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A PARAMETRIC FAMILY OF QUINTIC THUE EQUATIONS

ISTVÁN GAÁL AND GÜNTER LETTL

Abstract. For an integral parameter t ∈ Z we investigate the family of Thue
equations

F (x, y) = x5 + (t− 1)2x4y − (2t3 + 4t + 4)x3y2

+ (t4 + t3 + 2t2 + 4t − 3)x2y3 + (t3 + t2 + 5t+ 3)xy4 + y5 = ±1 ,

originating from Emma Lehmer’s family of quintic fields, and show that for
|t| ≥ 3.28 ·1015 the only solutions are the trivial ones with x = 0 or y = 0. Our
arguments contain some new ideas in comparison with the standard methods
for Thue families, which gives this family a special interest.

1. Introduction

For t ∈ Z let us define the polynomial

ft(x) = x5 + (t− 1)2x4 − (2t3 + 4t+ 4)x3

+ (t4 + t3 + 2t2 + 4t− 3)x2 + (t3 + t2 + 5t+ 3)x+ 1 .

This family of quintic polynomials was first considered by Emma Lehmer (cf. [6]).
Note that instead of the original parameter n we use the parameter t = n + 1,
which fits our arguments better (cf. [11, p. 548]). The corresponding parametric
family of totally real cyclic quintic fields Kt = Q(ϑt), ϑt a root of ft, was also
investigated by Schoof and Washington [11] and Darmon [2] for prime conductors
m0 = t4 + t3 + 6t2 + 6t+ 11.

In a recent paper Gaál and Pohst [3] showed that any four distinct roots of
ft form a fundamental system of units in Kt for any conductor m0, constructed
explicitly an integral basis of Kt for those m0 that are square free apart from 5,
and studied the problem of power integral bases.

In the present paper we will investigate the corresponding family of quintic Thue
equations

(1) F (x, y) = x5 + (t− 1)2x4y − (2t3 + 4t+ 4)x3y2

+ (t4 + t3 + 2t2 + 4t− 3)x2y3 + (t3 + t2 + 5t+ 3)xy4 + y5 = ±1 .

The first infinite parametric family of Thue equations was a cubic one, studied
by Thomas [12]. He proved that if the parameter is large enough, the equation has
only the trivial solutions. His ideas were extended to several other families of cubic
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and quartic Thue equations in Thomas [13], Pethő [9], Mignotte, Pethő and Roth
[8], Lettl and Pethő [7], Pethő and Tichy [10]; for a survey see [5]. Heuberger [4]
was the first who obtained results on a quintic family.

The above quoted papers usually apply some standard techniques for Thue equa-
tions and Baker’s method to derive an upper bound for the unknown exponents of
the fundamental units (corresponding to a non-trivial solution) in terms of the
parameter. If the rank of the unit group is small, a difference in the size of the
logarithms of the fundamental units implies a difference in the order of magnitude
of the exponents. This allows us to derive a lower bound for the largest exponent,
contradicting the upper bound and thus proving the non-existence of non-trivial
solutions if the parameter is large enough.

Investigating equation (1), we have to handle a unit group of rank 4, and it
turns out that the exponents have the same order of magnitude. So we had to
design a new method to overcome this problem. Using asymptotic expansions of
the expressions involved, we construct non-vanishing linear combinations of the
exponents, which are small. These allow us to derive lower bounds for |y| and the
largest exponent, and again one obtains the desired contradiction for sufficiently
large parameters. This method can be applied for families of Thue equations with
high unit rank, as long as the coefficients of the asymptotic expansions of the roots
with respect to the parameter are rational.

The main result of this paper is the following.

Theorem. For |t| ≥ 3.28 · 1015 the only integral solutions of equation (1) are the
trivial ones,

(x, y) = (±1, 0), (0,±1) .

We remark that for the calculations involved in our estimates we extensively
used Maple.

2. Elementary estimates

For t ∈ Z, let α be a root of the polynomial ft(x) = F (x, 1). The field K =
Q(α) is a totally real cyclic field, the Galois group of which is generated by the
automorphism

ϕ : α 7−→ α′ =
(t+ 1) + (t− 1)α− α2

1 + (t+ 1)α
.

We denote the roots of ft(x) by α1, . . . , α5, such that α1 is the smallest one and
ϕ(αi) = αi+1 for i = 1, . . . , 5 (note that here and in the following the indices of the
αi are to be taken mod(5)). According to [3], any four distinct roots of ft(x) form
a system of fundamental units in K.

