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SEMI-DISCRETIZATION OF STOCHASTIC
PARTIAL DIFFERENTIAL EQUATIONS ON R1

BY A FINITE-DIFFERENCE METHOD

HYEK YOO

Abstract. The paper concerns finite-difference scheme for the approximation
of partial differential equations in R1, with additional stochastic noise. By
replacing the space derivatives in the original stochastic partial differential
equation (SPDE, for short) with difference quotients, we obtain a system of
stochastic ordinary differential equations. We study the difference between the
solution of the original SPDE and the solution to the corresponding equation
obtained by discretizing the space variable. The need to approximate the
solution in R1 with functions of compact support requires us to introduce a
scale of weighted Sobolev spaces. Employing the weighted Lp-theory of SPDE,
a sup-norm error estimate is derived and the rate of convergence is given.

1. Introduction

The mathematical modeling of stochastic systems can be realized in such a fash-
ion that the time and space behavior of the dependent variable is defined by the
superposition of a deterministic evolution and an additional weighted noise. In
this case, the weighted noise simulates the existence of the external field and the
interaction between the actual system and the outer ambient. Quite often, the
deterministic evolution is described by a partial differential equation of parabolic
type. Thus, we are led to the following stochastic partial differential equation (we
allow the coefficients a, b, c and f in the “deterministic” part to be random):{

du = (Lu+ f) dt+
∑d′

k=1 (Λku+ gk) dwkt ,
u(0, ·) = u0,

(1.1)

where Lu = au′′+ bu′+ cu, Λku = σku′+νku and a, b, c, σk, νk, f, gk are real val-
ued functions defined on Ω× [0, T ]×R1. The wkt ’s are one-dimensional independent
Wiener processes.

Stochastic PDEs of the form (1.1) have been extensively studied. Here we just
mention Krylov [11] and Rozovskii [17], in which the reader can find further infor-
mation.

Our aim is to study an approximate solution of (1.1) given by a finite-difference
method, and to analyze the sup-norm error and the rate of convergence. The finite-
difference scheme is one of the most frequently used methods for a finite dimensional
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approximation of (deterministic) elliptic and parabolic PDEs. See [13], [18]. There
are several recent papers on the finite-difference approximation of stochastic PDEs,
Gyöngy [8], Davie-Gaines [5], Gaines [6]. These authors consider equations of the
form

∂u

∂t
=
∂2u

∂x2
+ f + σ

∂2W

∂t∂x
,(1.2)

where ∂2W/∂t∂x is the space-time white noise. Since the coefficient of ∂2u/∂x2

is a constant, one can write down the solution of (1.2) and the solution of the
finite dimensional approximation of (1.2) explicitly using the (explicit) Green’s
functions, and obtain the error bound and the rate of convergence using estimates
of the Green’s functions.

The study of numerical solutions of stochastic PDEs is a very active ongoing
research area. There is an extensive literature on numerical methods for the Zakai
equation of the filtering problem. We only mention [3] (Galerkin approximation),
[7] (finite-element method), [4] (splitting-up method), [15] (Wiener chaos decom-
position). We remark that in the above works L2-space is used to measure the
difference between the exact solution and the approximate solution.

For applications to continuum physics, see [1], [2], where the so-called stochastic
interpolation method is developed and applied to many models of stochastic systems
in continuum physics. In [2], Bellomo and Flandoli studied one-dimensional SPDE
(in a bounded interval) of the form

du = [a(x)u′′ + b(x)u′ + f(t, x, u)] dt+
d′∑
k=1

φ(t, x, u) dwkt .

They obtained some estimates of the error bound under suitable regularity assump-
tions on a, b, f, φ. Their approach is based on semigroup theory and stochastic inter-
polation methods. In their analysis, it was crucial that a(x) and b(x) are functions
of x only.

Now we briefly describe the organization of the paper. In section 2, we obtain
the existence of the solution of (1.1) in a weighted Sobolev space. The weight is
introduced to deal with the fact that the solution in R1 has to be approximated
by a function defined at a finite number of points. Using Sobolev-type embedding
theorems, we prove that the solution is classical. The advantage of the Lp-theory
(over L2-theory) that we are using in this paper is that one can get the classical
solution under much less restrictive conditions on the smoothness of the coefficients
and the nonhomogeneous terms by taking sufficiently large p. This fact can be seen,
for instance, from the embedding Wn,p(Rd) ⊂ Cn−d/p(Rd), if pn > d. In section 3,
we present a finite-difference scheme for (1.1). As a consequence of discretization,
we obtain an Itô stochastic differential equation. We also show that the (average)
error satisfies a “discrete parabolic equation”. In section 4, we analyze the error
bound. By the discrete maximum principle and results from sections 2 and 3, error
estimates and the rate of convergence are obtained.

