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LOCAL AND PARALLEL FINITE ELEMENT ALGORITHMS
BASED ON TWO-GRID DISCRETIZATIONS

JINCHAO XU AND AIHUI ZHOU

Abstract. A number of new local and parallel discretization and adaptive
finite element algorithms are proposed and analyzed in this paper for elliptic
boundary value problems. These algorithms are motivated by the observation
that, for a solution to some elliptic problems, low frequency components can be
approximated well by a relatively coarse grid and high frequency components
can be computed on a fine grid by some local and parallel procedure. The
theoretical tools for analyzing these methods are some local a priori and a
posteriori estimates that are also obtained in this paper for finite element
solutions on general shape-regular grids. Some numerical experiments are also
presented to support the theory.

1. Introduction

In this paper, we will propose some new parallel techniques for finite element
computation. These techniques are based on our understanding of the local and
global properties of a finite element solution to some elliptic problems. Simply
speaking, the global behavior of a solution is mostly governed by low frequency
components while the local behavior is mostly governed by high frequency compo-
nents. The main idea of our new algorithms is to use a coarse grid to approximate
the low frequencies and then to use a fine grid to correct the resulted residue (which
contains mostly high frequencies) by some local/parallel procedures.

Let us now give a somewhat more detailed but informal (and hopefully infor-
mative) description of the main ideas and results in this paper. We consider the
following very simple model problem posed on a convex polygonal domain Ω ⊂ R2:{

−∆u+ b · ∇u = f, in Ω,

u = 0, on ∂Ω.
(1.1)

The main philosophy behind this paper is that we should treat phenomena of
different scales by different tools. In multigrid and domain decomposition methods,
this kind of idea is used to devise iterative methods for solving a given discretization
scheme (see e.g. Bank [10], Bramble [19], Chan and Mathew [22], Hackbusch [31],
Xu [49] and Yserentant [53]); while in our approach, we try to use this type of
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idea for designing discretization schemes. The two-grid method proposed by the
first author [48, 50, 51] (and later further investigated by many others such as
[3, 16, 24, 25, 33, 34, 42]) is a result of such a consideration. The two-grid method
is based on the observation that, for an equation like (1.1), the symmetric positive
definite leading term −∆u dominates the equation on high frequencies, while the
low frequencies, as in a multigrid method, can be well approximated by a relatively
coarse grid. Therefore, by first approximating the equation on a coarse grid, say
TH(Ω), we can then correct the residue (in which high frequencies dominate) on
a finer grid, say T h(Ω), by ignoring the lower order term and solving the resulting
symmetric positive definite system.

For elliptic problems, the low frequencies are more global, while the high fre-
quencies are more local. This fact is crucial in the multigrid methodology, in which
high frequency errors are damped out by local relaxation techniques while low fre-
quencies are handled by coarse grids. If we consider this fact more carefully, we
can then imagine that if we first approximate the equation (1.1) on a coarse grid
TH(Ω), the residue which is dominated by high frequencies can then be resolved
locally. This is precisely the central idea of the new algorithms in this paper, and is
based on the local behavior of finite element approximations presented in Section
3.

One technical tool for motivating this idea is the local error estimate for finite
element approximations. Let uh be a finite element approximation to (1.1) on a
quasi-uniform grid T h(Ω). Then the following kind of local error estimate holds
(see Theorem 3.4):

‖u− uh‖1,D ≤ C( inf
v∈Sh0 (Ω)

‖u− v‖1,Ω0 + ‖u− uh‖0,Ω),(1.2)

where Sh0 (Ω) is the finite element space associated with T h(Ω) and D ⊂⊂ Ω0 ⊂⊂ Ω
(here D ⊂⊂ Ω0 means that dist(∂D \ ∂Ω, ∂Ω0 \ ∂Ω) > 0).

At first glance, this type of estimate does not appear to be clearly related to
what we said above, but we shall soon explain the connection. The above kind of
estimate is available in the literature for quasi-uniform grids (see Nitsche and Schatz
[35], Schatz [38], Schatz and Wahlbin [39, 40] and Wahlbin [46, 47]), but we need
them on locally refined grids with different mesh scales, which were also discussed
in [54] for local quasi-uniform grids. We are indeed able to extend these estimates
to very general grids, which is one technical part of this paper—see Section 3.

Now we consider a very special grid that is obtained by refining a given coarse
grid TH(Ω) for the region Ω0, and obtain a locally refined grid T hH(Ω) with mesh size
h in Ω0 and size H away from Ω0 (see Figure 1). Let us for example consider linear
finite element discretizations on this grid. Then, by (1.2) and some well-known
finite element error estimates, we obtain (see Corollary 3.5)

‖u− uh‖1,D = O(h +H2).(1.3)

This estimate means that we can obtain an asymptotically optimal error in the H1

norm locally by taking H = O(
√
h).

With this basic result, it is then not difficult to devise a parallel algorithm on a
fine grid by using a collection of overlapped subdomains. See Section 4.

