that
[ · , · ] is a bilinear pairing satisfying properties 1, 2 and 3; then we need to prove

that [ f , g ] =
(n−m)!

n!
f(∂)g. To this end, let P (m) be the predicate:

For all integers n, with m ≤ n: if f ∈ Hm(Rs) and g ∈ Hn(Rs),

then [ f , g ] =
(n−m)!

n!
f(∂)g.

Obviously, property 1 implies that P (0) holds. So consider m > 0, and assume that
P (k) holds for 0 ≤ k < m. To express the pairing [ f , g ] in terms of pairings of
homogeneous polynomials of lower degree, we use Euler’s identity for homogeneous
polynomials to rewrite f ∈ Hm(Rs) as

f =
1
m

s∑
i=1

(ei, ·) ∂if.(2.1)

Using the fact that (ei, ∂) = ∂i we get

f(∂)g =

(
1
m

s∑
i=1

∂if(∂)

)
(∂ig).(2.2)

On the other hand, using (2.1) and properties 2 and 3 of the pairing operator, we
see that

[ f , g ] =
1
m

s∑
i=1

[ ∂if , [ (ei, ·) , g ] ] =
1
m

s∑
i=1

1
n

[ ∂if , ∂ig ].(2.3)

Since ∂if ∈ Hm−1(Rs), we may apply the induction hypothesis P (m − 1) to the
bracket in the latter expression, yielding

[ ∂if , ∂ig ] =
(n−m)!
(n− 1)!

∂if(∂)(∂ig).(2.4)

Hence P (m) follows from (2.2), (2.3) and (2.4). This completes the uniqueness part
of the proof.

Using the defining properties 1, 2 and 3 of the main theorem we obtain the
following simple result concerning the pairing with polynomials of a special form:

Corollary 2.3. 1. Apolar pairing with a lineal polynomial. Let u1, . . . , um ∈
Rs, and f ∈ Hn(Rs), with 0 ≤ m ≤ n. Then

[ (u1, ·) · · · (um, ·) , f ] =
(n−m)!

n!
Du1 · · ·Dumf.(2.5)

2. Apolar pairing is a reproducing kernel. For f ∈ Hn(Rs) and y ∈ Rs,

[ f , (y, ·)n ] = f(y).(2.6)

3. Apolar pairing with the power of a linear form. For f ∈ Hm(Rs),
y ∈ Rs, and 0 ≤ m ≤ n,

[ f , (y, ·)n ] = f(y) (y, ·)n−m.
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Proof. 1. Since (u1, ∂) · · · (um, ∂) = Du1 · · ·Dum , the first property follows from the
definition of apolar pairing.

2. Identity (2.6) obviously holds for n = 0. So assume, inductively, it holds
for n − 1, where n > 0. Using properties 2 and 3 from Theorem 2.2, we see that

[ f , (y, ·)n ] =
1
n

[ (y, .)n−1 , Dyf ]. Using the induction hypothesis yields

1
n

[ (y, .)n−1 , Dyf ] =
1
n
Dyf(y) =

1
n

s∑
i=1

yi ∂if(y) = f(y),

by Euler’s identity for homogeneous polynomials of degree n.

3. In the special case f = (z, ·)m, for z ∈ Rs, the identity follows by induc-
tion, where we repeatedly use properties 2 and 3 from Theorem 2.2, together with
Dz(y, ·)k = k (y, z) (y, ·)k−1. To prove the identity for general f ∈ Hm(Rs), con-
sider the polynomial g = [ f , (y, ·)n ] ∈ Hn−m(Rs). Since we have already proven
that apolar pairing is a reproducing kernel, we see that, for z ∈ Rs:

g(z) = [ (z, ·)n−m , g ] = [ f , [ (z, ·)n−m , (y, ·)n ] ]
= (y, z)n−m [ f , (y, ·)m ] = (y, z)n−m f(y).

Identifying the space of zero degree polynomials with R, we see that, for n = m,
apolar pairing corresponds to a real bilinear form on the space of homogeneous
polynomials of degree m. The next result states that this bilinear form is even an
inner product.

Proposition 2.4. The apolar bilinear form [ · , · ] : Hm(Rs) ×Hm(Rs) → R is an
inner product on the space of homogeneous polynomials of degree m.

Proof. Bilinearity and symmetry of the pairing are obvious from the definition.

Since f(∂)f =
∑
α∈Γs,m

1
α!

(∂αf)2, we see that [ f , f ] ≥ 0 for all f ∈ Hm(Rs).
Furthermore [ f , f ] = 0 implies ∂αf = 0, for all α ∈ Γs,m, so f = 0. Therefore the
bilinear form is positive definite.

To prove that a polynomial f ∈ Hm(Rs) is the zero-polynomial we just have to
show that [ f , g ] = 0 for all g ∈ Hm(Rs). This follows directly from Proposition 2.4.
The next result is an extension of this observation to the case in which the degrees
of f and g are not necessarily equal.

Lemma 2.5. Let 0 ≤ m ≤ n.

1. Let f ∈ Hm(Rs). If [ f , g ] = 0, for all g ∈ Hn(Rs), then f = 0.
2. Let g ∈ Hn(Rs). If [ f , g ] = 0, for all f ∈ Hm(Rs), then g = 0.

Proof. 1. For y ∈ Rs we have [ f , (y, ·)n ] = 0 ∈ Hn−m(Rs). By Corollary 2.3,
[ f , (y, ·)n ] = f(y) (y, ·)n−m, so f(y) = 0 for all y ∈ Rs \ {0}. Therefore f = 0.

2. For all y ∈ Rs we have g(y) = [ (y, ·)n , g ] = [ (y, ·)n−m , [ (y, ·)m , g ] ] = 0, so
g = 0.
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As an immediate consequence we have the important spanning property; See also
Reznick [23]. Rephrased loosely, it allows us to conclude that all polynomials in
Hm(Rs) have a certain property if the property holds for all m-th powers of linear
forms. More precisely:

Lemma 2.6 (Spanning property of powers of linear forms). Let O ⊂ Rs be an
open subset of Rs. Then the set {(y, ·)m | y ∈ O} spans the space of homogeneous
polynomials of degree m.

Proof. We first prove the result in case O = Rs. Let U be the linear subspace
of Hm(Rs) spanned by the m-th powers {(y, ·)m | y ∈ Rs}. Then U⊥ = {f ∈
Hm(Rs) | [ (y, ·)m , f ] = 0 for all y ∈ Rs}, so f ∈ U⊥ iff f(y) = 0 for all y ∈
Rs according to Corollary 2.3.2. This implies U⊥ = {0}. As we have seen in
Proposition 2.4, apolar pairing is an inner product in case n = m, so U = Hm(Rs).

To prove the general case, let YM be a finite subset of Rs such that {(y, ·)m |
y ∈ YM} is a basis for Hm(Rs). Such a set exists in view of the first part of the
proof. Furthermore, #YM = #Γs,m. Let A be a non-singular s × s matrix such
that Ay ∈ O, for all y ∈ YM . For f ∈ Hm(Rs) consider the homogenous m-th
degree polynomial f((AT )−1x). There are real constants cy, y ∈ YM , such that
f((AT )−1x) =

∑
y∈YM (y, x)m. The polynomial f can now be expressed as a linear

combination of powers of linear forms as follows:

f(x) =
∑
y∈YM

cy (y,ATx)m =
∑
y∈YM

cy (Ay, x)m =
∑
y∈YM

cy (y, x)m,

where YM = {Ay | y ∈ YM} ⊂ O, and cy = cA−1y ∈ R. This completes the proof
of the general case.

One can in fact prove that the set {(α, ·)n | α ∈ Γs,n} is a basis for Hn(Rs). This
is a generalization of a theorem of Biermann, who proved it for the case s = 3; see
Reznick [23, Proposition 2.11].

2.3. Apolar pairing and polar forms. Ramshaw [21] uses the technique of po-
larization (also called blossoming) to obtain a very elegant definition of univariate
B-splines. This technique is based on the identification of the space of homoge-
neous polynomials with the space Sn(Rs) of symmetric n-linear real forms on Rs.
More precisely, consider the diagonal map diag : Sn(Rs)→ Hn(Rs), defined for the
symmetric n-linear form F : Rs × · · · × Rs → R by

(diagF )(x) = F (x, . . . , x︸ ︷︷ ︸
n

).

Obviously diagF ∈ Hn(Rs). We shall refer to it as the diagonal of F . In fact, the
diagonal map is an isomorphism of vector spaces, as we shall prove presently. Its
inverse is the well-known polarization operator, defined as follows.

Definition 2.7. The polarization operator Pn maps the homogeneous polynomial
f ∈ Hn(Rs) to the n-linear form Pnf defined by

Pnf (ξ(1), . . . , ξ(n)) =
1
n!
Dξ(1) · · ·Dξ(n)f.
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Example: Polar form of a bivariate polynomial. From the definition it is obvious
that the polarization operator is easily implemented in a computer algebra system
like Maple or Mathematica. Doing so for, e.g., the fourth degree homogeneous
polynomial f on R2, defined, for x = (x1, x2) ∈ R2, by f(x) = x2

1x
2
2, we obtain

P4f (ξ(1), ξ(2), ξ(3), ξ(4)) =
1
6

(ξ(1)
2 ξ

(2)
2 ξ

(3)
1 ξ

(4)
1 + ξ

(1)
2 ξ

(2)
1 ξ

(3)
2 ξ

(4)
1 + ξ

(1)
1 ξ

(2)
2 ξ

(3)
2 ξ

(4)
1

+ ξ
(1)
2 ξ

(2)
1 ξ

(3)
1 ξ

(4)
2 + ξ

(1)
1 ξ

(2)
2 ξ

(3)
1 ξ

(4)
2 + ξ

(1)
1 ξ

(2)
1 ξ

(3)
2 ξ

(4)
2 ).

Taking ξ(i) = x, for i = 1, . . . , 4, it is easy to check that we recover the polynomial
f , i.e., P4f (x, x, x, x) = x2

1x
2
2 = f(x).