From the asymptotic expansions of the roots we obtain that for |t| ≥ 100 one
has

α1 = −t2 − 2− 1 + δ1

t
, α2 = t+

1
t
− 1
t3
− 1 + δ2

t4
,

α3 = − 1
t3

+
1
t4

+
3
t5
− 4 + δ3

t6
, α4 = t+ 1 +

1
t
− 1
t3
− 1 + δ4

t4
,

α5 = −1
t

+
1 + δ5

t4
,

(2)
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with some |δi| < 0.1 (i = 1, . . . , 5). This can be checked by substituting these
expressions with δi = ±0.1 into ft(x) and observing that ft(x) changes its sign
between these two arguments. Let us remark that for t ≥ 0 one can show that
α1 < α5 < α3 < α2 < α4, whereas for t < 0 one has α1 < α2 < α4 < α3 < α5.

If y = 0, (1) has only the trivial solutions (±1, 0). So let us assume for the
following that |t| ≥ 100 and that (x, y) ∈ Z2 is a solution of (1) with |y| ≥ 1. Put

βj = x− αjy for j = 1, . . . 5,

and define i to be that index with |βi| = min1≤j≤5 |βj |. Then for m 6= i we obtain∣∣∣∣αm − x

y

∣∣∣∣ < |αm − α̃i,m| ,(3)

where α̃i,m is the arithmetic mean of αi and its neighbouring root between αi
and αm. (This may be different for t ≥ 0 and t < 0. Indeed, if e.g. i = 4
and t ≥ 0 then α̃4,m = (α2 + α4)/2 for all m 6= 4, whereas for t < 0 one has
α̃4,1 = α̃4,2 = (α2 + α4)/2 and α̃4,3 = α̃4,5 = (α3 + α4)/2.) Using (3), we deduce
that ∣∣∣∣αi − x

y

∣∣∣∣ =
1
|y|5 ·

1∏
m 6=i

∣∣∣αm − x
y

∣∣∣ ≤ 1
|y|5 ·

1∏
m 6=i |αm − α̃i,m|

,

and by estimates (2) for the roots we obtain, for all i = 1, . . . , 5,∣∣∣∣αi − x

y

∣∣∣∣ < 8.06
|y|5 |t|3 .(4)

Since |t| ≥ 100, this implies |αi−x/y| < 1/(2 |y|2); thus x/y is a convergent arising
from the continued fraction expansion of αi. Calculating the continued fraction
expansion of the roots, we obtain for t ≥ 5

α1 = 〈−t2 − 3; 1, t− 1, [t/3], . . . 〉,
α2 = 〈t; t, t− 1, . . . 〉,
α3 = 〈−1; 1, t3 + t2 + 4t+ 2, . . . 〉,
α4 = 〈t+ 1; t, t− 1, . . . 〉,
α5 = 〈−1; 1, t− 1, t2 − t+ 4, . . . 〉 ,

and for t ≤ −8

α1 = 〈−t2 − 2; |t|, [(|t| − 1)/3], . . . 〉,
α2 = 〈t− 1; 1, |t| − 1, |t|+ 1, . . . 〉,
α3 = 〈0;−t3 − t2 − 4t− 3, [|t|/2]− 1, . . . 〉,
α4 = 〈t; 1, |t| − 1, |t|+ 1, . . . 〉,
α5 = 〈0; |t| − 1, 1, t2 + |t|+ 4, . . . 〉 ,

where [x] denotes the largest integer not exceeding x. To get the continued fraction
expansion of the roots we had Maple calculate them for −20 ≤ t ≤ 20, from which
we guessed the general shape of the partial quotients. For the proof of these expan-
sions let us note that the partial quotients aj for all 0 ≤ j ≤ m of the continued
fraction expansion of some real number α = [a0; a1, a2, . . . ] are determined by the
property that α lies between [a0; a1, . . . , am] and [a0; a1, . . . , am + 1]. Calculating
the above expressions with (an upper bound for) the last indicated partial quotient
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am and (a lower bound for) am + 1, resp., one verifies that ft(x) changes its sign
between these two values for all t which are to be considered.

