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NEW PRIMITIVE t-NOMIALS (t = 3, 5) OVER GF (2)
WHOSE DEGREE IS A MERSENNE EXPONENT

TOSHIHIRO KUMADA, HANNES LEEB,
YOSHIHARU KURITA, AND MAKOTO MATSUMOTO

Abstract. All primitive trinomials over GF (2) with degree 859433 (which is
the 33rd Mersenne exponent) are presented. They are X859433 +X288477 + 1
and its reciprocal. Also two examples of primitive pentanomials over GF (2)
with degree 86243 (which is the 28th Mersenne exponent) are presented. The
sieve used is briefly described.

1. Introduction

Primitive t-nomials (t-term polynomials) over GF (2) are useful in applications
like random number generation, coding theory, and cryptography. Heringa et al.
[H] exhaustively listed all primitive trinomials of Mersenne exponent degree up to
the 31st Mersenne exponent 216091. This note is an extension of that work.

Let Mn denote the nth Mersenne exponent (for example, M28 = 86243 and
2M28−1 is known to be a prime). As of November 27, 1998, 37 Mersenne exponents
had been found. 3021377 is the greatest of them. An exhaustive primality test of all
exponents less than 2000000 has been carried out (it proves that M35 = 1398269).
The known Mersenne exponents greater than 2000000 are 2976221 and 3021377.
In this paper, we define M36# = 2976221 and M37# = 3021377. The sharp mark
behind 36 and 37 shows that the search for Mersenne exponents p in the interval
2000000 < p < 3021377 has not been exhaustive. See [HT1, HT2] for information
about the current search status of Mersenne exponents.

Table 1 lists all primitive trinomials Xp + Xq + 1 over GF (2) with degree p =
Mn (33 ≤ n ≤ 36#), q ≤ bp/2c. Table 2 lists examples of primitive pentanomials
Xp + Xq1 + Xq2 + Xq3 + 1 over GF (2) with degree p = M28. In Tables 1 and 2,
only the exponents of the terms are listed.

2. Test for primitivity

2.1. Primitivity of trinomials. Let f(X) = Xp+Xq+1 be a trinomial of degree
p = Mn. Our aim is to find q such that Xp + Xq + 1 is primitive. By considering
the reciprocal polynomial, we may assume that 1 ≤ q ≤ bp/2c. If 2p − 1 is prime,
then primitivity is equivalent to irreducibility. The test for primitivity comprises
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the following three sieves. The first two of these are only necessary condition tests,
but they reject about 90% of the candidates. The third sieve is a necessary and
sufficient test. The third sieve can determine whether f(X) is irreducible or not
with an O(p2) computation.

Let kn denote 2n − 1. Sieves I and II are based on a well-known theorem
[L, pp. 48]: if φ(X) is an irreducible polynomial over GF (2) of degree m, then
φ(X)|(X1+kn −X) if and only if m|n. Thus by computing gcd(f(X), Xkn − 1), we
know whether f(X) has a factor of degree m|n.

Sieve I: mod k test. One can determine easily whether gcd(f(X), Xk − 1) = 1
for small k as follows. If it equals 1, then f(X) goes forward to the next sieve. Let
k be an odd positive integer. Then

gcd(f(X), Xk − 1) = gcd(Xp +Xq + 1, Xk − 1)

= gcd(X(p mod k) +X(q mod k) + 1, Xk − 1).

So fix p, and put

Rk = {q̄ ∈ Z/kZ | gcd(X(p mod k) +X q̄ + 1, Xk − 1) 6= 1}.
This set can be obtained by exhaustive search for q̄ ∈ Z/kZ. If for a given q there
exists a k with (q mod k) ∈ Rk, then Xp +Xq + 1 is reducible. We compute Rk
for k = 3, 5, 7, . . . , k12 + 2, and k = k13, k14, k15. We reject q if for one of above k
we have (q mod k) ∈ Rk. This test rejects about 89% of the candidates.

Sieve II: direct gcd test. Let f(X) be a trinomial which passed Sieve I. By
computing gcd(f(X), Xkn − 1) (n = 16, 17, 18) we can eliminate some candidates.
Sieves I and II reject about 91% of the candidates.

Sieve III is a necessary and sufficient irreducibility test based on Theorem 1 (see
below). The following description is quoted from [M].

Let S∞ denote the GF (2) -vector space of all infinite sequences of zeros and
ones. That is,

S∞ := {χ = (· · · , x5, x4, x3, x2, x1, x0) | xi ∈ GF (2)}.
Let D (delay operator) and H (decimation operator) be linear operators from S∞

to S∞ defined by

D(· · · , x4, x3, x2, x1, x0) = (· · · , x5, x4, x3, x2, x1),

H(· · · , x4, x3, x2, x1, x0) = (· · · , x10, x8, x6, x4, x2, x0).