A straightforward application of Corollary 2.3 shows that the polar form of a
polynomial is just the apolar pairing of the polynomial and a lineal polynomial:

Proposition 2.8. For f ∈ Hn(Rs) and ξ1, . . . , ξn ∈ Rs:

Pnf (ξ1, . . . , ξn) = [ (ξ1, ·) · · · (ξn, ·) , f ].

In particular, Pnf (y, . . . , y︸ ︷︷ ︸
n

) = f(y), for y ∈ Rs.

As announced, diagonalization and polarization are inverse to one another. More
precisely:

Proposition 2.9. The polarization operator Pn is an isomorphism between the
linear spaces Hn(Rs) and Sn(Rs). Its inverse is the diagonal map.

Proof. In view of Proposition 2.8 the polarization operator Pn maps a homogeneous
polynomial to a symmetric n-linear form, so its image is indeed contained in the
space Sn(Rs). The second part of Proposition 2.8 can be rephrased by saying that
Pn is a right inverse of diag : Sn(Rs) → Hn(Rs). From this we conclude that
the diagonal map is injective. Therefore, to show that it is an isomorphism, it is
sufficient to prove that

dimSn(Rs) ≤ dimHn(Rs).

This inequality follows from the observation that a symmetric n-linear map F is
uniquely determined by the values

F (e1, . . . , e1︸ ︷︷ ︸
α1

, . . . , es, . . . , es︸ ︷︷ ︸
αs

),

where α = (α1, . . . , αs) ranges over Γs,n. Therefore dimSn(Rs) ≤ #Γs,n =
dimHn(Rs).

Finally, the apolar pairing of two polynomials can be defined in terms of their
polar forms. In case the paired polynomials have the same degree, this definition
coincides with the definition of Beauzamy et al. [1].

Proposition 2.10. Let f ∈ Hm(Rs) and g ∈ Hn(Rs), where 0 ≤ m ≤ n. Then

[ f , g ](x) =
s∑

i1,... ,im=1

Pmf (ei1 , . . . , eim)Png (ei1 , . . . , eim , x, . . . , x︸ ︷︷ ︸
n−m

).
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Proof. Denote the right hand side of this identity by σ(f, g). Obviously, σ is a
bilinear map Hm(Rs) × Hn(Rs) → Hn−m(Rs). In view of the spanning property,
viz Lemma 2.6, it is sufficient to prove that σ(f, (y, ·)n) = [ f , (y, ·)n ], for all
y ∈ Rs. So let g = (y, ·)n; then Png (ξ1, . . . , ξn) = (y, ξ1) · · · (y, ξn). This follows
readily from Proposition 2.9, in view of the observation that both sides of the latter
identity are symmetric n-linear forms on Rs, that coincide upon diagonalization.
In particular

Png (ei1 , . . . , eim , x, . . . , x︸ ︷︷ ︸
n−m

) = yi1 · · · yim (y, x)n−m,

and hence the result follows from the following derivation:

σ(f, g)(x) =
s∑

i1,... ,im=1

Pmf (ei1 , . . . , eim) yi1 · · · yim (y, x)n−m

=
s∑

i1,... ,im=1

Pmf (yi1ei1 , . . . , yimeim) (y, x)n−m

= Pmf (y, . . . , y︸ ︷︷ ︸
m

) (y, x)n−m

= f(y) (y, x)n−m

= [ f , g ](x).

3. Dual bases

Dual bases, the topic of this section, are the second key tool for the construction
of computationally convenient polynomial bases. In CAGD dual bases have been
used successfully in the construction of special bases, like the B-spline basis for the
space of piecewise polynomials. Recursive expressions (with respect to the degree
of the basis functions) are derived from Marsden’s identity; see, e.g., [4] and [17].

First it is shown, in Section 3.1, that two bases form a dual pair iff they satisfy
Marsden’s identity. Section 3.3 starts with Euler’s identity for the decomposition
of a polynomial of degree n with respect to a basis of degree m in case the dual of
the latter basis is given. This identity is the basis for the development of recursive
algorithms for dual bases in later sections.

3.1. Dual bases and Marsden’s identity. In CAGD, the notion of dual bases
is slightly different from the usual notion in linear algebra. Therefore we recall the
definition of a dual basis pair with respect to the apolar inner product [ · , · ] on
Hm(Rs).

Definition 3.1. The dual basis of a basis {fα | α ∈ Γs,m} ofHm(Rs) is a collection
{gα | α ∈ Γs,m} of polynomials in Hm(Rs) such that, for α, β ∈ Γs,m,

[ fα , gβ ] = δαβ .

It is an easy to prove standard fact from linear algebra that a dual basis is indeed
a basis. Given a dual basis pair (F , G), a polynomial f ∈ Hm(Rs) can be expressed



THE APOLAR BILINEAR FORM IN GEOMETRIC MODELING 699

with respect to either basis in terms of coefficients depending on the other one:

f =
∑

α∈Γs,m

[ gα , f ]fα =
∑

α∈Γs,m

[ fα , f ]gα.(3.1)

It should be noted that traditionally the dual basis of F is a basis {λα | α ∈ Γs,m}
for the space of linear functionals onHm(Rs), such that λα(fβ) = δαβ . Obviously, in
the context of Definition 3.1 these linear functionals are defined by λα(f) = [ gα , f ].
With the help of this collection of linear functionals we can express any f ∈ Hn(Rs)
with respect to the basis F as f =

∑
α∈Γs,n

λα(f)fα. In Section 4.1 we introduce
the multivariate B-patch basis and its dual. There it will become clear that the
functionals λα, defined with respect to this B-patch basis and its dual, are equal—
up to a constant—to the de Boor-Fix functionals. See also [14].

Proposition 3.2. Let F = {fα | α ∈ Γs,m} and G = {gα | α ∈ Γs,m} be two
collections of polynomials in Hm(Rs). Then the following statements are equivalent:

1. F and G are dual bases with respect to the apolar pairing on Hm(Rs).
2. Marsden’s identity. For x, y ∈ Rs:

(x, y)m =
∑

α∈Γs,m

fα(x)gα(y).

Proof. First assume that F and G are dual bases. Since apolar pairing is a repro-
ducing kernel, we have [ fα , (x, ·)m ] = fα(x). Therefore (3.1), with f = (x, ·)m,
yields

(x, ·)m =
∑

α∈Γs,m

fα(x)gα,(3.2)

which is equivalent to Marsden’s identity.
Conversely, assume that Marsden’s identity, or, equivalently, identity (3.2) holds.

In view of the spanning property, Lemma 2.6, this implies that G spans Hm(Rs).
Since G contains dimHm(Rs) elements, G is even a basis of Hm(Rs). By symmetry,
the same holds for F . Apolar pairing of both sides of (3.2) with fβ yields

fβ(x) = [ fβ , (x, ·)m ] =
∑

α∈Γs,m

fα(x)[ fβ , gα ].

Since F is a basis, it follows that [ fβ , gα ] = δβα. This completes the proof.

3.2. The Bernstein-Bézier basis.

The homogeneous Bernstein-Bézier basis. As an instructive application we use
Proposition 3.2 to determine the dual of the homogeneous Bernstein-Bézier ba-
sis of Hn(Rs). This example will serve to illustrate that many familiar results
from the theory of multivariate Bernstein-Bézier patches are straightforward conse-
quences of the rather general theory developed in later sections. Furthermore, it is
also our starting point for the generalization of the Bernstein-Bézier basis, thereby
constructing the B-patch basis. Here we follow the approach of [6] and [17].

Let {x1, . . . , xs} be a basis of Rs, and let the set of linear forms {u1, . . . , us} on
Rs be its dual basis in the usual sense, i.e., ui(xj) = δij . In view of the reproducing
kernel property, the basis of linear forms is dual, in the sense of Definition 3.1, to
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the basis {(x1, ·), . . . , (xs, ·)} of H1(Rs). Since every x ∈ Rs can be written as

x =
s∑
i=1

ui(x)xi,

we see that, for x, y ∈ Rs,

(x, y) =
s∑
i=1

ui(x)(xi, y).

(This is, in fact, Marsden’s identity on H1(Rs).) Taking n-th powers of both sides
of the last equality, and using the multinomial theorem, one readily checks that

(x, y)n =
∑

α∈Γs,n

Bα(x)lα(y),

where, for α ∈ Γs,n, the polynomials

Bα(x) =
(
n

α

)
u1(x)α1 · · ·us(x)αs

form the homogeneous Bernstein-Bézier basis of Hn(Rs) with respect to the basis
{x1, . . . , xs} of Rs, whereas

lα(y) = (x1, y)α1 · · · (xs, y)αs

are the lineal polynomials with respect to that basis. Now Proposition 3.2 implies
that these lineal polynomials form a basis of Hn(Rs), as α ranges over Γs,n, which
is the dual basis of the Bernstein-Bézier basis.

The following simple lemma states necessary and sufficient conditions for the
orthogonality of the Bernstein-Bézier basis with respect to the apolar inner product.

Lemma 3.3. Let n ≥ 1, and let the lineal polynomials lν and Bernstein-Bézier
polynomials Bν , ν ∈ Γs,n, be defined with respect to the basis {x1, . . . , xs} of Rs.
The following statements are equivalent:

1. Bν =
(
n
ν

)
lν , for all ν ∈ Γs,n

2. [ lµ , lν ] =
(
n
µ

)−1
δµν , for all µ, ν ∈ Γs,n

3. [Bµ , Bν ] =
(
n
µ

)
δµν , for all µ, ν ∈ Γs,n

4. {x1, . . . , xs} is orthonormal with respect to the inner product (·, ·).

Proof. The equivalence of the first three claims follows from the definition of duality.
To prove that the second claim implies the fourth one, observe that

(xi, xj)n = [ (xi, ·)n , (xj , ·)n ] = [ lnei , lnej ] = δij .

Therefore (xi, xj) = δij , i.e., the basis {x1, . . . , xs} is orthonormal. Finally, if the
fourth claim holds, then ui(x) = (xi, x), so Bν =

(
n
ν

)
lν , and hence the first claim

holds. This completes the proof of the lemma.