From the above continued fractions we can calculate all convergents of the roots
with denominators less than t2 + 1 (in the case of α1 one also has to consider some
possible small values for the next two partial quotients which are not indicated
in the above expansions). Substituting the numerators and denominators of these
convergents for x, y into (1), we do not get any solutions except the trivial one
(0,±1). For this reason we conclude that

|y| > t2 .(5)

3. Baker’s method

Let j, k be such that i, j, k are distinct indices among 1, . . . , 5. From Siegel’s
identity

(αi − αj)βk + (αj − αk)βi + (αk − αi)βj = 0

and using (4), we obtain∣∣∣∣∣∣∣αi − αjαi − αk
· βk
βj

∣∣∣− 1
∣∣∣∣ ≤ ∣∣∣∣αi − αjαi − αk

· βk
βj
− 1
∣∣∣∣ =

∣∣∣∣αk − αjαi − αk
· βi
βj

∣∣∣∣
≤
∣∣∣∣αk − αjαi − αk

∣∣∣∣ ·
∣∣∣∣∣αi −

x
y

αj − x
y

∣∣∣∣∣ <
∣∣∣∣αk − αjαi − αk

∣∣∣∣ · 8.06 |y|−5|t|−3

|αj − αi| − 8.06 |t|−3
.

In order to get appropriate estimates we choose (i, j, k) = (1, 3, 5), (2, 5, 3), (3, 1, 4),
(4, 1, 3), (5, 2, 4) in the five cases that are to be considered, depending on the value
of i. By (2) one obtains that for all t with |t| ≥ 100∣∣∣∣αk − αjαi − αk

∣∣∣∣ · 8.06 |y|−5|t|−3

|αj − αi| − 8.06 |t|−3
<

8.1
|y|5 |t|4 .

Since for any real z ≥ 0.2032 the inequality | log(z)| < 2 |z − 1| holds, we finally
conclude from these estimates that for each i ∈ {1, . . . , 5}

Λi :=
∣∣∣∣log

∣∣∣αi − αj
αi − αk

· βk
βj

∣∣∣∣∣∣∣ ≤ 2
∣∣∣∣∣∣∣αi − αjαi − αk

· βk
βj

∣∣∣− 1
∣∣∣∣ < 16.2
|y|5 |t|4 .(6)

Next we are going to apply Baker’s method to get a lower estimate for Λi. We
take α1, α2, α3, α4 as a system of fundamental units. Then there are u1, . . . , u4 ∈ Z
such that for m = 1, . . . , 5 we have

βm = αu1
m αu2

m+1 α
u3
m+2 α

u4
m+3 ,(7)

and so

Λi =
∣∣∣∣log

∣∣∣αi − αj
αi − αk

∣∣∣+ u1 log
∣∣∣αk
αj

∣∣∣+ u2 log
∣∣∣αk+1

αj+1

∣∣∣+ u3 log
∣∣∣αk+2

αj+2

∣∣∣+ u4 log
∣∣∣αk+3

αj+3

∣∣∣∣∣∣∣ .
(8)

To obtain good estimates for log |αm| and log |αm − αn| we derive from the series
expansion of the logarithm the following auxiliar result:

Lemma. Let a1, a2, a3, t ∈ R with |t| ≥ 100, |a1| ≤ 1, |a2| ≤ 3, |a3| ≤ 5 and
−3 < −a1a3 + a2

1a2 < 8. Then

log
(

1 +
a1

t
+
a2

t2
+
a3

t3

)
=
a1

t
+
a2 − a2

1/2
t2

+
a3 − a1a2 + a3

1/3 + δ̃

t3

for some δ̃ ∈ R with |δ̃| < 0.1.
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Proof. Putting c := a1/t+a2/t
2 +a3/t

3, the above conditions yield |c| ≤ 1.0305/|t|,
and by estimating the series expansion of the logarithm we obtain

0 ≤ c− c2

2
+
c3

3
− log(1 + c) <

0.003
|t|3 .

Next one can show that the difference between c− c2/2 + c3/3 and the expression
claimed in the lemma is at most 0.083/|t|3. Combining these inequalities, we get
the assertion.

Applying our lemma and using (2), we obtain the following estimates:

log |α1| = 2 log |t|+ 2
t2

+
1 + δ6

t3
,

log |α2| = log |t|+ 1
t2

+
δ7

t3
,

log |α3| = −3 log |t| − 1
t
− 7

2t2
+

2/3 + δ8

t3
,

log |α4| = log |t|+ 1
t

+
1

2t2
+
−2/3 + δ9

t3
,

log |α5| = − log |t|+ −1 + δ10

t3
,

(9)

where |δm| < 0.2, m = 6, . . . , 10, and similarly,

log |α1 − α2| = 2 log |t|+ 1
t

+
3

2t2
+

1/3 + δ11

t3
,

log |α1 − α3| = 2 log |t|+ 2
t2

+
1 + δ12

t3
,

log |α1 − α4| = 2 log |t|+ 1
t

+
5

2t2
+
−2/3 + δ13

t3
,

log |α1 − α5| = 2 log |t|+ 2
t2

+
δ14

t3
,

log |α2 − α3| = log |t|+ 1
t2

+
δ15

t3
,(10)