In this paper, we only present the semi-discretization in space of (1.1). One can
obtain a fully discrete problem by discretizing time also. The reader is referred to
[9], [16] and references therein. We also remark that we can consider a d-dimensional
equation as well, without any additional difficulty. We consider the 1-dimensional
case only for simplicity of notation.
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We employ the summation convention throughout; the letter N(· · · ) denotes
various constants depending only on the quantities inside the parenthesis.

2. Weighted Lp-theory of SPDE

Let R1 be 1-dimensional Euclidean space, T a fixed positive number, (Ω, F , P ) a
complete probability space, ({Ft}, t > 0) an increasing filtration of σ-fields Ft ⊂ F
containing all P -null subsets of Ω, and P the predictable σ-field generated by {Ft}.
Let {wkt ; k = 1, 2, · · · , d′} be independent one-dimensional Ft-adapted Wiener pro-
cesses defined on (Ω, F , P ). For the above standard terminologies, the reader is
referred to [12].

The argument ω ∈ Ω is usually omitted. In places where there is no danger of
confusion, other arguments may also be omitted.

We need some notations and definitions to determine in what sense a solution of
the problem (1.1) should be understood and to formulate results on its solvability.
The scales of function spaces defined below are straightforward generalizations of
the (stochastic) Banach spaces introduced by Krylov [10], [11] and by Krylov and
Rozovskii [14].

Let D be the set of real-valued Schwartz distributions defined on C∞0 (R1). For
given p > 2, r > 0 and a nonnegative real number n, define the space Hn

p,r =
Hn
p,r(R1) (called the weighted space of Bessel potentials or the weighted Sobolev

space with fractional derivatives) as the space of all generalized functions u such
that (1−∆)n/2(1+x2)r/2u ∈ Lp = Lp(R1). For u ∈ Hn

p,r and φ ∈ C∞0 , by definition

(u, φ) = ((1−∆)n/2(1 + x2)r/2u, (1−∆)−n/2φ)

=
∫
R1

[(1 −∆)n/2(1 + x2)r/2u](x)(1−∆)−n/2φ(x) dx.
(2.1)

For u ∈ Hn
p,r one introduces the norm

‖ u ‖n,p,r := ‖ (1 −∆)n/2(1 + x2)r/2u ‖p,
where ‖ · ‖p is the norm in Lp. One can easily check that Hn

p,r is a Banach space
with the norm ‖ · ‖n,p,r and the set C∞0 is dense in Hn

p,r.
Note that for integers n > 0 the space Hn

p,r coincides with the weighted Sobolev
space Wn

p,r = Wn
p,r(R1). Observe also that ‖ u ‖n,p,r = ‖ (1 + x2)r/2u ‖n,p.

We now define

Hnp,r(T ) := Lp(Ω× [0, T ],P ;Hn
p,r).

If n = 0, we use L instead of H0. The norms in these spaces are defined in an
obvious way.

Definition 2.1. For a D-valued function u ∈ Hnp,r(T ), we write u ∈ Hnp,r(T ) if
there exists (f, g) ∈ Fn−2

p,r (T ) := Hn−2
p,r (T )×(Hn−1

p,r (T ))d
′

such that for any φ ∈ C∞0 ,
with probability 1 the equality

(u(t, ·), φ) = (u(0, ·), φ) +
∫ t

0

(f(s, ·), φ) ds +
d′∑
k=1

∫ t

0

(gk(s, ·), φ) dwks(2.2)

holds for all t 6 T and u(0, ·) ∈ Lp(Ω,F0;Hn−2/p
p,r ). We also define

Hnp,r,0(T ) = Hnp,r(T ) ∩ {u : u(0, ·) = 0},
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‖ u ‖Hnp,r(T ) = ‖ u ‖Hnp,r(T ) + ‖ f ‖Hn−2
p,r (T ) +

d′∑
k=1

‖ gk ‖Hn−1
p,r (T )

+ (E ‖ u(0, ·) ‖p
H
n−2/p
p

)1/p.

(2.3)

Remarks. 1. If r = 0, we write Hnp (T ) instead of Hnp,0(T ). The spaces Hnp (T ) were
first introduced by Krylov in [10], [11].

2. For u ∈ Hnp,r(T ), if (2.2) holds, we write f = Du and gk = Sk u.
3. Observe that ‖ u ‖Hnp,r(T ) = ‖ (1 + x2)r/2u ‖Hnp (T ).