In the above approach, all the “local” solvers need to be coupled with the global
coarse grid TH(Ω) in some way. We can actually improve the above procedure
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Figure 1. A local refinement mesh

by using a residue-correction technique used in Xu [48, 50, 51]. One prototype
algorithm is as follows (see Section 4):

1. Solve on a coarse grid: Find uH ∈ SH0 (Ω) such that∫
Ω

∇uH · ∇v + b · ∇uHv =
∫

Ω

fv, ∀v ∈ SH0 (Ω).

2. Correct the residue (with SPD part only) on a fine grid: Find eh ∈ Sh0 (Ω0)
such that∫

Ω

∇eh · ∇v =
∫

Ω

fv −
∫

Ω

∇uH∇v −
∫

Ω

b · ∇uHv, ∀v ∈ Sh0 (Ω0).

In this algorithm, a coarse grid problem only needs to be solved once and it does
not have to be coupled with the subsequence of parallel local solvers. For the above
algorithm, we can still establish the following result (see Theorem 4.3):

‖u− (uH + eh)‖1,D = O(h+H2).(1.4)

This is a very satisfying result in many ways. As a consequence, for example, we
can then design the following type of parallel algorithms: first solve the problem on
a coarse grid, and then correct the residue in parallel on a collection of overlapped
subdomains on a fine grid.

In practical finite element computations, it is desirable to carry out the finite
element computations in an adaptive fashion, cf. Ainsworth and Oden [2], Babuška,
Duran and Rodriguez [4], Babuška and Rheinboldt [5], Babuška, Zienkiewick, Gago
and Oliveira [6], Bank and Weiser [15], Johnson [32] and Verfürth [45]. A typical
procedure is first to start with a coarse grid and then use some a posteriori estimates
as a guidance to properly refine the mesh to achieve the desired accuracy. In the
existing literature, a posteriori error estimates are often obtained globally, but in
practical applications, they are often used locally (see e.g. [2, 4, 5, 14, 26, 27, 28, 36,
43, 44, 45] and references cited therein). In this paper, we shall also present some
local a posteriori error estimates that would give a certain justification of the local
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application of the a posteriori estimates. For example, we shall prove the following
type of local a posteriori estimate on a general grid (see Theorem 3.9):

‖u− uh‖1,D ≤ C0(Eh(Ω0) + ‖u− uh‖0,Ω),(1.5)

where Eh(Ω0) is the usual a posteriori estimator on the domain Ω0. Again we
notice that the global term ‖u− uh‖0,Ω in the above estimate is a high order term.

More important, based on a posteriori estimates like (1.5) and a priori estimates
like (1.2), we are able to design an adaptive procedure that can be carried locally in
a given subdomain and hence in parallel. We believe this type of parallel adaptive
techniques will have great implications in practical parallel computations.

The rest of the paper is organized as follows. In Section 2, some preliminary
materials are provided. In Section 3, a number of local a priori and a posteriori error
estimates are obtained for finite element discretizations on general shape regular
grids. Based upon these local error estimates, several new local/parallel algorithms
are devised and analyzed in Section 4, and local and parallel adaptive processes are
discussed in Section 5. In Section 6, some numerical experiments, which support
our theory, are reported. Finally in Section 7, some further remarks are presented.

2. Preliminaries

In this section, we shall describe some basic notation and basic assumptions on
the finite element spaces, and then study properties of the finite element approxi-
mation to a general linear second order elliptic boundary value problem.

Let Ω be a bounded domain in Rd (d ≥ 1). We shall use the standard notation for
Sobolev spaces W s,p(Ω) and their associated norms and seminorms, see e.g. [1, 23].
For p = 2, we denote Hs(Ω) = W s,2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) : v |∂Ω= 0},
where v |∂Ω= 0 is in the sense of trace, ‖ · ‖s,Ω = ‖ · ‖s,2,Ω and ‖ · ‖Ω = ‖ · ‖0,2,Ω.
(In some places of this paper, ‖ · ‖s,2,Ω should be viewed as piecewise defined, if
necessary.) The space H−1(Ω), the dual of H1

0 (Ω), will also be used.
For D ⊂ G ⊂ Ω, we write D ⊂⊂ G to mean that dist(∂D \ ∂Ω, ∂G \ ∂Ω) > 0,

see Figure 2.

Figure 2. Subdomains
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Throughout this paper, we shall use the letter C (with or without subscripts)
to denote a generic positive constant which may stand for different values at its
different occurrences. For convenience, following [49], the symbols .,& and ∼= will
be used in this paper. Specifically, x1 . y1, x2 & y2 and x3

∼= y3, mean that
x1 ≤ C1y1, x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C3x3 for some constants C1, c2, c3 and C3

that are independent of the mesh parameters.
Note that any w ∈ H1

0 (Ω0) can be naturally extended to be a function in H1
0 (Ω)

with zero outside of Ω0. We shall state this fact by the slightly abused notation
H1

0 (Ω0) ⊂ H1
0 (Ω).