Let ϕ(X) be the characteristic polynomial of a linear recurrence, and let χ be an
element of S∞. Then, χ satisfies the recurrence if and only if ϕ(D)χ = 0. Note
that ϕ(D) is a linear operator and 0 denotes the zero sequence. It is easy to check
that

DH = HD2.

Since the coefficients are in GF (2), we have ϕ(X2) = ϕ(X)2, and thus if ϕ(D)χ = 0
then

ϕ(D)Hχ = Hϕ(D2)χ = Hϕ(D)2χ = 0,

i.e., Hχ also satisfies the same recurrence. The following theorem holds [M].

Theorem 1. Let ϕ(X) be a polynomial over GF (2) whose degree p is a Mersenne
exponent. Take χ ∈ S∞ such that ϕ(D)χ = 0 and Hχ 6= χ. Then ϕ(t) is primitive
if and onlyif Hpχ = χ.
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In the above theorem, put ϕ(X) := Xp + Xq + 1. Let T = (· · · , t4, t3, t2, t1, t0)
be an element of S∞ such that ϕ(D)T = 0, i.e., for all non-negative integers i,

tp+i = tq+i + ti.(∗)

Let Extend : GF (2)p → GF (2)2p send the initial vector T0 = (tp−1, . . . , t0) to
the vector (t2p−1, t2p−2, . . . , t0) of twice the length generated by the recurrence (∗).
Let H ′ : GF (2)2p → GF (2)p be

(t2p−1, t2p−2, . . . , t0) 7−→ (t2(p−1), t2(p−2), . . . , t2, t0).

Since the linear recurrence sequence is determined by its initial vector of length p,
computing H is equivalent to computing H ′ ◦ Extend.

Sieve III: final test.
(1) Choose an initial vector T0 = (tp−1, . . . , ti, . . . , t0) so that H(T0) 6= T0.
(2) Compute successively the sequences Si, Ti as follows. Si := Extend(Ti),

Ti+1 := H ′(Si).
(3) If Tp equals T0, then f(x) is primitive, and otherwise not primitive.

2.2. Primitivity of pentanomials. The necessary and sufficient irreducibility
test used for pentanomials is a more naive method than that used for trinomials.
Let f(X) = Xp + Xq1 + Xq2 + Xq3 + 1 be a pentanomial of Mersenne exponent
degree p. We compute XN mod f(X), where N = 2p − 1. The pentanomial is
irreducible if and only if the result equals 1. XN = 1 mod f(X) is equivalent
to XN+1 = X mod f(X), because X is an invertible element in the residue ring
GF (2)[X ]/ (f(X)). In the actual procedure, we compute successively the sequence
Xi from X0 to Xp, where Xi = X2

i−1 mod f(X) over GF (2) and X0 = X . See [K]
for more information.

3. Results

Concerning the trinomials, we tried searching for primitive trinomials of degree
M33,M34,M35 and M36#. We did not search for primitive trinomials of degree M32

and M37#.
For p = M34,M35 and M36#, nonexistence of primitive trinomials is proved as

follows: Swan’s Corollary [B, p. 170] guarantees that Xp +Xq + 1 is reducible over
GF (2) if p = ±3 mod 8 and q 6= 2. So we may assume q to be 2 for p = M34,M35

and M36#. Then by Sieve III, we show that Xp +X2 + 1 is reducible.
In case of p = M33, 40656 candidates passed Sieves I and II. For the computer

search, we used an SGI POWER Challenge 10000 GR parallel computer with 20
processors and 2.5 GB RAM. After minor architecture-specific optimizations, we
were able to test approximately one candidate parameter per hour. Hence, checking

Table 1. Primitive trinomials

n Mn mod 8 p = Mn q
32 -1 756839 the search is not done
33 1 859433 288477
34 3 1257787 none
35 -3 1398269 none
36# -3 2976221 none
37# 1 3021377 the search is not done
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Table 2. Primitive pentanomials

n p = Mn q1 q2 q3

28 86243 62833 50942 11754
64043 41667 19434

all 40656 candidates consumed a total accumulated time of 4.6 years; using 19 of
the available processors, the search was completed in about 3 months.

The non-exhaustive search for primitive pentanomials was done in the AIST com-
puter center (RIPS), Tsukuba. We succeeded in finding two primitive pentanomials
whose degree is M28.
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