Homogenization and the affine Bernstein-Bézier basis. Let Pn(Rs−1) denote the
space of polynomials over Rs−1 of degree at most n. Consider the degree-n homog-
enization operator Hn : Pn(Rs−1) → Hn(Rs), associated with a non-zero linear
form p on Rs, defined by

Hnf(x) = p(x)n f(x1/p(x), . . . , xs−1/p(x)),
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for f ∈ Pn(Rs−1) and x = (x1, . . . , xs) ∈ Rs. If f ∈ Pm(Rs−1) and n ≥ m, then

Hnf(x) = p(x)n−m Hmf(x).(3.3)

Suppose p(x) = 1 has solution xs = q(x1, . . . , xs−1). Then the inverse of Hn is
the operator Kn : Hn(Rs)→ Pn(Rs−1), defined by

KnF (x1, . . . , xs−1) = F (x1, . . . , xs−1, q(x1, . . . , xs−1)).

Below we take p(x) = x1 + · · ·+ xs, so q(x1, . . . , xs−1) = 1− x1 − · · · − xs−1.
The monomial basis of Pn(Rs−1) is formed by the monomials xµ, with µ ranging

over the union Γs−1,≤n := Γs−1,0 ∪ · · · ∪ Γs−1,n. The affine Bernstein-Bézier basis
of Pn(Rs−1) is defined as follows. For γ ∈ Γs−1,m, with 0 ≤ m ≤ n, let the
Bernstein-Bézier polynomial Bnγ ∈ Pn(Rs−1) of degree n be defined by

Bnγ (x) = KnBγ+(n−m)es ,

or, equivalently,

Bnγ (x) = B(γ1,... ,γs−1,n−m)(x1, . . . , xs−1, 1− x1 − · · · − xs−1).

Here Bγ+(n−m)es ∈ Hn(Rs) is the homogeneous Bernstein-polynomial associated
with the multi-index γ1 e1 + . . .+γs−1 es−1 +(n−m) es ∈ Γs,n. For instance, taking
s = 2, we obtain, for 0 ≤ m ≤ n, the familiar univariate Bernstein polynomials:

Bnm(x) = KnB(m,n−m)(x, 1 − x) =
(
n

m

)
xm(1− x)n−m.

Since Kn is an isomorphism between Hn(Rs) and Pn(Rs−1), the Bernstein-Bézier
polynomials Bnγ , where γ ranges over Γs−1,≤n, indeed form a basis of Pn(Rs−1).

Finally, the barycentric Bernstein-Bézier form (of degree n) of a polynomial
f ∈ Pn(Rs−1) is the decomposition

f =
∑

ν∈Γs,n

cνB
n
ν1,... ,νs−1

,

where the cν are the coefficients of F = Hnf ∈ Hn(Rs) with respect to the homo-
geneous Bernstein-Bézier basis of Hn(Rs). Obviously, this representation of f is
closely related to its homogenized version of degree n, viz. Hnf =

∑
ν∈Γs,n

cνBν .

3.3. Dual bases and Euler’s identity. The following result generalizes identity
(3.1) to the case where the degree of f exceeds m. Euler’s identity for homogeneous
polynomials turns out to be a special case of this result, corresponding to m = 1.

Proposition 3.4. Let F = {fα | α ∈ Γs,m} and G = {gα | α ∈ Γs,m} be a pair of
dual bases of Hm(Rs).

1. Decomposition with respect to dual basis pair: Euler’s identity.
Every f ∈ Hn(Rs), with 0 ≤ m ≤ n, can be written as

f =
∑

α∈Γs,m

[ fα , f ]gα.

2. Factorization of apolar pairing over a pair of dual bases. For f ∈
Hn(Rs) and g ∈ Hk(Rs), with m ≤ n ≤ k,

[ f , g ] =
∑

α∈Γs,m

[ [ fα , f ] , [ gα , g ] ].
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In particular, if m = n we have

[ f , g ] =
∑

α∈Γs,m

[ fα , f ][ gα , g ].

To see why Property 1 is called Euler’s identity, consider the basis F = {(ei, ·) |
i = 1, . . . , s} of H1(Rs) (in particular, we take m = 1). Since apolar pairing is a
reproducing kernel, we see that [ (ei, ·) , (ej , ·) ] = (ei, ej) = δij , so the basis F is its
own dual. Furthermore, [ (ei, ·) , f ] = 1

n∂if in view of Theorem 2.2, part 2, so in this
case the first part of the proposition is just Euler’s identity

∑s
i=1 xi∂if(x) = nf(x).

In the other extreme case, viz. in case m = n, the first property boils down to
Marsden’s identity if we take f = (y, ·)m.

Proof of Proposition 3.4. 1. To prove the first part, write f(y), for y ∈ Rs, as the
apolar pairing of the homogeneous polynomials (y, ·)m and [ (y, ·)n−m , f ], both
belonging to Hm(Rs). This is justified by first using the fact that apolar pairing is
a reproducing kernel to rewrite f(y) as [ (y, ·)n , f ], and then transposing a factor
(y, ·)n−m using Theorem 2.2, part 3.

Subsequently express these polynomials with respect to the bases F and G of
Hm(Rs), respectively, and compute their apolar pairing using the fact that these
bases form a dual pair. In more detail, the expression of the polynomial (y, ·)m
with respect to the basis F is equivalent to Marsden’s identity:

(y, ·)m =
∑

α∈Γs,m

gα(y)fα.(3.4)

To write the polynomial [ (y, ·)n−m , f ] as
∑

α cαgα, we have to determine cα =
[ fα , [ (y, ·)n−m , f ] ], cf. (3.1). Using Theorem 2.2, part 3, and the reproduc-
ing kernel property, we obtain cα = [ fα · (y, ·)n−m , f ] = [ (y, ·)n−m , [ fα , f ] ] =
[ fα , f ](y). In other words,

[ (y, ·)n−m , f ] =
∑

α∈Γs,m

[ fα , f ](y)gα.(3.5)

Since the bases F and G are dual, it follows from (3.4) and (3.5) that

f(y) = [ (y, ·)m , [ (y, ·)n−m , f ] ] =
∑

α∈Γs,m

[ fα , f ](y)gα(y),

which is just the generalized version of Euler’s identity.

2. Use part 1 and the fact that [ [ fα , f ]gα , g ] = [ [ fα , f ] , [ gα , g ] ]. In
the special case m = n, the result follows from the fact that [ fα , f ] ∈ R, so
[ [ fα , f ]gα , g ] = [ fα , f ][ gα , g ].

Application: Down-recurrence for Bernstein-Bézier polynomials. As we have seen
in Section 3.2, the multivariate Bernstein-Bézier basis is the dual of the lineal basis.
Euler’s identity can be used to express the Bernstein-Bézier basis functions of degree
n in terms of those of degree m, for 0 ≤ m ≤ n. More precisely, for β ∈ Γs,n,

Bβ =
∑

α∈Γs,m

[ lα , Bβ ]Bα.(3.6)
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We claim that the polynomial f = [ lα , Bβ ] ∈ Hn−m(Rs) is a Bernstein-Bézier
function:

[ lα , Bβ ] =

{
Bβ−α if α � β,
0 if α 6� β.

(3.7)

To prove this claim, consider the apolar inner product [ lγ , f ] for γ ∈ Γs,n−m. Since
lα · lγ = lα+γ , transposition of a factor lα yields [ lγ , f ] = [ lα+γ , Bβ ] = δα+γ,β .

First consider the case α 6� β. Then α + γ 6= β, and hence [ lγ , f ] = 0, for all
γ ∈ Γs,n−m. Since {lγ | γ ∈ Γs,n−m} is a basis of Hn−m(Rs), it follows that f = 0
in this case.

If α � β the previous derivation shows that [ lγ , f ] = δγ,β−α. Therefore f =
Bβ−α, since the Bernstein-Bézier basis and the lineal basis of Hn−m(Rs) form a
dual pair.

Plugging the identity (3.7) into (3.6), we obtain the following simple recurrence
equation for the multivariate Bernstein-Bézier basis functions Bβ , β ∈ Γs,n:

Bβ =
∑

α∈Γs,m
α�β

Bβ−αBα.(3.8)

The well-known one-step recurrence Bβ =
∑s

i=1 uiBβ−ei , with Bβ−ei = 0 if βi = 0,
is an immediate consequence of (3.8), since Bα = ui for α = ei ∈ Γs,1. See, e.g.,
[10, Chapter 18]. In the next section we generalize the recurrence (3.8), as well as
the identity (3.7), to a rather general class of dual bases.

Application: Degree elevation. Since Pm(Rs−1) ⊂ Pn(Rs−1), for 0 ≤ m ≤ n, every
polynomial f ∈ Pm(Rs−1) can be expressed in the affine Bernstein-Bézier basis of
Pn(Rs−1). The process of expressing the coefficients with respect to the latter basis
in terms of those with respect to the former is called degree elevation. Usually the
degree is elevated by one, i.e., n = m+ 1. See, e.g., [10, Chapters 5 and 18].

More precisely, consider the barycentric form f =
∑

µ∈Γs,m
cµB

m
µ1,... ,µs−1

. In
particular, F = Hmf =

∑
µ∈Γs,m

cµBµ. Our goal is to determine the barycentric
form of f of degree n. In view of identity (3.3), this is equivalent to expressing
the polynomial pn−m F with respect to the homogeneous Bernstein-Bézier basis as
pn−m F =

∑
ν∈Γs,n

cνBν .
Since p = (y, ·), where y = e1 + · · ·+ es, Marsden’s identity yields

pn−m =
∑

γ∈Γs,n−m

Bγ(y) lγ =
∑

γ∈Γs,n−m

(
n−m
γ

)
lγ .

Therefore

cβ = [ pn−m F , lβ ] =
∑

γ∈Γs,n−m

(
n−m
γ

)
[ lγ F , lβ ].