2.1. Finite element spaces. For generality, we will not concentrate on any spe-
cific finite element space, rather we shall study a class of finite element spaces that
satisfy certain assumptions. We now describe those assumptions.

Assume that T h(Ω) = {τ} is a mesh of Ω with mesh-size function h(x) whose
value is the diameter hτ of the element τ containing x. One basic assumption on
the mesh is that it is not exceedingly over-refined locally, namely

A.0. There exists γ ≥ 1 such that

hγ
Ω
. h(x), x ∈ Ω,(2.1)

where hΩ = maxx∈Ω h(x) is the (largest) mesh size of T h(Ω).
This is apparently a very mild assumption, and most practical meshes should

satisfy it. Sometimes, we will drop the subscript in hΩ , writing h for the mesh size
on a domain that is clear from the context.

Associated with a mesh T h(Ω), let Sh(Ω) ⊂ H1(Ω) be a finite dimensional
subspace on Ω and Sh0 (Ω) = Sh(Ω) ∩H1

0 (Ω). Given G ⊂ Ω, we define Sh(G) and
T h(G) to be the restriction of Sh(Ω) and T h(Ω) to G, and

S0
h(G) = {v ∈ Sh(Ω) : supp v ⊂⊂ G}.

For any G ⊂ Ω mentioned in this paper, we assume that it aligns with T h(Ω) when
necessary.

We now state our basic assumptions on the finite element spaces.
A.1. Approximation. If w ∈ H1

0 (Ω), then as hΩ → 0,

inf
v∈Sh0 (Ω)

(‖h−1(w − v)‖0,Ω + ‖w − v‖1,Ω) = o(1).(2.2)

A.1′. Approximation. There exists r ≥ 1 such that for w ∈ H1
0 (Ω),

inf
v∈Sh0 (Ω)

(‖h−1(w − v)‖0,Ω + ‖w − v‖1,Ω) . ‖hsw‖1+s,Ω, 0 ≤ s ≤ r.(2.3)

A.2. Inverse Estimate. For any v ∈ Sh(Ω0),

‖v‖1,Ω0 . ‖h−1v‖0,Ω0 .(2.4)

A.3. Superapproximation. For G ⊂ Ω0, let ω ∈ C∞0 (Ω) with supp ω ⊂⊂ G.
Then for any w ∈ Sh(G), there is v ∈ S0

h(G) such that

‖h−1(ωw − v)‖1,G . ‖w‖1,G.(2.5)

A.4. Trace. For any w ∈ H1(τ), τ ∈ T h(Ω0),

‖w‖0,∂τ . ‖h−1/2w‖0,τ + ‖h1/2∇w‖0,τ .(2.6)

A.5. Fractional Norm. For any G ⊂ Ω,

inf
χ∈Sh0 (G)

‖v − χ‖1,G . ‖v‖1/2,∂G, ∀v ∈ Sh(G).(2.7)
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Next we shall give an example of finite element spaces. The assumptions men-
tioned above are satisfied by most of the finite element spaces used in practice. We
shall now briefly describe a special but popular finite element space for illustration.
For simplicity, let us assume that Ω is a polygonal domain. Let T h(Ω) consist of
shape-regular simplices and define Sh(Ω) to be a space of continuous functions on
Ω such that for v ∈ Sh(Ω), v restricted to each τ is a polynomial of total degree
≤ r, namely

Sh(Ω) = {v ∈ C1(Ω̄) : v |τ∈ P rτ , ∀τ ∈ T h(Ω)},(2.8)

where P rτ is the space of polynomials of degree not greater than a positive integer
r. These are the Lagrange finite element spaces, and they satisfy all the above
assumptions.

The approximation assumptions A.1 and A.1′ are well-known for the Lagrange
finite element spaces. A.2 and A.4 are well-known and they can be easily proven
by a standard scaling argument. The superapproximation assumption has been
discussed in many papers, cf. [35, 39, 40, 46, 47]. This superapproximation as-
sumption can be easily verified for the Lagrange finite element spaces (2.8), using
a locally defined interpolation operator Ih satisfying

‖φ− Ihφ‖0,∞,τ . |hrφ|r,∞,τ ,(2.9)

where | · |r,∞,Ω denotes the rth semi-norm involving only rth derivatives. Setting
φ = ωw in (2.9) and noting that rth derivatives of w vanish, and using the inverse
estimates, one obtains Assumption A.3.

The verification of A.5 can go as follows. For v ∈ Sh(G), let χ ∈ Sh0 (G) be the
unique function satisfying

(∇χ,∇φ) = (∇v,∇φ), ∀φ ∈ Sh0 (G).

Then v−χ is discrete harmonic. The desired result then follows from the following
well-known (cf. [52]) estimate for discrete harmonic functions:

‖v − χ‖1,G . ‖v − χ‖1/2,∂G = ‖v‖1/2,∂G.