log |α2 − α4| =
δ16

t3
,

log |α2 − α5| = log |t|+ 2
t2

+
δ17

t3
,

log |α3 − α4| = log |t|+ 1
t

+
1

2t2
+
−2/3 + δ18

t3
,

log |α3 − α5| = − log |t| − 1
t2

+
δ19

t3
,

log |α4 − α5| = log |t|+ 1
t

+
3

2t2
+
−5/3 + δ20

t3
,

where |δm| < 0.3, m = 11, . . . , 20.
Now we apply the theorem of Baker and Wüstholz [1, p. 20] to the linear form

of logarithms (8) with n = d = 5 and U = max{|u1|, . . . , |u4|}. This yields

log |Λi| > −18 · 6! 561607 log 50 · h′
(
αi − αj
αi − αk

)
h′
(
αk
αj

)4

logU .
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Note that the terms of the linear forms are linearly independent over Q, since by
our choice of the indices (i, j, k) the numbers (αi − αj)/(αi − αk) are not units.
Using (9) and (10), it is a routine matter to estimate the heights of the algebraic
numbers involved, and we obtained

h′
(
αk
αj

)
= h′

(
α1

α3

)
< 1.0005 log |t| and h′

(
αi − αj
αi − αk

)
< 0.801 log |t| ,

and finally the lower bound

Λi > exp
(
−0.1707 · 1025 (log |t|)5 logU

)
,(11)

valid for each i.

4. A lower bound for U

Taking logarithms of the absolute values of (7) yields the system of equations

log |y|+ log
∣∣∣∣αm − x

y

∣∣∣∣ = u1 log |αm|+ u2 log |αm+1|+ u3 log |αm+2|+ u4 log |αm+3|

(12)

for m = 1, . . . , 5, m 6= i. The determinant of this system of linear equations in
u1, . . . , u4 is, up to sign, just the regulator RK of the field K, and using (9) we get

RK = 71(log |t|)4 +
56(log |t|)3

t
+

308(log |t|)3 + 21(log |t|)2 + δ21

t2

= (71 + δ22)(log |t|)4
(13)

with |δ21| < 115 and |δ22| < 0.13.
Note that by (4) and (5) we have

log
∣∣∣∣αm − x

y

∣∣∣∣ = log
∣∣∣∣αm − αi +

δ23

t13

∣∣∣∣ ,
where |δ23| < 8.06. By (2) we obtain for these expressions the same asymptotic
expansions as in (10) for |αm −αi|, again with some |δm| < 0.3 for m = 11, . . . , 20.

For each case of i ∈ {1, . . . , 5} we solve the system of linear equations (12) by
using Cramer’s rule and obtain

RK uj = log |y|
(
dj1(log |t|)3 +

dj2(log |t|)2

t
+
dj3(log |t|)2 + dj4 log |t|+ dj5

t2

)
+ ej1(log |t|)4 +

ej2(log |t|)3

t
+
ej3(log |t|)3 + ej4(log |t|)2 + ej5

t2

(14)

for j = 1, . . . , 4, with rational coefficients djk, ejk ∈ Q for 1 ≤ k ≤ 4 and bounds for
dj5, ej5. It turns out that in all cases the uj’s have the same order of magnitude.
Therefore we look for integral linear combinations b0RK + b1RKu1 + · · ·+ b4RKu4

with bj ∈ Z which are positive and small in such a way that the coefficients of the
main terms log |y|(log |t|)3 , log |y|(log |t|)2/t , (log |t|)4 and (log |t|)3/t vanish. This
amounts to solving a system of linear Diophantine equations. Then since

1 ≤ v = b0 + b1u1 + · · ·+ b4u4 ∈ Z(15)
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and

RK v = log |y|
(
d6(log |t|)2 + d7 log |t|+ d8

t2

)
+
e6(log |t|)3 + e7(log |t|)2 + e8

t2
,

(16)

we can use RK v ≥ RK and (13) to derive a lower bound for log |y| of the form

log |y| > c1 t
2(log |t|)2 .(17)