In view of the fact that lβ =
(
n
β

)−1
Bβ , and identity (3.7), we see that

[ lγ F , lβ ] = [F , [ lγ , lβ ] ] =

{(
n
β

)−1 [F , Bβ−γ ] if γ � β,
0 if γ 6� β.
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Finally, for γ � β, we have that [F , Bβ−γ ] =
(
n−m
β−γ

)
[F , lβ−γ ] =

(
n−m
β−γ

)
cβ−γ , so

we get the following degree elevation identity:

cβ =
∑

γ∈Γs,n−m
γ�β

(
n

β

)−1(
n−m
γ

)(
m

β − γ

)
cβ−γ =

(
n

m

)−1 ∑
µ∈Γs,m
µ�β

(
β

µ

)
cµ.

Consider the special case where f is the monomial f(x) = xµ, with x ∈ Rs−1 and
µ ∈ Γs−1,m. We apply the previous identity to elevate its degree to n, n ≥ m. The
degree-m barycentric form of f is

∑
λ∈Γs,m

cλB
m
λ1,... ,λs−1

, where cλ = δλµ
(
m
µ

)−1,
with µ = (µ1, . . . , µs−1, 0) ∈ Γs,m. Hence the coefficients of the barycentric form
of degree n are, according to the degree elevation identity above

cν =

{(
n
m

)−1(m
µ

)−1(ν
µ

)
if µ � ν,

0 if µ 6� ν.
Therefore, the homogenized form of degree n is

Hnf =
∑

λ∈Γs,n−m

(
n

m

)−1(
m

µ

)−1(
λ+ µ

µ

)
Bλ+µ.

Decomposing λ ∈ Γs,n−m as λ = κ+ (n− k) es, with κ = κ1 e1 + · · ·+ κs−1 es−1 ∈
Γs−1,k−m, we transform the latter identity into(

n

m

)(
m

µ

)
Hnf =

n∑
k=m

∑
κ∈Γs−1,k−m

(
κ+ µ

µ

)
Bκ+µ+(n−k) es .

Since Bκ+µ+(n−k) es = HnB
n
κ+µ, it follows that, for x ∈ Rs−1 and µ ∈ Γs−1,m,(

n

m

)(
m

µ

)
xµ =

n∑
k=m

∑
κ∈Γs−1,k−m

(
κ+ µ

µ

)
Bnκ+µ(x).

This identity in fact expresses the monomial basis functions of Pn(Rs−1) in terms of
the affine Bernstein-Bézier functions. In particular, if s = 2, we have Γs−1,j = {j},
so the latter identity reduces to the well known relation, cf [10, (5.24)],(

n

m

)
xm =

n∑
k=m

(
k

m

)
Bnk (x).

A direct application of Proposition 3.4 yields the following identity for m-th
derivatives of a homogeneous polynomial of degree n in terms of (n−m)-th degree
basis functions and the derivatives of the dual basis functions.

Corollary 3.5. Let {fα | α ∈ Γs,n−m} and {gα | α ∈ Γs,n−m} be dual bases of
Hn−m(Rs). Then, for ξ1, . . . , ξm ∈ Rs and f ∈ Hn(Rs), with 1 ≤ m ≤ n,

Dξ1 · · ·Dξmf =
n!

(n−m)!

∑
α∈Γs,n−m

Fα(ξ1, . . . , ξm) gα,(3.9)

where Fα is the polar form of [ fα , f ] ∈ Hm(Rs). In particular, the m-th directional
derivative with respect to z ∈ Rs is

Dm
z f =

n!
(n−m)!

∑
α∈Γs,n−m

fα(z) gα.(3.10)
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Proof. Recall from Corollary 2.3, part 1, that

Dξ1 · · ·Dξmf =
n!

(n−m)!
[ (ξ1, ·) · · · (ξm, ·) , f ].

Now apply Euler’s identity to express the right hand side of the latter identity with
respect to the basis {gα | α ∈ Γs,n−m}, observing that

[ fα , [ (ξ1, ·) · · · (ξm, ·) , f ] ] = [ (ξ1, ·) · · · (ξm, ·)fα , f ]
= [ (ξ1, ·) · · · (ξm, ·) , [ fα , f ] ]
= Fα(ξ1, . . . , ξm).

Finally, (3.10) follows by taking ξ1 = . . . = ξm = z. This completes the proof.

Application: Derivatives of Bernstein-Bézier polynomials. We continue our leading
example by considering derivatives of Bernstein-Bézier basis functions. Take f =
Bβ, with β ∈ Γs,n, in (3.9); then

Dξ1 · · ·DξmBβ =
n!

(n−m)!

∑
α∈Γs,n−m

α�β

Fβ,α(ξ1, . . . , ξm)Bα.

Here Fβ,α is the polar form of [ lα , Bβ ], for α ∈ Γs,n−m. Hence, in view of (3.7),

Dξ1 · · ·DξmBβ =
n!

(n−m)!

∑
α∈Γs,n−m

α�β

PmBβ−α (ξ1, . . . , ξm)Bα.

Passing to the diagonal, i.e., taking ξ1 = . . . = ξm = z ∈ Rs, we get the well-known
expression

Dm
z Bβ(x) =

n!
(n−m)!

∑
α∈Γs,n−m

α�β

Bβ−α(z)Bα(x).

For m = 1 this identity reduces to DzBβ(x) = n
∑s

i=1 ui(z)Bβ−ei(x), again with
the convention that Bβ−ei = 0 if βi = 0. See also [10, Chapter 18].

4. Order compatible bases

In this section we present a rather general framework for constructing compu-
tationally convenient polynomial bases. Section 4.1 deals with examples of bases
consisting of lineal polynomials, and their dual bases. These dual bases are con-
structed as generalizations of the Bernstein-Bézier basis, introduced in Section 3.2.
We also present an algorithm for converting between representations with respect
to two lineal bases. This algorithm is the same as the one presented in Lodha and
Goldman [15] (for the trivariate case), but the derivation is different.

Lineal bases are an instance of order compatible bases, a concept introduced in
Section 4.2. This general setup is extended in Sections 4.3 and 4.4, where recursive
algorithms are derived—more or less routinely—for the computation of these basis
functions and their derivatives, and for the evaluation of polynomials expressed in
these bases. Among the algorithms derived in this section is a generalization of the
classical algorithms of de Boor and de Casteljau for the evaluation of a polynomial.
These results are in fact generalizations of the work of Micchelli [17, Section 5.6]
and Cavaretta and Micchelli [4].
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4.1. Lineal bases.

4.1.1. Lineal B-basis. As a first example we generalize the lineal basis introduced
in Section 3.2 as the dual of the Bernstein-Bézier basis. Every point xi appearing
in the basis of Rs in Section 3.2 is replaced with a cloud of points xi,1, . . . , xi,n.
More precisely, we consider an s× n array X of points in Rs,

X = {xi,j | 1 ≤ i ≤ s, 1 ≤ j ≤ n}.

For a multi-index α ∈ Γs,m, 1 ≤ m ≤ n, we consider the subset Xα of X defined by

Xα = {xi,j ∈ X | 1 ≤ j ≤ αi, 1 ≤ i ≤ s}.

(If αi = 0 the set contains no points of the form xi,j .) Note that Xα contains
|α| = m points, so the lineal polynomial lα defined by

lα(x) =
∏
u∈Xα

(u, x)

is an s-variate homogeneous polynomial of degree m. By definition, l0 = 1. Note
that these lineal polynomials coincide with those of Section 3.2 in case all clouds
consist of exactly one point, viz. xi,j = xi.

To guarantee that the collection of lineal polynomials {lα | α ∈ Γs,n} forms a
basis of Hn(Rs) we require, roughly speaking, that selecting a point from every
cloud yields a basis of Rs. More precisely:

Definition 4.1 (Transversal basis property). Array X has the transversal basis
property if, for every multi-index α = (α1, . . . , αs) ∈ Zs≥0 with |α| ≤ n − 1 the
set

{x1,α1+1, . . . , xs,αs+1}(4.1)

is a basis for Rs. The corresponding dual basis of H1(Rs) is denoted by

{u1,α, . . . , us,α}.

The terminology is derived from the observation that the set of points in (4.1)
is a transversal of the collection of sets Xi := {xi,j | 1 ≤ j ≤ n}, where the index i
ranges over 1, . . . , s. Note that, by definition, the dual basis satisfies ui,α(xj,αj+1) =
δij .

Proposition 4.2. Let the s × n array X satisfy the transversal basis property.
Then, for 0 ≤ m ≤ n the set Lm(X ) = {lα | α ∈ Γs,m} is a basis for Hm(Rs).

The proof is given in a more general setting in Section 4.2. The basis Lm(X ) is
called the lineal B-basis of Hm(Rs) (with respect to the array X ). Its dual basis,
called the B-patch basis, is denoted by Bm(X ); the basis functions bµ, µ ∈ Γs,m,
of Bm(X ) are called B-patches. These are introduced in Dahmen, Micchelli and
Seidel [6] and [17], who use this basis as the starting point for the development of
the theory of multivariate B-splines. Some of their basic results are straightforward
consequences of the theory developed in the next sections.

The following result gives the decomposition of a polynomial in Hn(Rs) with
respect to the B-patch basis, cf. [17, Proposition 5.4].



THE APOLAR BILINEAR FORM IN GEOMETRIC MODELING 707

Corollary 4.3. Let the s×n array X satisfy the transversal basis property. Then a
polynomial f ∈ Hn(Rs) has the following decomposition with respect to the B-patch
basis Bn(X ):

f(x) =
∑

α∈Γs,n

cα bα(x),(4.2)

where cα = F (Xα), with F the polar form of f .

Proof. According to Proposition 3.4.1, the polynomial f has the decomposition
(4.2), with cα = [ lα , f ]. Now Proposition 2.8 yields cα = F (Xα).

The previous result immediately implies that the de Boor-Fix functionals (see
Section 3.1), defined with respect to the B-patch basis, are determined by the
identity λα(f) = F (Xα), for α ∈ Γs,n. See also [14].

4.1.2. Conversion between lineal B-bases. A central problem in geometric modeling
is basis conversion. Here we consider the conversion between representations of a
homogeneous polynomial of degree n with respect to two lineal B-bases Ln(X ) and
Ln(X ). A similar change of basis algorithm is presented in Lodha and Goldman [15],
although their derivation differs from the one presented here in that it is based on
duality of so-called simplicial recurrence schemes.