2.2. A model problem. In this subsection, we shall study some basic properties
of general second order elliptic boundary value problems and their finite element
approximations. We consider the homogeneous boundary value problem{

Lu = f, in Ω,
u = 0, on ∂Ω.(2.10)

Here L is a general linear second order elliptic operator:

Lu = −
d∑

i,j=1

∂

∂xj
(aij

∂u

∂xi
) +

d∑
i=1

bi
∂u

∂xi
+ cu,

satisfying aij , bi ∈ W 1,∞(Ω), c ∈ L∞(Ω), and (aij) is uniformly positive definite on
Ω.

The weak form of (2.10) is as follows: Find u ≡ L−1f ∈ H1
0 (Ω) such that

a(u, v) = (f, v), ∀v ∈ H1
0 (Ω),(2.11)

where (·, ·) is the standard inner-product of L2(Ω) and

a(u, v) = a0(u, v) +N(u, v)
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with

a0(u, v) =
∫

Ω

d∑
i,j=1

aij
∂u

∂xi

∂v

∂xj
and N(u, v) =

∫
Ω

d∑
i=1

bi
∂u

∂xi
v + cuv.

Note that

‖w‖21,Ω . a0(w,w), ∀w ∈ H1
0 (Ω),

and

a0(u, v) . ‖u‖1,Ω‖v‖1,Ω, N(u, v) . ‖u‖0,Ω‖v‖1,Ω, ∀u, v ∈ H1
0 (Ω).

Our basic assumption is that (2.11) is well-posed, namely (2.11) is uniquely
solvable for any f ∈ H−1(Ω). (A simple sufficient condition for this assumption to
be satisfied is that c ≥ 0.) An application of the open-mapping theorem yields

‖w‖1,Ω . ‖Lw‖−1,Ω, ∀w ∈ H1
0 (Ω).(2.12)

It is easy to see that if L satisfies the above assumption and the above estimates,
so does its formal adjoint

L∗u = −
d∑

i,j=1

∂

∂xi
(aij

∂u

∂xj
)−

d∑
i=1

∂(biu)
∂xi

+ cu.

A sufficient and necessary condition for the well-posedness of (2.11) is that

‖w‖1,Ω . sup
φ∈H1

0 (Ω)

a(w, φ)
‖φ‖1,Ω

, ∀w ∈ H1
0 (Ω),(2.13)

and

‖w‖1,Ω . sup
φ∈H1

0 (Ω)

a(φ,w)
‖φ‖1,Ω

, ∀w ∈ H1
0 (Ω).(2.14)

We have (cf. [30]) the following estimate for the regularity of the solution of (2.10)
or (2.11):

‖u‖1+α,Ω . ‖f‖−1+α,Ω(2.15)

for some α ∈ (0, 1] depending on Ω and the coefficients of L.
For some G ⊂ Ω, we need the following assumption.
R(G). For any f ∈ L2(G), there exists a w ∈ H1

0 (G) satisfying

a(v, w) = (f, v), ∀v ∈ H1
0 (G),

and

‖u‖1+α,G . ‖f‖−1+α,G.

It is well-known (cf. [51]) that if hΩ � 1 (depending on N) and Assumption A.1
holds, then

‖wh‖1,Ω . sup
φ∈Sh0 (Ω)

a(wh, φ)
‖φ‖1,Ω

, ∀wh ∈ Sh0 (Ω),

and

‖wh‖1,Ω . sup
φ∈Sh0 (Ω)

a(φ,wh)
‖φ‖1,Ω

, ∀wh ∈ Sh0 (Ω).

Throughout this paper, we will assume that hΩ � 1 (when N(·, ·) 6= 0) and
Assumption A.1 holds, so that the above two estimates hold. From the above two
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estimates, we can then define Galerkin-projections Ph (≡ PΩ
h ) : H1

0 (Ω) 7→ Sh0 (Ω)
and P ∗h (≡ (PΩ

h )∗) : H1
0 (Ω) 7→ Sh0 (Ω) by

a(u− Phu, v) = 0 and a(v, u− P ∗hu) = 0, ∀v ∈ Sh0 (Ω),(2.16)

and apparently

‖Phu‖1,Ω . ‖u‖1,Ω and ‖P ∗hu‖1,Ω . ‖u‖1,Ω, ∀u ∈ H1
0 (Ω).(2.17)

From (2.17), various a global priori error estimates can be obtained from the ap-
proximate properties of the finite element subspaces Sh(Ω) (cf. [23]). Particularly,
by Assumption A.1, if u ∈ H1

0 (Ω), then

‖u− Phu‖1,Ω = o(1) and ‖u− P ∗hu‖1,Ω = o(1), as hΩ → 0.(2.18)

Now we introduce the following quantity:

ρΩ(h) = max(ρΩ,L(h), ρΩ,L∗ (h)),

where

ρΩ,L(h) = sup
f∈L2(Ω),‖f‖0,Ω=1

inf
v∈Sh0 (Ω)

‖L−1f − v‖1,Ω.

Similarly, if Assumption R(G) holds, we can define ρ
G

(h) well.