Definition 2.2. An r-generalized solution of the problem (1.1) is a function u ∈
Hnp,r(T ) such that u(0, ·) = u0, Du = au′′+bu′+cu+f and Sk u = σku′+νku+gk.

If an r-generalized solution u belongs to C0,2([0, T ]×R1), it is a solution of the
corresponding problem in the classical sense; that is, it satisfies (1.1) for all t, x and
ω from a set of full probability. In this case, we say that u is a classical solution.

We make the following assumptions.

Assumption 2.1 (uniform ellipticity). For any ω ∈ Ω, t > 0, x ∈ R1, we have

λ 6 (a− 1
2
σkσk)(ω, t, x) 6 Λ,

where λ and Λ are fixed positive constants.

Assumption 2.2 (uniform continuity). For any ε > 0, there exists a κε > 0 such
that

|a(t, x) − a(t, y)| < ε and |σk(t, x) − σk(t, y)| < ε

whenever |x− y| < κε, ω ∈ Ω, t > 0.

Assumption 2.3. a, b, c, σk, νk are P × B(R1)-measurable functions, c 6 0, and
for any ω ∈ Ω, t > 0, we have a(t, ·), b(t, ·), c(t, ·), σk(t, ·), νk(t, ·) ∈ Cn(R1).
f(t, x), gk(t, x) are predictable as functions taking values in Hn

p,r and Hn+1
p,r ,

respectively.

Assumption 2.4. For any t > 0, ω ∈ Ω,

‖ a(t, ·) ‖Cn + ‖ b(t, ·) ‖Cn + ‖ c(t, ·) ‖Cn
+ ‖ σk(t, ·) ‖Cn + ‖ νk(t, ·) ‖Cn6 K, and (f(·, ·), g(·, ·)) ∈ Fnp,r(T ).

Theorem 2.3. Let Assumptions 2.1-2.4 be satisfied and let

u0 ∈ Lp(Ω,F0;Hn+2−2/p
p,r ).

Then the Cauchy problem for equation (1.1) on [0, T ] with the initial condition
u(0, ·) = u0 has a unique r-generalized solution u ∈ Hn+2

p,r (T ). For this solution, we
have

‖ u ‖Hn+2
p,r (T )6 N{‖ f ‖Hnp,r(T ) +

d′∑
k=1

‖ gk ‖Hn+1
p,r (T )

+ (E ‖ u0 ‖pn+2−2/p,p,r)
1/p},

where the constant N depends only on n, p, λ,Λ,K, T, r and the function κε.
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Proof. Let f̄ := (1 + x2)r/2 f and ḡk := (1 + x2)r/2 gk. Then (f̄ , ḡk) ∈ Fnp (T ). We
also define ā := a, b̄ := b − 2ra x

1+x2 , c̄ := c − ra
1+x2 + r(r + 2)a x2

(1+x2)2 − rb x
1+x2 ,

σ̄k := σk, ν̄k := νk − rσk x
1+x2 and ū0 := (1 + x2)r/2 u0.

Clearly ā, b̄, c̄ satisfy Assumptions 2.1–2.4. Thus, by Theorem 3.2 (4.1) of [10]
([11]), there exists a unique solution ū ∈ Hn+2

p (T ) of{
dū = (āū′′ + b̄ū′ + c̄ū+ f̄) dt+ (σ̄ku′ + ν̄ku+ ḡk) dwkt ,
ū(0, ·) = ū0.

One can easily check that u := (1 + x2)−r/2 ū ∈ Hn+2
p,r (T ) satisfies (1.1). More-

over, since

‖ ū ‖Hn+2
p (T )6 N{‖ f̄ ‖Hnp (T ) +

d′∑
k=1

‖ ḡk ‖Hn+1
p (T ) + (E ‖ ū0 ‖pn+2−2/p,p)

1/p},

we get the desired estimate for u by the definition of the weighted spaces.

Theorem 2.4 (Embedding theorem). If p > 2, 1/2 > β > α > 1/p, then for any
function u ∈ Hn+2

p (T ), we have u ∈ Cα−1/p([0, T ], Hn+2−2β
p ) (a.s.) and for any

t, s 6 T ,

E ‖ u(t, ·)− u(s, ·) ‖pn+2−2β,p6 N(β, p, T )|t− s|βp−1 ‖ u ‖pHn+2
p (T )

,

E ‖ u(t, ·) ‖p
Cα−1/p([0,T ],Hn+2−2β

p )
6 N(β, α, p, T ) ‖ u ‖pHn+2

p (T )
.