First consider the simplest case in which the s×n arrays X and X only differ in
their last rows, i.e., xi,j = xi,j , for 1 ≤ i < s. Both arrays are assumed to satisfy
the transversal basis property. Let h =

∑
ν∈Γs,n

cν lν be the representation of a
polynomial h ∈ Hn(Rs) with respect to the lineal basis Ln(X ); then our goal is
to compute the representation h =

∑
ν∈Γs,n

cν lν with respect to the lineal basis
Ln(X ). Isolating linear factors corresponding to the last row of X , we write

h =
n∑

m=0

gm l(n−m)es ,

where gm ∈ Hm(Rs) is defined by gm =
∑

ν∈Γs,n
νs=n−m

cν lν−νses . Note that gm has the

same representation with respect to both lineal bases, since the lineal polynomials
defining gm do not contain linear factors from the last row of X . Therefore

gm =
∑

µ∈Γs,m
µs=0

cµ+(n−m) es lµ.

For multi-indices µ, ν ∈ Zs≥0 with µ � ν we observe that lµ is a divisor of lν . Their
quotient, denoted by lν|µ, is again a lineal polynomial, viz. the product of all linear
factors (u, ·) when u ranges over Xν \Xµ. Put

hm =
m∑
k=0

gk l(n−k)es|(n−m)es .

Then the following simple properties allow us to set up an iterative basis conversion
algorithm:

1. hn = h,
2. h0 = cnes ,
3. hm = (xs,n−m+1, ·)hm−1 + gm, for 0 < m ≤ n.
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Let amµ be the coefficients of hm with respect to the basis Lm(X ), i.e., hm =∑
µ∈Γs,m

amµ lµ. To transform the third property into a recurrence for these coeffi-
cients, we use the fact that xs,n−m+1 =

∑s
i=1 ui,µ(xs,n−m+1)xi,µi+1, so

(xs,n−m+1, ·) =
s∑
i=1

ui,µ(xs,n−m+1) lµ+ei|µ.

The latter identity leads to∑
µ∈Γs,m

amµ lµ =
∑

λ∈Γs,m−1

s∑
i=1

ui,λ(xs,n−m+1) am−1
λ lλ+ei +

∑
µ∈Γs,m
µs=0

cµ+(n−m)es lµ,

for m > 0 and µ ∈ Γs,m. Collecting coefficients corresponding to the same basis
functions, we finally obtain the following recurrence:

a0
0 = cnes ,

amµ =
s∑
i=1

ui,µ−ei (x
s,n−m+1) am−1

µ−ei + δ0,µscµ+(n−m)es ,

if m > 0, µ ∈ Γs,m.

(4.3)

Summarizing, recurrence (4.3) yields an algorithm that converts the representation
h =

∑
ν cν lν with respect to the lineal B-basis Ln(X ) to the representation h =∑

ν a
n
ν lν with respect to the the lineal B-basis Ln(X ).

To deal with the general case, let Xk, 0 ≤ k ≤ s, be the s × n array obtained
from X by replacing the last k columns with the corresponding columns of X .
Obviously X0 = X , Xs = X , and Xk and Xk+1 differ only in their k-th column.
Under the assumption that Xk satisfies the transversal basis property, we may run
the algorithm just derived to convert a representation with respect to Ln(Xk) into
the representation with respect to Ln(Xk+1), successively for k = 0, . . . , s−1. This
is exactly the approach of Lodha and Goldman [15].

Application: Conversion from monomial to Bernstein-Bézier form. As a simple
application we consider the conversion of a univariate polynomial of the form h(t) =∑n
k=0 akt

k to its Bernstein-Bézier form h(t) =
∑n

k=0 bkB
n
k (t). To prepare for the

application of the recurrence (4.3) we first homogenize as in Section 3.2. In other
words, we use the fact that h(t) = H(t, 1− t), where the homogeneous polynomial
H is defined by H(x1, x2) =

∑n
k=0 c(k,n−k)x

k
1(x1 + x2)n−k, with c(k,n−k) = ak.

After conversion to the monomial form H(x1, x2) =
∑n
k=0 c(k,n−k)x

k
1x

n−k
2 , we see

that the Bernstein-Bézier coefficients are bk = c(k,n−k)/
(
n
k

)
.

The actual conversion is established by applying the recurrence (4.3) in case
s = 2, with x1,j = e1, x2,j = e1 + e2, x1,j = e1 and x2,j = e2. Note that in this case
ui,µ(x2,j) = 1, for i = 1, 2 and µ ∈ Γs,m with 0 ≤ m < n. In the notation of (4.3)
we put cmk = am(k,m−k), for 0 ≤ m ≤ n and 0 ≤ k ≤ m. This yields the recurrence{

c00 = cn,
cmk = cm−1

k + cm−1
k−1 + δkm cm, if m > 0 and 0 ≤ k ≤ m.(4.4)

To obtain the coefficients of the Bernstein-Bézier form, let bmk = cmk /
(
m
k

)
; then (4.4)

transforms into{
b00 = cn,
bmk = (1− k

m )bm−1
k + k

mb
m−1
k−1 + δkm cm, if m > 0 and 0 ≤ k ≤ m.
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The previous recurrence translates directly into the following in-situ algorithm:
/* Input: b[0..n] - coefficients of monomial form */
for ( m = 1; m <= n; m++ ){
b[m] += b[m-1];
for( k = m-1; k > 0; k-- )
b[k] += (float)k/m * ( b[k-1] - b[k] ); }

/* Output: b[0..n] - coefficients of Bernstein-Bezier form */

4.1.3. Lineal knot basis. In the second example of a lineal basis of Hn(Rs) the
points defining the lineal polynomials are taken from a (multi-)set X , consisting of
n+ s− 1 points in Rs. The index set Λs,n is the collection of all n-element subsets
of {1, . . . , n + s − 1}, which has cardinality equal to dimHn(Rs). With an index
I ∈ Λs,n we associate the multi-set XI = {xi | i ∈ I}, and the lineal polynomial
lI ∈ Hn(Rs) defined by

lI(x) =
∏
u∈XI

(u, x).

Again l∅ = 1, by definition. We say that X is in general position if every subset of
X consisting of s points is a basis of Rs.

Proposition 4.4. Let the set X be in general position. Then

Lm(X) = {lI | I ∈ Λs,m}
is a basis for Hm(Rs), for 0 ≤ m ≤ n.

The proof of this result is also deferred to Section 4.2. In the theory of multidi-
mensional simplex splines points in X are called knots ; see e.g. [17] and [18]. This
is why we call Lm(X) the lineal knot basis of Hm(Rs) (associated with the knot set
X). In analogy with the B-patches, the dual basis functions are called knot-patches ;
they are denoted by NI , I ∈ Λs,m, with the convention [ lI , NJ ] = δIJ .

An immediate application of this proposition is the polar interpolation property;
see Neamtu [18].

Corollary 4.5. Let X be a set of n+ s− 1 points in Rs in general position. Then
there is a unique polynomial f ∈ Hn(Rs) whose polar form F attains prescribed
values at all subsets of X of cardinality n. More precisely, given cI ∈ Rs for all
I ∈ Λs,n, the polar form F satisfies F (XI) = cI , for I ∈ Λs,n.

Proof. In view of Proposition 4.4, the collection of lineal polynomials lI ∈ Hn(Rs),
where I ranges over Λs,n, is a basis ofHn(Rs). Then f =

∑
I∈Λs,n

cINI is a polyno-
mial in Hn(Rs), whose polar form satisfies Pnf (XI) = [ lI , f ]; see Proposition 2.8.
It follows from Euler’s identity, cf. Proposition 3.4, part 1, that [ lI , f ] = cI , so the
proof is complete.

4.2. Order compatible bases. We now study more general collections {fν | ν ∈
Is,n} of polynomials of degree n, and in particular deal with the problem of deter-
mining whether this collection is a basis for Hn(Rs). Here Is,n, n ≥ 0, are general
index sets such that

#Is,n = dimHn(Rs) =
(
n+ s− 1

n

)
,
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and such that Is,m and Is,n are disjoint whenever m and n are distinct non-negative
integers. The union of all index sets Is,n, n ≥ 0, is denoted by Is. For convenience,
we denote the single element of Is,0 by 0. Obviously, the set of multi-indices Γs,n
of weight n is an example of such an index set.

A partial order � on Is is called regular if, for 0 ≤ m ≤ n and µ ∈ Is,m, the set
Is,n−m(µ), defined by

Is,n−m(µ) = {ν | ν ∈ Is,n and µ � ν},

consists of
(
n−m+s−1
n−m

)
= dimHn−m(Rs) elements. Throughout this section we

assume that Is is an index set endowed with a regular partial order �.
Consider collections Fm = {fµ | µ ∈ Is,m} and Fn = {fν | ν ∈ Is,n} of

homogeneous polynomials on Rs of degree m and n, respectively. We say that the
pair (Fm,Fn), with 0 ≤ m ≤ n, is �-compatible if

1. 0 6∈ Fm and 0 6∈ Fn.
2. For µ ∈ Is,m and ν ∈ Is,n, with µ � ν, the polynomial fµ is a divisor of fν .

The quotient fν/fµ is denoted by fν|µ. Obviously fν|µ ∈ Hn−m(Rs).
For convenience, we assume that F0 consists of the single constant polynomial 1.
Under this assumption fµ|0 = fµ.

The sets of lineal polynomials, introduced in Section 4.1, are easily seen to be
order compatible. More precisely, consider the lineal B-bases. The partial order �
on the set of multi-indices Zs≥0 is regular, since the set Γs,n(α) of successors of α ∈
Γs,m in Γs,n consists of all multi-indices of the form α+ γ, where γ ranges over the
set Γs,n−m. In particular, this set contains dimHn−m(Rs) elements. Furthermore,
if α � β, then Xα ⊂ Xβ, and hence the lineal polynomial lα is a divisor of lβ . In
other words, (Lm(X ),Ln(X )) is an order compatible pair, for 0 ≤ m ≤ n.