Lemma 2.1. Assume that hΩ � 1 and Assumption A.1 holds. Then

‖(I − Ph)L−1f‖1,Ω . ρΩ(h)‖f‖0,Ω, ∀f ∈ L2(Ω),(2.19)

and

‖u− Phu‖0,Ω . ρΩ(h)‖u− Phu‖1,Ω ∀u ∈ H1
0 (Ω).(2.20)

Proof. Let u = L−1f ∈ H1
0 (Ω). For any φ ∈ H1

0 (Ω), we have

a(u− Phu, φ) = a(u− v, φ− P ∗hφ), ∀v ∈ Sh0 (Ω).

Thus, (2.13) and (2.17) yield

‖u− Phu‖1,Ω . ‖u− v‖1,Ω, ∀v ∈ Sh0 (Ω),(2.21)

which produce (2.19).
To prove (2.20), we use the Aubin-Nitsche duality argument. For each φ ∈ L2(Ω),

let w = (L∗)−1φ ∈ H1
0 (Ω). Then

‖w − P ∗hw‖1,Ω . ρΩ(h)‖φ‖0,Ω.(2.22)

Note that

| (u− Phu, φ) | = | a(u− Phu,w) | = | a(u− Phu,w − P ∗hw) |

. ‖u− Phu‖1,Ω‖w − P ∗hw‖1,Ω.

We get (2.20) from combining (2.22), the above inequalities, and

‖u− Phu‖0,Ω = sup
φ∈L2(Ω),‖φ‖0,Ω=1

(u − Phu, φ).



LOCAL AND PARALLEL FINITE ELEMENT ALGORITHMS 889

Lemma 2.2. Assume that hΩ � 1 and Assumption A.1 holds. Then ρΩ(h) = o(1)
as hΩ → 0. Moreover,

ρΩ(h) . hα
Ω

(2.23)

provided

inf
v∈Sh0 (Ω)

‖w − v‖1,Ω . hαΩ‖w‖1+α,Ω.(2.24)

Proof. It is easy to see that L−1 : L2(Ω) → H1
0 (Ω) is compact. Hence, PhL−1 :

L2(Ω) 7→ H1
0 (Ω) is a compact and continuous mapping. Since ∀f ∈ L2(Ω)

‖(I − Ph)L−1f‖1,Ω → 0, as hΩ → 0,

we get

sup
f∈L2(Ω),‖f‖0,Ω=1

‖(I − Ph)L−1f‖1,Ω → 0, as hΩ → 0,(2.25)

which implies ρΩ(h) = o(1) as hΩ → 0.
(2.23) is immediately obtained from (2.21), (2.15) and (2.24).

Remark 2.3. We would like to point out that the first part of Lemma 2.2 generalizes
[33].

3. Local a priori and a posteriori error estimates

In this section, we shall present a number of local a priori and a posteriori error
estimates for finite element discretizations on general shape regular grids. Novelties
of our estimates lie in, for example, the weak assumption on the underlying grids
as well as the generality of model continuous problems. Although these general
estimates are theoretically interesting in their own right, our main motivation is to
use them to devise and analyze some new local/parallel methods to be presented
in the following sections.

3.1. Local a priori error estimates. The results presented here generalize local
a priori error estimates known in the literature [35, 39, 40, 46, 47, 54] to more
general second order differential equations and more general finite element meshes.

First, we need the following technical result.

Lemma 3.1. Let D ⊂⊂ Ω0, and let ω ∈ C∞0 (Ω) be such that supp ω ⊂⊂ Ω0. Then

a0(ωw, ωw) ≤ 2a(w, ω2w) + C‖w‖20,Ω0
, ∀w ∈ H1

0 (Ω).(3.1)

Proof. From the identity

a0(ωw, ωw) = a0(w, ω2w)

+
∫

Ω

d∑
i,j=1

aij((
∂ω

∂xi

∂(ωw)
∂xj

− ∂ω

∂xj

∂(ωw)
∂xi

)w +
∂ω

∂xi

∂ω

∂xj
w2),

we get

a0(ωw, ωw) ≤ a0(w, ω2w) + C(‖ωw‖1,Ω‖w‖0,Ω0 + ‖w‖20,Ω0
).

Note that

a0(w, ω2w) = a(w, ω2w)−N(ωw, ωw) +
∫

Ω

d∑
j=1

bj
∂ω

∂xj
ωw2



890 JINCHAO XU AND AIHUI ZHOU

and

‖ωw‖21,Ω . a0(ωw, ωw),

so we have

a0(ωw, ωw) ≤ a(w, ω2w) + C(‖ωw‖1,Ω‖w‖0,Ω0 + ‖w‖20,Ω0
)

≤ a(w, ω2w) +
1
2
a0(ωw, ωw) + C‖w‖20,Ω0

.

An application of a kick-back argument then leads to (3.1).

We shall now present a local a priori estimate for finite element approximation
that will play a crucial role in our analysis. This type of estimates can be found
in [35, 39, 40, 46, 47]; a new feature here is the generality of the underlying finite
element grid for which this estimate is proven valid.