Proof. See Theorem 3.1 (iii) of [10] or Theorem 6.2 of [11].

Corollary 2.5 (Existence of a classical solution). Suppose that 1/2 > β > α >
1/p and n + 2 − 2β − 1/p > 2. Then the r-generalized solution u ∈ Hn+2

p,r (T ) of
(1.1) is the classical solution.

Proof. This corollary follows from Theorem 2.4 and the Sobolev embedding theo-
rem, Hn+2−2β

p ⊂ Cn+2−2β−1/p.

Corollary 2.6. If p > 2, 1/2 > β > α > 1/p and n + 2 − 2β − 1/p > 0, then for
any function u ∈ Hn+2

p,r (T ), we have

E sup
06t6T

sup
|x|>R

|u(t, x)|p 6 N(p, T, n, α, β)
(1 +R2)rp/2

‖ u ‖pHn+2
p,r (T )

.

Proof. Let v(t, x) := (1 + x2)r/2u(t, x). Then,

sup
|x|>R

|u(t, x)| 6 sup
|x|>R

(1 + x2)r/2

(1 +R2)r/2
|u(t, x)| = 1

(1 +R2)r/2
sup
|x|>R

|v(t, x)|.

Thus,

E sup
06t6T

sup
|x|>R

|u(t, x)|p 6 1
(1 +R2)rp/2

E sup
06t6T

sup
|x|>R

|v(t, x)|p.

But since v ∈ Hn+2
p (T ), by Theorem 2.4,

E sup
06t6T

sup
|x|>R

|v(t, x)|p 6 E|v|p
Cα−1/p([0,T ],Cn+2−2β−1/p)

6 N ‖ v ‖pHn+2
p (T )

= N ‖ u ‖pHn+2
p,r (T )

.

The corollary is proved.
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3. Discretization

We begin our discussion of a finite-difference scheme for (1.1) by defining a grid
of points. Take a number h ∈ (0, 1]. Define a uniform h-grid on [−hM, hM ] by

ZMh := {xi = hi, i = 0,±1,±2, · · · ,±M}.

Let R := hM . For a random function v defined on Ω × [0, T ] × ZMh , we write
vi(ω, t) for the value of v at (ω, t, xi). For a function v defined on Ω× [0, T ]× R1,
we define finite-difference operators Lh and Λkh by

Lhv(t, x) = a(t, x)
1
h2

[v(t, x+ h)− 2v(t, x) + v(t, x− h)]

+ |b(t, x)| 1
h

[v(t, x+ h sign b)− v(t, x)] + c(t, x)v(t, x),

Λkhv(t, x) = σk(t, x)
1
h

[v(t, x+ h)− v(t, x)] + νk(t, x)v(t, x).

Note that Lh and Λkh are obtained by replacing the space derivatives in the
operator L and Λk in (1.1) by the corresponding difference quotients. Note also
that Lhv(t, xi) and Λkhv(t, xi) make sense for a function v defined on Ω× [0, T ]×ZMh
if i 6= ±M .

Lemma 3.1. Let δ be an arbitrary number in (0, 1). For any fixed ω, t, and u(t, ·) ∈
C2+δ, we have

|Lu(t, ·)− Lhu(t, ·)|C0 6 Nhδ|u(t, ·)|C2+δ ,

where N = N(|a(t, ·)|C0 , |b(t, ·)|C0).

Proof.

|a(t, x)u′′(t, x)− a(t, x)
1
h2

[u(t, x+ h)− 2u(t, x) + u(t, x− h)]|

6 |a(t, ·)|C0 |u′′ − 1
h2

[u(t, x+ h)− 2u(t, x) + u(t, x− h)]|

6 |a(t, ·)|C0
hδ

3
|u′′(t, ·)|Cδ .

Also,

|b(t, x)u′(t, x) − |b(t, x)| 1
h

[u(t, x+ h sign b)− u(t, x)]|

6
{
|b(t, x)| |u′(t, x)− 1

h [u(t, x+ h)− u(t, x)]|, if b(t, x) > 0
|b(t, x)| |u′(t, x) + 1

h [u(t, x− h)− u(t, x)]|, if b(t, x) < 0
6 |b(t, ·)|C0 h|u′′(t, ·)|C0 .

Now notice that h 6 hδ.