With regard to the lineal knot bases we consider the partial order � on the
index set Λs =

⋃
n≥0 Λs,n, defined by I � J if I ⊂ J, for I, J ∈ Λs. For a fixed

I ∈ Λs,m, the set {1, . . . , n + s − 1} \ I consists of n − m + s − 1 elements, so
there are

(
n−m+s−1
n−m

)
= dimHn−m(Rs) distinct ways to extend I to an n-element

subset of {1, . . . , n + s − 1}. In other words: the set {J ∈ Λs,n | I � J} contains
dimHn−m(Rs) elements; hence � is a regular partial order. Furthermore, consider
I ∈ Λs,m and J ∈ Λs,n, 0 ≤ m ≤ n, with I � J . Then XI ⊂ XJ ; hence lI is
a divisor of lJ . So also in this case the pair (Lm(X),Ln(X)) is order compatible
whenever 0 ≤ m ≤ n.

The following result is the crucial tool for deciding when a collection of polyno-
mials is a basis for Hn(Rs).

Theorem 4.6. Let 0 ≤ m ≤ n, and let the pair (Fm,Fn) be �-compatible.
1. If Fm be a basis of Hm(Rs), and for all µ ∈ Is,m the set

Fn−m(µ) := {fν|µ | ν ∈ Is,n and µ � ν}

is a basis of Hn−m(Rs), then Fn is a basis of Hn(Rs).
2. If Fn is a basis of Hn(Rs), then Fn−m(µ) is a basis of Hn−m(Rs), for all

µ ∈ Is,m.

The reader may wonder whether, under the assumptions of part 2, the set Fm
is also a basis of Hm(Rs). This turns out to be true under a mild additional
assumption on the index set Is. This assumption turns out to hold for the index
sets Zs≥0 and Λs, introduced in Section 4.1. We don’t need this stronger version
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of Theorem 4.6 in this paper, so the details, which are not completely trivial, are
omitted from this paper.

Before proceeding to the proof, let us show how to apply this theorem to the
collections of lineal polynomials in Section 4.1.

Proof of Proposition 4.2. The claim is obviously true for m = 0, since L0(X ) = {1}
is a basis for H0(Rs). So assume the claim is proved for 0 ≤ m < n. Then, for
α ∈ Γs,m,

F1(α) = {lα+e1|α, . . . , lα+es|α} = {(x1,α1+1, ·), . . . , (xs,αs+1, ·)},
since Is,1(α) = Γs,1(α) = {α+ e1, . . . , α+ es}. Therefore the transversal property
holds iff F1(α) is a basis of H1(Rs), for α ∈ Hm(Rs). Using Theorem 4.6 we con-
clude that Lm+1(X ) is a basis of Hm+1(Rs). Proceeding inductively, we conclude
that Lm(X ) is a basis of Hm(Rs) for 0 ≤ m ≤ n.

Proof of Proposition 4.4. We only have to observe that for an index I ∈ Λs,m,
i.e., a subset of X of cardinality m, with 0 ≤ m < n, the set Is,1(I) = Λs,1(I)
consists of the m + 1-element subsets of {x1, . . . , xm+s} containing I. Since X is
in general position, its s-element subset {xj | j ∈ {1, . . . ,m + s} − I} is a basis
of Rs, and hence F1(I) = {(xj , ·) | j ∈ {1, . . . ,m + s} − I} is a basis for H1(Rs).
This observation allows us to set up an inductive argument similar to the proof of
Proposition 4.2.

Proof of Theorem 4.6. 1. First observe that the cardinality of Fn is equal to the
dimension of Hn(Rs), so it is sufficient to prove that the elements of Fn are linearly
independent. So let f ∈ Hn(Rs), and assume that [ fν , f ] = 0 for all ν ∈ Is,n.
Then all we have to prove is f = 0.

To this end fix µ ∈ Is,m, and let {gν|µ | ν ∈ Is,n−m(µ)} be the dual basis of
Fn−m(µ) = {fν|µ | ν ∈ Is,n−m(µ)}. Using Proposition 3.4, part 1, to express
[ fµ , f ] ∈ Hn−m(Rs) with respect to this dual basis, we get

[ fµ , f ] =
∑

ν∈Is,n−m(µ)

[ fν|µ , [ fµ , f ] ] gν|µ = 0,

since [ fν|µ , [ fµ , f ] ] = [ fν|µ · fµ , f ] = [ fν , f ] = 0. Therefore [ fµ , f ] = 0, for all
µ ∈ Is,m, so f = 0 according to Lemma 2.5.

2. Since the partial order � is regular, Fn−m(µ) contains dimHn−m(Rs) ele-
ments. Hence it suffices to prove that Fn−m(µ) is a linearly independent set. So let
cν be real constants such that

∑
ν∈Is,n−m(µ) cνfν|µ = 0. Since fν|µ · fµ = fν , mul-

tiplying both sides of the latter equality by fµ shows that
∑
ν∈Is,n−m(µ) cν fν = 0.

In view of the fact that {fν | ν ∈ Is,n−m(µ)} is a subset of the basis Fn, it follows
that cν = 0 for ν ∈ Is,n−m(µ). In other words, the collection Fn−m(µ) is linearly
independent.

Under the hypothesis of Theorem 4.6.2 the elements of the dual basis of Fn−m(µ)
can be given explicitly, as reflected by the following result, cf. (3.7):

Proposition 4.7. Let 0 ≤ m ≤ n, and let (Fm,Fn) be an order compatible pair
such that Fn = {fν | ν ∈ Is,n} is a basis of Hn(Rs), with dual basis Gn = {gν | ν ∈
Is,n}. Let µ ∈ Is,m.

1. The dual basis of Fn−m(µ) is Gn−m(µ) = {gν|µ | ν ∈ Is,n and µ � ν}, where

gν|µ = [ fµ , gν ] ∈ Hn−m(Rs).
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2. For ν ∈ Is,n, with µ 6� ν,

[ fµ , gν ] = 0 ∈ Hn−m(Rs).

Proof. 1. This follows from the fact that, for λ ∈ Is,n with µ � λ,

[ fλ|µ , gν|µ ] = [ fλ|µ , [ fµ , gν ] ] = [ fλ|µfµ , gν ] = [ fλ , gν ] = δλν .

2. Let g = [ fµ , gν ] ∈ Hn−m(Rs). We show that [ f , g ] = 0, for all f ∈
Hn−m(Rs). The proof of the first part shows that, for λ ∈ Is,n with µ � λ,

[ fλ|µ , g ] = 0,

since λ 6� ν (otherwise µ � ν). According to Theorem 4.6.2, the set {fλ|µ | λ ∈
Is,n−m and µ � λ} is a basis of Hn−m(Rs), so we even have [ f , g ] = 0, for all
f ∈ Hn−m(Rs). Now apply Lemma 2.5 to conclude that g = 0.

The dual basis Gn−m(µ) can be used to express the m-th derivative of a polyno-
mial h ∈ Hn(Rs) with respect to the basis Gn−m:

Proposition 4.8. Let 0 ≤ m ≤ n, and let (Fn−m,Fn) be an order compatible pair
such that Fn = {fν | ν ∈ Is,n} is a basis of Hn(Rs), with dual basis Gn = {gν |
ν ∈ Is,n}. The m-th derivative of h =

∑
ν∈Is,n cν gν ∈ Hn(Rs) with respect to

ξ1, . . . , ξm ∈ Rs has the decomposition

Dξ1 · · ·Dξmh(x) =
n!

(n−m)!

∑
µ∈Is,n−m

∑
ν∈Is,n
ν�µ

cν Gν|µ(ξ1, . . . , ξm) gµ(x),

with respect to the basis Gn−m of Hn−m(Rs), where Gν|µ is the polar form of gν|µ =
[ fµ , gν ] ∈ Hm(Rs). In particular, for z ∈ Rs

Dm
z h(x) =

n!
(n−m)!

∑
µ∈Is,n−m

∑
ν∈Is,n
ν�µ

cν gν|µ(u) gµ(x).(4.5)

Proof. Applying Corollary 3.5, we see that

Dξ1 · · ·Dξmh(x) =
n!

(n−m)!

∑
µ∈Is,n−m

Cmµ (ξ1, . . . , ξm) gµ(x),

where Cmµ is the polar form of [ fµ , h ] ∈ Hm(Rs). In view of Corollary 2.3, part 1,
we have, with l = (ξ1, ·) · · · (ξm, ·),

Cmµ (ξ1, . . . , ξm) =
∑
ν∈Is,n

cν [ l , [ fµ , gν ] ] =
∑

ν∈Is,n
ν�µ

cν [ l , gν|µ ],(4.6)

so the proof is complete, since [ l , gν|µ ] = Gν|µ(ξ1, . . . , ξm).

Derivatives of a polynomial in Bézier form. Consider the Bernstein-Bézier basis of
Hn(Rs), indexed by the set of multi-indices Γs,n. More precisely, for λ ∈ Γs,m, let
fλ(x) = xλ = lλ(x); then, as we have seen in Section 3.2, the dual basis functions
are the homogeneous Bernstein-Bézier polynomials, i.e., gλ = Bλ. For λ ∈ Γs,m the
dual of the relative basis Fn−m(λ) consists of the functions gµ|λ = [ lλ , Bµ ] = Bµ−λ,
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where µ ∈ Γs,n with µ � λ. Therefore, if h =
∑

ν∈Γs,n
cν Bν , identity (4.5) reduces

to

Dm
z h(x) =

n!
(n−m)!

∑
λ∈Γs,n−m

∑
γ∈Γs,m

cγ+λBγ(z)Bλ(x).(4.7)

Derivatives of a Bézier curve. Consider a not necessarily homogeneous polynomial
f(t) of degree n in t ∈ R with Bézier form f(t) =

∑n
k=0 ck B

n
k (t). Since Bnk (t) =

B(k,n−k)(t, 1− t)), we see that f(t) = F (t, 1 − t), where F ∈ Hn(R2) is defined by
F (x) =

∑n
k=0 ckB(k,n−k)(x). We can express the derivatives of f(t) in terms of its

barycentric form F as follows: f (m)(t) = Dm
z F (t, 1 − t), where z = (1,−1) ∈ R2.