Lemma 3.2. Suppose that f ∈ H−1(Ω) and D ⊂⊂ Ω0. If Assumptions A.0, A.2
and A.3 hold and w ∈ Sh(Ω0) satisfies

a(w, v) = f(v), ∀v ∈ S0
h(Ω0),(3.2)

then

‖w‖1,D . ‖w‖0,Ω0 + ‖f‖−1,Ω0 ,(3.3)

where

‖f‖−1,Ω0 = sup
φ∈H1

0 (Ω0),‖φ‖1,Ω0=1

f(v).

Proof. Let p be an integer such that p ≥ 2γ− 1, and let Ωj (j = 1, 2, · · · , p) satisfy

D ⊂⊂ Ωp ⊂⊂ Ωp−1 ⊂⊂ · · · ⊂⊂ Ω1 ⊂⊂ Ω0.

Choose D1 ⊂ Ω satisfying D ⊂⊂ D1 ⊂⊂ Ωp and ω ∈ C∞0 (Ω) such that ω ≡ 1 on
D̄1 and supp ω ⊂⊂ Ωp. Then, from Assumption A.3, there exists v ∈ S0

h(Ωp) such
that

‖ω2w − v‖1,Ωp . hΩ0
‖w‖1,Ωp ,(3.4)

which implies

a(w, ω2w − v) . hΩ0
‖w‖21,Ωp(3.5)

and

| f(v) | . ‖f‖−1,Ω0‖v‖1,Ωp

. ‖f‖−1,Ω0(hΩ0
‖w‖1,Ωp + ‖ωw‖1,Ω).(3.6)

Since v ∈ S0
h(Ωp) ⊂ S0

h(Ω0), (3.2) implies

a(w, ω2w) = a(w, ω2w − v) + f(v).(3.7)

Hence, combining (3.1), (3.5), (3.6) and (3.7), we have

‖ωw‖21,Ω . hΩ0
‖w‖21,Ωp + ‖w‖20,Ωp + ‖f‖−1,Ω0(hΩ0

‖w‖1,Ωp + ‖ωw‖1,Ω),

or

‖w‖1,D . h1/2
Ω0
‖w‖1,Ωp + ‖w‖0,Ω0 + ‖f‖−1,Ω0 .(3.8)
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The argument may be repeated for ‖w‖1,Ωp on the right to yield

‖w‖1,Ωj . h
1/2
Ω0
‖w‖1,Ωj−1 + ‖w‖0,Ω0 + ‖f‖−1,Ω0, j = 1, 2, · · · , p.(3.9)

Combining (3.8) and (3.9), we get from Assumptions A.0 and A.2

‖w‖1,D . h(p+1)/2
Ω0

‖w‖1,Ω0 + ‖w‖0,Ω0 + ‖f‖−1,Ω0

. h(p+1)/2
Ω ‖h−1w‖0,Ω0 + ‖w‖0,Ω0 + ‖f‖−1,Ω0

. ‖w‖0,Ω0 + ‖f‖−1,Ω0 .

(3.10)

This completes the proof.

The local stability of the Galerkin-projection is stated as follows.

Theorem 3.3. Let u ∈ H1
0 (Ω) and D ⊂⊂ Ω0. If Assumptions A.0, A.1, A.2 and

A.3 hold, then

‖Phu‖1,D . ‖u‖1,Ω0 + ‖Phu‖0,Ω0 .(3.11)

Proof. Let Rh ≡ PΩ0
h : H1

0 (Ω0) → Sh0 (Ω0) be the Galerkin projection, i.e., for
w ∈ H1

0 (Ω0),

a(w − Rhw, v) = 0, ∀v ∈ Sh0 (Ω0).(3.12)

Choose D1 ⊂ Ω satisfying D ⊂⊂ D1 ⊂⊂ Ω0 and ω ∈ C∞0 (Ω) such that ω ≡ 1 on
D̄1 and supp ω ⊂⊂ Ω0. Then for ũ = ωu,

a(Rhũ− Phu, v) = 0, ∀v ∈ S0
h(D1).(3.13)

Thus, Lemma 3.2 yields

‖Rhũ− Phu‖1,D . ‖Rhũ− Phu‖0,D1 .(3.14)

Therefore, estimates similar to (2.17) lead to

‖Phu‖1,D ≤ ‖Rhũ‖1,D + ‖Rhũ− Phu‖1,D

. ‖Rhũ‖1,D + ‖Rhũ− Phu‖0,D1

. ‖Rhũ‖1,Ω0 + ‖Phu‖0,D1

. ‖ũ‖1,Ω0 + ‖Phu‖0,Ω0

. ‖u‖1,Ω0 + ‖Phu‖0,Ω0.

Thus, we obtain (3.11). This completes the proof.