From now on, we assume that Assumptions 2.1–2.4 are satisfied with n and p
such that the conditions in Corollary 2.5 are satisfied.
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Let uh be a function in Ω× [0, T ]×ZMh . We consider the following Itô stochastic
differential equation in [0, T ]:

duh(t, x) = [Lhuh(t, x) + f(t, x)] dt+
∑d′

k=1[Λkhuh(t, x) + gk(t, x)] dwkt ,
for x 6= x±M ,

uh(t, x±M ) = 0, for all t ∈ [0, T ],
uh(0, x) = u0(x), for all x ∈ ZM−1

h .

(3.1)

Note that under our assumption, u0(x), f(·, x) and gk(·, x) make sense pointwise
by the Sobolev embedding theorem.

Lemma 3.2. There exists a unique solution

(uh(·, ·, x−M ), uh(·, ·, x−M+1), · · · , uh(·, ·, xM−1), uh(·, ·, xM )) ∈ R2M+1

of (3.1), and

E

∫ T

0

M∑
j=−M

(uh(t, xj))2 dt <∞.(3.2)

Proof. First notice that

|b(t, x)| 1
h

[uh(t, x+ h sign b)− uh(t, x)]

= b+(t, x)
1
h

[uh(t, x+ h)− uh(t, x)] + b−(t, x)
1
h

[uh(t, x− h)− uh(t, x)],

where b+ = |b|+b
2 and b− = |b|−b

2 . Thus, (3.1) is a linear system of stochastic
differential equations in R2M+1. Note also that the coefficients a, b, c, σk, νk are
bounded (by a constant K), and by the Sobolev embedding theorem

E

∫ T

0

M∑
j=−M

f2(t, xj) dt 6 N(T,M, p) (E
∫ T

0

|f(t, ·)|pC0 dt)2/p

6 N(T,M, p) ‖ f ‖2Hnp,r(T ),

(3.3)

E

∫ T

0

M∑
j=−M

d′∑
k=1

(gk)2(t, xj) dt 6 N(E
∫ T

0

d′∑
k=1

|gk(t, ·)|pC0 dt)2/p

6 N
d′∑
k=1

‖ g ‖2Hn+1
p,r (T )

.

(3.4)

Let uh(t) := (uh(t, x−M ), uh(t, x−M+1), · · · , uh(t, xM−1), uh(t, xM )) ∈ R2M+1, and
let uh,i(t) be the i-th component of uh(t). We rewrite (3.1):

duh(t) = Ah(t,uh(t)) dt +
d′∑
k=1

Bkh(t,uh(t)) dwkt ,(3.5)

where Ah and Bkh are the drift and diffusion terms in (3.1), respectively. Note that
Ah and Bkh are of the following forms:{

Aih(t,u) =
∑M

j=−M αij(t)uj + fi(t),
Bk,ih (t,u) =

∑M
j=−M βkij(t)uj + gki (t),
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for u = (ui), f(t) = (fi(t)),gk(t) = (gki (t)) ∈ R2M+1. To show the unique solvability
of (3.5), we apply Theorem 5.1.1 of [12]. To employ this theorem, we need to check

(i). (monotonicity condition) There exists a function K(t) > 0 such that
E
∫ T

0 K(t) dt <∞ and for all u,v ∈ R2M+1, t ∈ [0, T ], ω ∈ Ω,

2(u− v, Ah(t,u)−Ah(t,v))+ ‖ Bh(t,u)−Bh(t,v) ‖6 K(t)|u− v|2,
where | · |, ‖ · ‖ are norms in Rd and R(2M+1)×d′ , respectively.

(ii). (growth condition) For all u, t ∈ [0, T ], ω ∈ Ω,

2(u, Ah(t,u))+ ‖ Bh(t,u) ‖26 K(t)(1 + |u|2).

Let K(t) := N(K)(1 + |f(t, ·)|2C0 +
∑d′

k=1 |gk(t, ·)|2C0). By the previous obser-
vation, E

∫ T
0 K(t) dt < ∞. (i) and (ii) follow from the linearity of Ah, Bkh, the

boundedness of αij , βkij and the definition of K(t) with an obvious choice of N(K).
The unique solvability is proved.

Now we show (3.2). Recall that uh(t) is a (2M + 1)-dimensional continuous
stochastic process and satisfies

uh(t) = u0 +
∫ t

0

Ah(s,uh(s)) ds +
∫ t

0

Bkh(t,uh(s)) dwks(3.6)

almost surely. Since uh(t) is also a locally square integrable local martingale, there
exists a sequence of Markov times τn such that τn ↑ T a.s. and

E

∫ τn

0

|uh(t)|2 dt <∞.