Applying (4.7), we get

Dm
z F (x) =

n!
(n−m)!

n−m∑
k=0

m∑
l=0

ck+l B
m
l (z)Bn−mk (x).

Since, by definition,
m∑
l=0

ck+l B
m
l (z) =

m∑
l=0

(
m

l

)
(−1)m−lck+l = 4mck,

the m-th divided difference of the sequence ck, ck+1, . . . , ck+m, we conclude that

f (m)(t) =
n!

(n−m)!

n−m∑
k=0

4mckBn−mk (t).

This is Farin [10, (4.27)].

4.3. Downward recursion schemes. In the sequel we consider a family of bases
Fn ofHn(Rs), n ≥ 0, such that F0 = {1}, and for every n ≥ 0 the pair (Fn,Fn+1) is
order compatible (with respect to some fixed regular partial order on a generalized
index set Is; see Section 4.2). We adopt the same notation as in the latter section.
In particular, Gn denotes the dual basis of Fn. Furthermore, the polynomials
gν|µ = [ fµ , gν ], with ν ranging over all indices in Is,n with µ � ν, form the dual
basis of Fn−m(µ), consisting of the polynomials fν|µ, with ν ranging over all indices
in Is,n with µ � ν (see also Proposition 4.7).

The following rather general result will allow us to derive several useful recurrence
relations for basis polynomials.

Proposition 4.9. With the previous assumptions, let 0 ≤ m ≤ k ≤ n, and let
µ ∈ Is,m and ν ∈ Is,n with µ � ν. Then, for f ∈ Hl(Rs), with l such that
k + l ≤ n,

[ f , gν|µ ] =
∑
λ

[ f , gν|λ ] gλ|µ,

where the summation ranges over all indices λ ∈ Is,k with µ � λ � ν.

Proof. Writing h = [ f , gν|µ ] ∈ Hn−m−l(Rs), and observing that k−m ≤ n−m−l,
we may apply Proposition 3.4, part 1, to decompose h with respect to any dual
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basis pair of Hk−m(Rs). In particular we consider the dual bases {fλ|µ} and {gλ|µ},
where λ ranges over all indices in Is,k with µ � λ. Hence

h =
∑

λ∈Is,k and µ�λ
[ fλ|µ , h ] gλ|µ.

Since (k −m) + l ≤ n−m, we repeatedly apply Theorem 2.2, part 3, to transpose
homogeneous factors:

[ fλ|µ , h ] = [ fλ|µ , [ f , gν|µ ] ] = [ fλ|µ · f , gν|µ ]
= [ f , [ fλ|µ , [ fµ , gν ] ] ]
= [ f , [ fλ|µ · fµ , gν ] ]
= [ f , [ fλ , gν ] ].

This derivation yields the desired identity, since Proposition 4.7 yields

[ fλ , gν ] =

{
gν|λ if λ � ν,
0 if λ 6� ν.

The preceding result is used to obtain the following down-recurrence, defining a
basis in terms of basis functions of lower degree.

Corollary 4.10 (Down recurrence for (relative) dual basis functions). Under the
assumptions stated at the beginning of this section, let 0 ≤ m ≤ n, and consider
multi-indices µ ∈ Is,m and ν ∈ Is,n, with µ � ν.

1. For m ≤ k ≤ n,

gν|µ =
∑
λ

gν|λ gλ|µ,

where the summation ranges over all indices λ ∈ Is,k with µ � λ � ν.
2. For ξ1, . . . , ξk ∈ Rs, with m+ k ≤ n,

Dξ1 · · ·Dξk gν|µ(x) =
(n−m)!

(n−m− k)!

∑
λ

Gν|λ(ξ1, . . . , ξk) gλ|µ(x),

where Gν|λ is the polar form of gν|λ ∈ Hk(Rs), and the summation ranges over all
indices λ ∈ Is,n−k with µ � λ � ν. In particular, the k-th derivative in direction
z ∈ Rs is

Dk
zgν|µ(x) =

(n−m)!
(n−m− k)!

∑
λ

gν|λ(z) gλ|µ(x).

Proof. The first claim follows by taking f = 1 ∈ H0(Rs) in Proposition 4.9. To
prove the second part, take f = (ξ1, ·) · · · (ξk, ·) in Proposition 4.9. Applying Corol-
lary 2.3, part 1, to gν|µ ∈ Hn−m(Rs), we see that

[ f , gν|µ ] =
(n−m− k)!

(n−m)!
Dξ1 · · ·Dξk gν|µ.

Similarly, for λ ∈ Is,n−k we have gν|λ ∈ Hk(Rs), so according to Proposition 2.8,
we have [ f , gν|λ ] = Gν|λ, which proves the first identity of the second part. Diag-
onalizing, i.e., taking ξ1 = . . . = ξk = z, completes the proof.
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Down recurrence for B-patches. Let X be an s × n array of points satisfying the
transversal basis property. Taking m = 0 and k = n− 1 in Corollary 4.10, part 1,
yields bα(x) =

∑s
i=1 gα|α−ei(x) bα−ei (x), for α ∈ Γs,n and x ∈ Rs, where we adopt

the convention that gα|α−ei = 0 and bα−ei = 0 if αi = 0. It follows from Defini-
tion 4.1 that gα|α−ei = ui,α−ei , so we get the following recurrence for B-patches:

bα(x) =
s∑
i=1

ui,α−ei(x) bα−ei(x).

Similarly, taking k = 1, m = 0, and ξ1 = z ∈ Rs, the identity in part 2 of
Corollary 4.10 translates into

Dzbα(x) = n
s∑
i=1

ui,α−ei(z) bα−ei(x).

For a different derivation of these recurrences we again refer to [6] and [17].

Down recurrence for knot-patches. To obtain a similar recurrence for knot-patches,
consider a set X consisting of n + s − 1 points of Rs in general position. Taking
again m = 0 and k = n − 1 in Corollary 4.10, we get the following recurrence for
the knot-patch NI , for I ∈ Λs,n:

NI(x) =
∑

J∈Λs,n−1
J�I

NI|J(x)NJ (x).

Observe that the summation index J is a subset of {1, . . . , (n− 1) + (s− 1)}∩ I of
cardinality n− 1, so J is of the form I − {i}, where i ∈ I and i 6= n+ s− 1.

For I ∈ Λs,n, let {ui,I | i ∈ {1, . . . , n + s − 1} − I} be the basis of H1(Rs)
consisting of the linear functions dual to {xi | i ∈ {1, . . . , n + s − 1} − I}, i.e.,
ui,I(xj) = δij for i, j ∈ {1, . . . , n + s − 1} − I. Then the recurrence for NI boils
down to

NI(x) =
∑
i∈I

i6=n+s−1

ui,I−{i}(x)NI−{i}(x).

In a completely similar way we obtain the following recurrence for the derivatives
of knot-patches in the direction z ∈ Rs:

DzNI(x) = n
∑
i∈I

i6=n+s−1

ui,I−{i}(z)NI−{i}(x).

4.4. Upward recurrence: de Boor/de Casteljau’s algorithm. de Casteljau’s
algorithm for the evaluation of a point on a polynomial curve in Bézier form is one
of the basic algorithms in computer aided geometric design; see, e.g., [10]. Using the
machinery developed in this paper we derive, more or less routinely, a generalized
version of this algorithm in the context of order-compatible bases.

Again we adopt the notation and assumptions stated at the beginning of Sec-
tion 4.3. In this setting, the generalized de Casteljau’s algorithm takes as input a
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collection of scalars cν ∈ R, for ν ∈ Is,n, and n points ξ1, . . . , ξn ∈ Rs. It evaluates
the polar form of the homogeneous polynomial

h =
∑

ν∈Is,n

cν gν ,

at (ξ1, . . . , ξn). The classical de Casteljau algorithm solves this problem in case Gn
is the homogeneous Bernstein-Bézier basis of Hn(Rs), and ξ1 = . . . = ξn = x ∈ Rs.

The generalized algorithm computes, for m ranging over an increasing sequence

0 = m0 < m1 < . . . < mt = n,

the polar forms Pm[ fµ , h ] , for all µ ∈ Is,n−m. For m = 0 these polar forms
correspond to the input values cµ, µ ∈ Is,n, since in this case

P0[ fµ , h ] = [ fµ , h ] = cµ.

For m = n, the single basis function in F0 is 1 ∈ H0(Rs), according to the assump-
tions stated at the beginning of Section 4.3. Therefore the corresponding polar
form is Pn[ 1 , h ] = Pnh , i.e., the desired output.