Theorem 3.4. Let u ∈ H1
0 (Ω) and D ⊂⊂ Ω0. If Assumptions A.0, A.1, A.2 and

A.3 hold, then

‖u− Phu‖1,D . inf
v∈Sh0 (Ω)

‖u− v‖1,Ω0 + ‖u− Phu‖0,Ω,(3.15)

or

‖u− Phu‖1,D . inf
v∈Sh0 (Ω)

‖u− v‖1,Ω0 + ρΩ(h)‖u− Phu‖1,Ω.(3.16)

Proof. Note that for any v ∈ Sh0 (Ω), Phv = v, we get from Theorem 3.3,

‖Phu− v‖1,D . ‖u− v‖1,Ω0 + ‖Phu− v‖0,Ω0 , ∀v ∈ Sh0 (Ω),

which leads to (3.15). And (3.16) is derived from (3.15) and Lemma 2.1. This
completes the proof.
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Corollary 3.5. Let u ∈ H1
0 (Ω), D ⊂⊂ Ω0 and 0 ≤ s ≤ r. If Assumptions A.0,

A.1′, A.2 and A.3 hold, then

‖u− Phu‖1,D . hsΩ0
‖u‖s+1,Ω0 + hs+α

Ω
‖u‖1+s,Ω.(3.17)

Remark 3.6. The results above show that many refined finite element meshes can
be locally employed.

Remark 3.7. Similar results hold for P ∗h .

3.2. Local a posteriori error estimates. In this section, we shall present local
a posteriori error estimate in energy-norm. First, we need the following technical
result.

Lemma 3.8. Let D ⊂⊂ Ω0, and let ω ∈ C∞0 (Ω) be such that supp ω ⊂⊂ Ω0. Then

a(ωw, φ) ≤ a(w, ωφ) + C‖w‖0,Ω0‖φ‖1,Ω0 , ∀w, φ ∈ H1
0 (Ω).(3.18)

Proof. From the identity

a(ωw, φ) = a(w, ωφ) +
∫

Ω

(
d∑

i,j=1

(aij
∂ω

∂xi

∂φ

∂xj
+

∂

∂xi
(aij

∂ω

∂xj
φ)) +

d∑
i=1

bi
∂ω

∂xi
φ)w,

we immediately obtain (3.18).

To state the a posteriori estimates, we need some more notation. Let ∂T h(Ω)
be the set of all the interior faces of the mesh T h(Ω), and ∂T h(τ) = {F ∈ ∂T h(Ω) :
F ⊂ τ̄}. For each F ∈ ∂T h(Ω), let nF be a unit vector normal to F , and define for
v ∈ Sh(Ω)

JF (v) = max
x∈F

| lim
s→0+

nTF ((A∇v)(x + snF )− (A∇v)(x − snF )) | .

Namely, JF (v) is the jump across F in the normal component of A∇v. We now
introduce η(v) by

(η(v))(x) =| f(x)− (Lv)(x) | +h−1 max
F∈∂Th(τ)

JF (v), x ∈ τ.(3.19)

One sees that η(uh), hη(uh) and h2η(uh) are computable in terms of the finite
element solution uh(≡ Phu).

Theorem 3.9. Let u ∈ H1
0 (Ω) and D ⊂⊂ Ω0. If Assumptions A.1, A.3 and A.4

hold, then

‖u− uh‖1,D . ‖hη(uh)‖0,Ω0 + ‖u− uh‖0,Ω,(3.20)

or

‖u− uh‖1,D . ‖hη(uh)‖0,Ω0 + ρΩ(h)‖u− uh‖1,Ω.(3.21)

Proof. Choose D1 ⊂ Ω satisfying D ⊂⊂ D1 ⊂⊂ Ω0 and ω ∈ C∞0 (Ω) such that
ω ≡ 1 on D̄1 and supp ω ⊂⊂ Ω0. Thus, from Lemma 3.8, we have

a(ωe, φ) ≤ a(u− uh, ωφ) + C‖e‖0,Ω‖φ‖1,Ω, ∀φ ∈ H1
0 (Ω),(3.22)

where e = u− uh.
Note that for any v ∈ S0

h(Ω0),

a(u− uh, ωφ) = a(u− uh, ωφ− v)

=
∑

τ∈Th(Ω0)

(
∫
τ

(f − Luh)(ωφ− v)−
∑

F∈∂Th(τ)

∫
F

nTFA∇uh(ωφ− v)),
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and for any F ∈ ∂T h(τ), there exists τ̃ ∈ T h(Ω) such that F ∈ ∂T h(τ̃ ). Thus
Assumption A.4 implies that

|
∑

τ∈Th(Ω0)

∑
F∈∂Th(τ)

∫
F

nTFA∇uh(ωφ− v) |

≤ 1
2

∑
τ∈Th(Ω0)

∑
F∈∂Th(τ)

∫
F

JF (uh) | ωφ− v |

.
∑

τ∈Th(Ω0)

h(N−1)/2
τ max

F∈∂Th(τ)
JF (uh)‖ωφ− v‖0,F

.
∑

τ∈Th(Ω0)

hN/2τ max
F∈∂Th(τ)

JF (uh)(‖h−1(ωφ− v)‖0,τ + ‖ωφ− v‖1,τ ).