We square both sides of (3.6) and then take expectations. Then for all t 6 T
and n we have

E|uh(t ∧ τn)|2

6 3E|u0|2 + 3E(
∫ t∧τn

0

Ah(s,uh(s)) ds)2 + 3E(
∫ t∧τn

0

Bkh(t,uh(s)) dwks )2

6 3E|u0|2 +N(T )E
∫ t∧τn

0

(Ah)2(s,uh(s)) ds+ 3E
∫ t∧τn

0

(Bkh)2(t,uh(s)) ds.

(3.7)

In the last inequality we used the Cauchy-Schwarz inequality and the L2-isometry
property of the stochastic integral. Since αij and βkij are bounded, we obtain from
(3.7)

E|uh(t ∧ τn)|2 6 3E|u0|2 +N(K,h, T,M)E
∫ t∧τn

0

|uh(s)|2 ds

+N(T )E
∫ t∧τn

0

|f(s)|2 + |gk(s)|2 ds.
(3.8)

Now by the Gronwall inequality, we obtain from (3.8)

E|uh(t ∧ τn)|2 6 N(K,h, T,M) (E|u0|2 + E

∫ T

0

|f(s)|2 + |gk(s)|2 ds).

Thus, we get

E

∫ t∧τn

0

|uh(s)|2 ds 6 N(K,h, T,M) (E|u0|2 + E

∫ T

0

|f(s)|2 + |gk(s)|2 ds).(3.9)
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Note that by (3.3) and (3.4), the right hand side of (3.9) is bounded by a constant
independent of n. We let n →∞ in (3.9) and apply Fatou’s lemma. Finally, (3.2)
is proved.

Now let u be the classical solution of (1.1), which exists by the assumption on
n, p and Corollary 2.5. Then for all t ∈ [0, T ], x ∈ ZM−1

h ,

u(t, x) = u0(x) +
∫ t

0

Lu(s, x) + f(s, x) ds

+
d′∑
k=1

∫ t

0

Λku(s, x) + gk(s, x) dwks , a.s.
(3.10)

And by Lemma 3.2,

uh(t, x) = u0(x) +
∫ t

0

Lhuh(s, x) + f(s, x) ds

+
d′∑
k=1

∫ t

0

Λkhuh(s, x) + gk(s, x) dwks , a.s.
(3.11)

Theorem 3.3. Let e(t, x) := u(t, x)− uh(t, x). Assume x 6= x±M .
(i). Ee(t, x) satisfies{

d
dtEe(t, x) = LhEe(t, x) + E(Lu(t, x)− Lhu(t, x)),
Ee(0, x) = 0.

(ii). If σk = νk = 0, e(t, x) almost surely satisfies{
de
dt (t, x) = Lhe(t, x) + Lu(t, x)− Lhu(t, x),
e(0, x) = 0.

Proof. (i). First we claim that

E

∫ t

0

Λku(s, x)− Λkhuh(s, x) dwks = 0.

Since a stochastic integral is a local martingale, it suffices to show that

E

∫ T

0

{Λku(s, x)− Λkhuh(s, x)}2 ds <∞.

We calculate

E

∫ T

0

|Λku(s, x)|2 ds = E

∫ T

0

|σk(s, x)u′(s, x) + νk(s, x)u(s, x)|2 ds

6 2K2E

∫ T

0

|u′(s, x)|2 + |u(s, x)|2 ds

6 N(K,T, p) (E
∫ T

0

|u′(s, x)|p + |u(s, x)|p ds)2/p

6 N(K,T, p) ‖ u ‖2Hn+2
p,r (T )

<∞,

(3.12)
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E

∫ T

0

|Λkhuh(s, x)|2 ds

= E

∫ T

0

|σk(s, x)
1
h
{uh(s, x+ h)− uh(s, x)} + νk(s, x)uh(s, x)|2 ds

6 N(K,h)E
∫ T

0

|uh(s, x+ h)|2 + |uh(s, x)|2 ds <∞,

(3.13)

by Lemma 3.2. The claim is proved. If we subtract (3.11) from (3.10), we get

e(t, x) =
∫ t

0

Lu(s, x)− Lhuh(s, x) ds+
d′∑
k=1

∫ t

0

Λku(s, x)− Λkhuh(s, x) dwks

=
∫ t

0

Lhe(s, x) ds+
∫ t

0

Lu(s, x)− Lhu(s, x) ds

+
d′∑
k=1

∫ t

0

Λku(s, x)− Λkhuh(s, x) dwks .

By the claim, if we take the expectation in the above equality, we get

Ee(t, x) =
∫ t

0

ELhe(s, x) ds+
∫ t

0

E(Lu(s, x)− Lhu(s, x)) ds.