It remains to describe the basic step of the algorithm, where m is increased from
m = mj−1 to m = mj , for 0 < j ≤ n. For convenience we denote Pm[ fµ , h ]
by Cmµ , for µ ∈ Is,n−m. In particular, Cmµ is a symmetric m-linear form on Rs.
Assume we have determined Cmµ (ξ1, . . . , ξm), for all µ ∈ Is,n−m. Our goal is to
determine Cm+k

λ (ξ1, . . . , ξm+k), for all λ ∈ Is,n−m−k. Since

Cm+k
λ (ξ1, . . . , ξm+k) = [ (ξ1, ·) · · · (ξm+k, ·) , [ fλ , h ] ],

transposition of a factor (ξm+1, ·) · · · (ξm+k, ·), cf. Theorem 2.2, part 3, yields

Cm+k
λ (ξ1, . . . , ξm+k)=[ (ξ1, ·) · · · (ξm, ·) , [ (ξm+1, ·) · · · (ξm+k, ·)fλ , h ] ](4.8)

Suppose we have expressed the polynomial (ξm+1, ·) · · · (ξm+k, ·) fλ ∈ Hn−m(Rs)
with respect to the basis {fµ | µ ∈ Is,n−m} as

(ξm+1, ·) · · · (ξm+k, ·) fλ =
∑
µ

aµfµ,(4.9)

where µ ranges over Is,n−m. Then the right hand side of (4.8) reduces to∑
µ

[ (ξ1, ·) · · · (ξm, ·) , [ aµfµ , h ] ] =
∑
µ

aµ[ (ξ1, ·) · · · (ξm, ·) , [ fµ , h ] ]

=
∑
µ

aµC
m
µ (ξ1, . . . , ξm).(4.10)

In view of Proposition 3.4, part 1, the scalar aµ in (4.9) satisfies

aµ = [ (ξm+1, ·) · · · (ξm+k, ·) fλ , gµ ]

= [ (ξm+1, ·) · · · (ξm+k, ·) , [ fλ , gµ ] ]

=

{
Gµ|λ(ξm+1, . . . , ξm+k), if λ � µ,
0, if λ 6� µ,

where Gµ|λ(ξm+1, . . . , ξm+k) is the polar form of [ fλ , gµ ] = gµ|λ, evaluated at
(ξm+1, . . . , ξm+k) in case λ � µ (cf. Proposition 4.7). Therefore the summation in
(4.10) ranges over the subset Is,k(λ) of Is,n−m. Summarizing, we get
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Lemma 4.11 (Upward recurrence). Let n ≥ 0. Under the assumptions stated at
the beginning of Section 4.3, let cν ∈ R, ν ∈ Is,n, be the coefficients of the polyno-
mial h =

∑
ν∈Is,n cνgν with respect to Gn. Let ξ1, . . . , ξn ∈ Rs, and let Cmµ be the

polar form of [ fµ , h ].
Furthermore, let 0 ≤ m < m+ k ≤ n and, for all λ ∈ Is,n−m−k and µ ∈ Is,k(λ),

let Gµ|λ be the polar form of the basis function gµ|λ ∈ Hk(Rs). Then

Cm+k
λ (ξ1, . . . , ξm+k) =

∑
µ

Cmµ (ξ1, . . . , ξm)Gµ|λ(ξm+1, . . . , ξm+k),

where the summation ranges over all indices µ ∈ Is,k(λ).

This upward recurrence relation yields a class of de Casteljau-like algorithms
for computing the polar form of h, evaluated at (ξ1, . . . , ξm), by computing the
families {Cmµ (ξ1, . . . , ξm) | µ ∈ Is,n−m}, where m runs from m = 0 to m = n in
arbitrary steps. Taking the step size e.g. equal to 1, we get the following result.

Corollary 4.12 (Generalized de Casteljau/de Boor Algorithm). Let n ≥ 0. Un-
der the assumptions stated at the beginning of Section 4.3, let cν ∈ R, ν ∈ Is,n,
be the coefficients of the polynomial h =

∑
ν∈Is,n cνgν with respect to Gn, and let

ξ1, . . . , ξn ∈ Rs. Let Cmµ (ξ1, . . . , ξm), with µ ∈ Is,n−m, be defined as follows:
1. For all ν ∈ Is,n,

C0
ν ( ) = cν ;

2. For 0 ≤ m < n, and λ ∈ Is,n−m−1,

Cm+1
λ (ξ1, . . . , ξm+1) =

∑
µ

Cmµ (ξ1, . . . , ξm) gµ|λ(ξm+1),(4.11)

where the summation is over all indices µ ∈ Is,n−m with λ � µ.
Then Cmµ is a symmetric m-linear form on Rs, equal to the polar form of [ fµ , h ],

for µ ∈ Is,n−m. In particular, Cn0 (ξ1, . . . , ξn) is the polar form of h, evaluated at
(ξ1, . . . , ξn).

Note that there are exactly s indices in the summation range of the recurrence
(4.11); see Section 4.2.

The up-recurrence in Corollary 4.12 is also derived in Micchelli [17, Section 5.6]
and Cavaretta and Micchelli [4] for the special case of a polynomial in B-form. This
case is elaborated in one of the examples later in this section. In the latter papers
the fact that Cmµ is symmetric requires a much longer proof. In our approach
this symmetry comes for free with our characterization of Cmµ as the polar form of
[ fµ , h ].

Application of Corollary 3.5 yields the following decomposition of the m-th order
derivative of h with respect to the basis Gn−m of Hn−m(Rs):

Dξ1 · · ·Dξmh =
n!

(n−m)!

∑
µ∈Is,n−m

Cmµ (ξ1, . . . , ξm) gµ.

See also (4.6) in the proof of Proposition 4.8. Therefore m steps of the generalized
de Casteljau/de Boor algorithm are sufficient to compute the m-th order derivative
of h (in the mixed directions ξ1, . . . , ξm).
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The classical de Casteljau algorithm for evaluation of a polynomial in Bernstein-
Bézier form at a point x ∈ Rs is obtained by taking for Gn in Corollary 4.12 the
Bernstein-Bézier basis of Hn(Rs), and diagonalizing, i.e., taking ξ1 = . . . = ξn = x.
The derivation of de Boor’s algorithm for the evaluation of a polynomial in B-form
is illustrated in the following example.

Application: Up-recurrence for B-patches. We describe the basic step in the gener-
alized de Casteljau/de Boor algorithm, applied to a polynomial in B-form. So let
X be an s × n array of points in Rs, satisfying the transversal basis property. In
particular, consider h ∈ Hn(Rs) with decomposition h =

∑
ν∈Γs,n

cν bν ∈ Hn(Rs)
with respect to the B-patch basis Bn(X ) of Hn(Rs), corresponding to X . Then the
polar form of h can be evaluated at (ξ1, . . . , ξm+1) by the following recurrence:

Cm+1
λ (ξ1, . . . , ξm+1) =

s∑
i=1

Cmλ+ei (ξ
1, . . . , ξm)ui,λ(ξm+1),

starting from C0
ν ( ) = cν , for ν ∈ Γs,n. In particular, h(x) = Cn0 (x, . . . , x). As

indicated above, the linear form Cmλ is m-symmetric, since it is the polar form of
[ lλ , h ].

Application: Conversion between B-patch bases. An interesting application of the
generalized de Casteljau/de Boor algorithm is the conversion between representa-
tions of a polynomial with respect to two different B-patch bases, as described, e.g.,
in Lodha and Goldman [15].

Consider the setting of Section 4.1.2, in which two s × n arrays X and X only
differ in their last rows, i.e., xi,j = xi,j , for 1 ≤ i < s. Both arrays are assumed to
satisfy the transversal basis property. Let h =

∑
ν∈Γs,n

cν bν be the representation
of a polynomial h ∈ Hn(Rs) with respect to the B-patch basis Bn(X ). Then our
goal is to compute the representation h =

∑
ν∈Γs,n

cν bν with respect to the lineal
basis Bn(X ).

Since cν = [ lν , h ], we obtain, by isolating linear factors corresponding to the
last row of X ,

cν = [ lν , h ] = [ lν−νs es lνs es , h ]

= [ lνs es , [ lν−νs es , h ] ]
= Cνsν−νs es(x

s,1, . . . , xs,νs).

In other words, the coefficient cν of h with respect to the basis Bn(X ) is obtained
by running the generalized de Casteljau/de Boor algorithm to evaluate the polar
form of h at the points in the last row of X . The coefficient cν is the entry in the ‘de
Casteljau simplex’, at the position corresponding to the multi-index ν−νs es. Note
that the latter multi-index lies in the face of the de Casteljau-simplex consisting of
all multi-indices µ with last entry equal to zero, i.e., with µs = 0.

The general change of basis algorithm is obtained by replacing the rows of X
by those of X one by one; see also Section 4.1.2. It should be noted that the
lineal change of basis algorithm, presented in Section 4.1.2, is derived in Lodha
and Goldman [15] from the above algorithm for conversion between B-patch bases,
using duality.
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Application: Up-recurrence for knot patches. Finally, consider a set X , consisting
of n+ s− 1 points in Rs in general position. Let h ∈ Hn(Rs) have decomposition
h =

∑
I∈Λs,n

cI NI ∈ Hn(Rs) with respect to the knot-patch basis of Hn(Rs),
corresponding to X (cf. Section 4.1.3). Then the polar form of h can be evaluated
at (ξ1, . . . , ξm+1) by the following recurrence:

Cm+1
I (ξ1, . . . , ξm+1) =

∑
i∈{1,... ,n−m+s−1}−I

CmI+{i}(ξ
1, . . . , ξm)ui,I(ξm+1),

starting from C0
I ( ) = cI , for I ∈ Λs,n. Also in this case, h(x) = Cn0 (x, . . . , x).

5. Future research

In a forthcoming paper the theory of order compatible bases, developed in Sec-
tion 4, will be applied to compute a basis for the solution space of constant coeffi-
cient PDE’s. The computations to be presented will be based on the following obser-
vations. Consider the partial differential equation p(∂)f = 0, where p ∈ Hm(Rs) is
a fixed polynomial (e.g. p = x2

1+· · ·+x2
s, in which case the PDE is the Laplace equa-

tion). Solving this PDE for f ∈ Hn(Rs), n ≥ m, amounts to finding the kernel of
the linear operator Dp : Hn(Rs)→ Hn−m(Rs), defined by Dp(f) = [ p , f ], cf. Def-
inition 2.1. It is not hard to show that this operator is the adjoint—with respect to
apolar pairing—of the multiplication operator Tp : Hn−m(Rs) → Hn(Rs), defined
by Tp(f) = p f . Therefore, we have the decomposition Hn(Rs) = KerDp ⊕ ImTp,
which is an orthogonal sum decomposition with respect to the apolar inner prod-
uct on Hn(Rs). This property was also observed by Reznick [22] and [23], and by
Beauzamy et al. [1]. In [24] these techniques are applied to obtain normal forms
for the polynomial solutions of constant (complex) coefficient partial differential
equations. Pedersen [19] applies similar techniques in the case of a PDE with real
coefficients, and to a system of PDE’s in [20]. Our forthcoming paper will ex-
ploit properties of order compatible and dual bases to construct the solution space
efficiently.

We further intend to extend our work to obtain simple algorithms for, e.g.,
degree reduction and degree elevation of multivariate Bernstein-Bézier patches and
B-patches, using the apolar inner product to define projections onto subspaces
corresponding to polynomials of lower degree.
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