Explicitly, in the five cases for i we arrived at the following values for the bj’s in
(15):

i
∣∣∣ b0

∣∣∣ b1

∣∣∣ b2

∣∣∣ b3

∣∣∣ b4

1
∣∣∣ 0

∣∣∣ 10
∣∣∣ 3

∣∣∣ 9
∣∣∣ −27

2
∣∣∣ −22

∣∣∣ −65
∣∣∣ 49

∣∣∣ −51
∣∣∣ −15

3
∣∣∣ 1

∣∣∣ −1
∣∣∣ −21

∣∣∣ 10
∣∣∣ −8

4
∣∣∣ 6

∣∣∣ −6
∣∣∣ −5

∣∣∣ 18
∣∣∣ −17

5
∣∣∣ 1

∣∣∣ −5
∣∣∣ 18

∣∣∣ −17
∣∣∣ 10

and for the coefficients of RK v in (16) and the constant c1 in (17) we obtained

i
∣∣∣ d6

∣∣∣ d7

∣∣∣ |d8| <
∣∣∣ e6

∣∣∣ e7

∣∣∣ |e8| <
∣∣∣ c1

1
∣∣∣ 710

∣∣∣ 170
∣∣∣ 136

∣∣∣ 1349
∣∣∣ 269

∣∣∣ 1860
∣∣∣ 0.094

2
∣∣∣ 2130

∣∣∣ 130
∣∣∣ 591

∣∣∣ 2769
∣∣∣ 363

∣∣∣ 4268
∣∣∣ 0.032

3
∣∣∣ 355

∣∣∣ 180
∣∣∣ 52

∣∣∣ 71
∣∣∣ 0

∣∣∣ 498
∣∣∣ 0.178

4
∣∣∣ 355

∣∣∣ −10
∣∣∣ 114

∣∣∣ 284
∣∣∣ 3

∣∣∣ 989
∣∣∣ 0.196

5
∣∣∣ 355

∣∣∣ −10
∣∣∣ 114

∣∣∣ −71
∣∣∣ −1

∣∣∣ 670
∣∣∣ 0.197

From d6, e6 > 0 in the cases 1 ≤ i ≤ 4 we immediately have RK v > 0; thus v ≥ 1.
For i = 5 we used log |y| > 2 log |t| from (5) to show the same.

To improve the value of c1 in the cases i = 1, 2 we looked for other bj’s giving
a smaller coefficient d6 for RK v, but no longer requiring the term (log |t|)3/t to
vanish, and found

i
∣∣∣ b0

∣∣∣ b1

∣∣∣ b2

∣∣∣ b3

∣∣∣ b4

∣∣∣ c1

1
∣∣∣ 0

∣∣∣ −26
∣∣∣ 37

∣∣∣ −11
∣∣∣ −15

∣∣∣ 0.319

2
∣∣∣ −3

∣∣∣ −17
∣∣∣ 10

∣∣∣ −6
∣∣∣ −5

∣∣∣ 0.197

With the lower bound (17) for log |y| obtained in the first step we could show that
again RK v > 0, and so we get the improved values for c1 as indicated in the above
table.

From the lower bound (17) for log |y| it is clear that U = max1≤n≤4 |un| = |uj|
for that uj having the largest coefficient dj1 (in absolute value) in its expansion
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(14). Using this uj , (13) and (17), we have

(71 + δ22)(log |t|)4U = RK |uj |

> c1 t
2(log |t|)2

(
|dj1|(log |t|)3 − |dj2|(log |t|)2

|t|

− |dj3|(log |t|)2 + |dj4|(log |t|) + |dj5|
t2

)
− |ej1|(log |t|)4 − |ej2|(log |t|)3

|t| − |ej3|(log |t|)3 + |ej4|(log |t|) + |ej5|
t2

,

which gives a lower bound for U of the type

U > c2 t
2 log |t|(18)

with 0.1548 ≤ c2 ≤ 0.285, depending on the different cases of i.
On the other hand, the inequality

(71 + δ22)(log |t|)4U = RK |uj|

< log |y|
(
|dj1|(log |t|)3 +

|dj2|(log |t|)2

|t| +
|dj3|(log |t|)2 + |dj4| log |t|+ |dj5|

t2

)
+ |ej1|(log |t|)4 +

|ej2|(log |t|)3

|t| +
|ej3|(log |t|)3 + |ej4| log |t|+ |ej5|

t2

yields

c3 U log |t| < log |y|(19)

with 0.686 < c3 < 1.358. Combining (6) with (19), we conclude that

Λi < exp(2.8− 3.43U log |t| − 4 log |t|) < exp(−3.43U log |t|) .
This upper bound together with the lower estimate (11) yields

U

logU
< 4.98 · 1023(log |t|)4 .

Using (18), by the monotony of x/ logx we get

0.1548 t2 log |t|
log(0.1548 t2 log |t|) < 4.98 · 1023 (log |t|)4 .

This inequality holds for |t| = 3.27 · 1015 but fails for |t| = 3.28 · 1015, which implies
that the existence of a non-trivial solution leads to a contradiction if

|t| ≥ 3.28 · 1015.
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