Thus, we see that Ee(t, x) is differentiable in t and

d

dt
Ee(t, x) = LhEe(t, x) + E(Lu(t, x)− Lhu(t, x))

and Ee(0, x) = 0.
(ii). We subtract (3.11) from (3.10). Then we get

e(t, x) =
∫ t

0

Lu(s, x)− Lhuh(s, x) ds

=
∫ t

0

Lhe(s, x) ds+
∫ t

0

Lu(s, x)− Lhu(s, x) ds,
(3.14)

for all t ∈ [0, T ], x ∈ ZM−1
h . Now if we differentiate (3.14), we get the desired

equation.

4. Error estimates

We begin with a lemma which is a standard tool in the study of (deterministic)
partial differential equations.

Lemma 4.1 (Discrete maximum principle). Fix ω. Suppose that a function v de-
fined on Ω× [0, T ]× ZMh satisfies{

dv
dt (t, x) 6 Lhv(t, x) for all t ∈ [0, T ] and x ∈ ZM−1

h ,

v(0, x) 6 0 for all x ∈ ZMh , and v(t, x±M ) 6 0, for all t ∈ [0, T ].

Then v(t, x) 6 0 for all (t, x) ∈ [0, T ]× ZMh .
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Proof. Take a constant γ > 0 and define v̄ = v − γ
T−t . Let (t∗, xl) be a point at

which v̄ takes its maximum value. Observe that t∗ < T . Actually if v̄(t∗, xl) > 0,
then t∗ = 0 or l = M or l = −M . Indeed, if t∗ > 0 and l 6= ±M , then

a(t∗, xl)
1
h2

[v̄(t∗, xl+1)− 2v̄(t∗, xl) + v̄(t∗, xl−1)] 6 0,

|b(t∗, xl)|
1
h

[v̄(t∗, xl+sign b(t∗,xl))− v̄(t∗, xl)] 6 0,

c(t∗, xl)v̄(t∗, xl) 6 0 and
dv̄

dt
(t∗, xl) = 0.

Since Lhv = Lh(v̄ + γ
T−t ) = Lhv̄ + c(t, x) γ

T−t 6 Lhv̄, from the assumption and the
above inequalities we get

0 6 Lhv(t∗, xl)−
dv

dt
(t∗, xl)

6 Lhv̄(t∗, xl)−
dv̄

dt
(t∗, xl)−

γ

(T − t)2

6 − γ

(T − t)2
< 0,

which is impossible. Thus, either v̄(t∗, xl) < 0 or t∗ = 0 or l = M or l = −M . In
any case, we see that v̄(t∗, xl) 6 0 and v̄(t, x) 6 0 for all (t, x) ∈ [0, T ]×ZMh . Since
γ is arbitrary, the lemma is proved.

Lemma 4.2. The function e defined in Theorem 3.3 satisfies

sup
[0,T ]×ZMh

|Ee(t, x)| 6 T E sup
[0,T ]×ZM−1

h

|Lu− Lhu|+ E sup
t∈[0,T ],k=±M

|u(t, xk)|.

If σk = νk = 0, then

sup
[0,T ]×ZMh

|e(t, x)| 6 T sup
[0,T ]×ZM−1

h

|Lu− Lhu|+ sup
t∈[0,T ],k=±M

|u(t, xk)|.

Proof. Let

N1 := E sup
t∈[0,T ],k=±M

|e(t, xk)| = E sup
t∈[0,T ],k=±M

|u(t, xk)|

and

N0 := E sup
[0,T ]×ZM−1

h

|Lu− Lhu|.

The last equality for N1 follows from (3.1). Then for ē = e−N0t−N1, we have

d

dt
Eē =

d

dt
Ee−N0 = LhEe(t, x) + E(Lu− Lhu)(t, x)−N0

6 LhEe(t, x) = LhEē+ c(t, x)(N0t+N1) 6 LhEē(t, x).

Obviously, Eē(0, x) 6 0 and Eē(t, x±M ) 6 0. Therefore, by Lemma 4.1, Eē(t, x)
6 0 and Ee(t, x) 6 N0T +N1. Similarly, −Ee(t, x) 6 N0T +N1. The first desired
inequality is proved.

To prove the second inequality, we just copy the above proof without writing
“E”.

Now we present the main result of this paper.
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Theorem 4.3. Suppose that n and p satisfy

n+ 2− 2β − 1/p > 2 + δ and 1/2 > β > α > 1/p,

for a fixed δ ∈ (0, 1). Then the function e satisfies

sup
[0,T ]×ZMh

|Ee(t, x)| 6 N(hδ +
1

(1 +R2)r/2
)(E ‖ u0 ‖pn+2−2/p,p,r)

1/p

+N(hδ +
1

(1 +R2)r/2
)(‖ f ‖Hnp,r(T ) +

d′∑
k=1

‖ gk ‖Hn+1
p,r (T )),

(4.1)

where N = N(n, p, T,K, r, λ,Λ, κε, α, β).
If σk = νk = 0, then

E sup
[0,T ]×ZMh

|e(t, x)|p 6 N(hδp +
1

(1 +R2)rp/2
)E ‖ u0 ‖pn+2−2/p,p,r

+N(hδp +
1

(1 +R2)rp/2
)(‖ f ‖pHnp,r(T ) +

d′∑
k=1

‖ gk ‖pHn+1
p,r (T )

).

(4.2)

Proof. We first prove (4.2). The proof of (4.1) is similar and easier. By Lemma 4.2
and Lemma 3.1,

sup
[0,T ]×ZMh

|e(t, x)| 6 T sup
t∈[0,T ]

|Lu(t, ·)− Lhu(t, ·)|C0 + sup
t∈[0,T ],k=±M

|u(t, xk)|

6 N(T,K)hδ sup
t∈[0,T ]

|u(t, ·)|C2+δ + sup
t∈[0,T ],k=±M

|u(t, xk)|.

We take pth powers and mathematical expectations:

E sup
[0,T ]×ZMh

|e(t, x)|p 6 N(T,K, p)hδpE sup
t∈[0,T ]

|u(t, ·)|p
C2+δ

+N(p)E sup
t∈[0,T ],k=±M

|u(t, xk)|p.

We apply Theorem 2.4 and Corollary 2.6 to the right hand side of the above in-
equality, to get

E sup
[0,T ]×ZMh

|e(t, x)|p

6 N(T,K, p, α, β)hδp ‖ u ‖pHn+2
p,r (T )

+
N(p, T, n, α, β)
(1 +R2)rp/2

‖ u ‖pHn+2
p,r (T )

.

Finally, we apply Theorem 2.3, and (4.2) is proved.
Now we show (4.1). By Lemma 4.2 and Jensen’s inequality, we get

sup
[0,T ]×ZMh

|Ee(t, x)|

6 T (E sup
[0,T ]×ZM−1

h

|Lu− Lhu|p)1/p + (E sup
t∈[0,T ],k=±M

|u(t, xk)|p)1/p.

We apply Lemma 3.1 and Corollary 2.6 to estimate the right hand side. Then
we get

sup
[0,T ]×ZMh

|Ee(t, x)|

6 TNhδ(E sup
t∈[0,T ]

|u(t, ·)|p
C2+δ)1/p +

N

(1 +R2)r/2
‖ u ‖Hn+2

p,r (T ) .

We apply Theorem 2.3 and Theorem 2.4. The theorem is proved.
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From the above theorem, we see that if σk = νk = 0, one can select the mesh
size h and the diameter R to guarantee that up to any specified final time T , the
pth moment of the sup-norm error is less than any given ε > 0. If σk and νk are not
identically zero, one can make the sup-norm of the average error arbitrarily small.

Remarks. 1. As we remarked above, when σk and νk are not identically zero,
we only have (4.1), which is much weaker than (4.2). The main idea to obtain
these estimates was to derive certain equations for the error and to apply the dis-
crete maximum principle, Lemma 4.1, to these equations. Since one does not have
maximum principle for general stochastic PDEs, we had to take the expectation
of the error and obtain an equation for Ee(t, x). A new approach based on the
L2-theory of discrete stochastic evolution equations and embedding theorems has
recently been investigated by the author [19]. Estimates (full-discretization) similar
to (4.2) were obtained for general stochastic PDEs under rather strong regularity
assumptions on the coefficients and the data.

2. Lemma 3.1 can be strengthened for u(t, ·) ∈ C4:

|Lu(t, ·)− Lhu(t, ·)|C0 = O(h2)

if we approximate
∂u

∂x
(t, x) ' 1

2h
[u(t, x+ h)− u(t, x− h)].

But to obtain a solution in C4, we need to assume that

n+ 2− 2β − 1/p > 4

instead of n + 2 − 2β − 1/p > 2 + δ; thus we must require higher regularity for
the coefficients and the data. As we explained in the Introduction, our aim was
to obtain solutions and estimates for them under less restrictive conditions on the
smoothness of the coefficients and the data by employing Lp-theory.
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