Thus, we get, for any v ∈ S0
h(Ω0),

| a(u − uh, ωφ) |
. ‖hη(uh)‖0,Ω0(‖h−1(ωφ− v)‖0,Ω0 + ‖ωφ− v‖1,Ω0),

(3.23)

which together with Assumptions A.1 and A.3 yields

| a(u− uh, ωφ) |. ‖hη(uh)‖0,Ω0‖φ‖1,Ω0 .(3.24)

Therefore, (2.13) and (3.22) lead to

‖ωe‖1,Ω0 . ‖hη(uh)‖0,Ω0 + ‖e‖0,Ω,(3.25)

which implies (3.20).

Remark 3.10. In (3.20) or (3.21), the last term is of higher order and hence neg-
ligible. If, for example, (2.15) holds with α = 1, one has the following a posterior
error estimates, see e.g. [26, 28]:

‖u− uh‖0,Ω ≤ ‖h2η(uh)‖0,Ω

under additional assumptions. Moreover,

‖h2η(uh)‖0,Ω, ‖hη(uh)‖0,Ω

are globally equivalent to the errors ‖u− uh‖0,Ω and ‖u− uh‖1,Ω, respectively, cf.
e.g. [4, 26, 27, 28, 36, 44, 45] and reference cited therein. Similar arguments show
that ‖hη(uh)‖0,Ω0 is essentially controlled by ‖u − uh‖1,Ω0 . This means that we
essentially have

‖u− uh‖1,D ≈ C‖hη(uh)‖0,Ω0 .

Remark 3.11. The argument here easily extends to other boundary conditions, pro-
vided the problems are well-posed.
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4. New local and parallel algorithms

In this section we shall present some new local and parallel finite element algo-
rithms. These algorithms are motivated by the local error estimates studied in the
previous section. We shall first discuss the local algorithms. The generalization of
the local algorithms to parallel algorithms is straightforward.

For clarity, let Ω be a polygonal domain and Sh0 (Ω) ⊂ H1
0 (Ω) be a finite element

subspace of degree r associated with a grid T h(Ω). Let uh ∈ Sh0 (Ω) be the solution
of the standard finite element scheme for solving (2.11):

a(uh, v) = (f, v), ∀v ∈ Sh0 (Ω).

Either locally or globally, with proper regularity assumption, we have the following
error estimate:

‖u− uh‖1 . hs, 1 ≤ s ≤ r.
With this type of error estimates in mind, in the rest of this section, we will only
compare the approximate solutions from our new algorithms with uh instead of the
exact solution u.

4.1. Local algorithms. The local algorithms we shall now present can be used to
obtain approximate solution on a given subdomain, mostly by local computation.
The main idea is that the more global component of a finite element solution may
be obtained by a relatively coarser grid, and the rest of the computation can then
be localized.

Roughly speaking, our new algorithms will be based on sometimes one coarse
grid of size H and one fine grid of size h � H , and sometimes on a grid that is
fine in a subdomain and coarse on the rest of the domain. The fine grid may be
only defined locally. In our analysis, we shall use an auxiliary fine grid, say T h(Ω),
that is globally defined. One basic assumption for this auxiliary fine grid is that it
should coincide with the local fine grid in the subdomain of interest.

Let TH(Ω) be a shape-regular coarse grid, of size H � h, so that the highly lo-
cally refined mesh T h(Ω0) can be obtained, where Ω0 is a slightly larger subdomain
containing a subdomain D ⊂ Ω (namely D ⊂⊂ Ω0), see Figure 3. More precisely,
we let T hH(Ω) denote a locally refined shape-regular mesh that may be viewed as
being obtained by refining TH(Ω) locally around the subdomain D in such a way
that T hH(Ω0) = T h(Ω0). We are interested in obtaining the approximation solu-
tion in the given subdomain D with an accuracy comparable to that from T h(Ω).
We shall propose two different gridding strategies for obtaining finite element ap-
proximations on the subdomain D (see Figure 4). We denote the corresponding
finite element space by SH,h0 (Ω) ⊂ H1

0 (Ω), which consists of piecewise polynomial
of degree less than or equal to r in this section.

4.1.1. First approach. The first strategy is simply to solve a standard finite element
solution in SH,h0 (Ω).

Algorithm A0. Find uhH ∈ S
H,h
0 (Ω) such that

a(uhH , v) = (f, v), ∀v ∈ SH,h0 (Ω).

Strictly speaking, this algorithm is still a global algorithm as a global problem
is solved. But it is designed to obtain a local approximation in the subdomain D
and it makes use of a mesh that is much coarser away from D.
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Figure 3. Local Refinement

Figure 4. Localization

Theorem 4.1. Assume that uhH ∈ S
H,h
0 (Ω) is obtained by Algorithm A0. Then

‖uh − uhH‖1,D . ‖uh − uhH‖0,Ω . Hr+α|u|r+1,Ω.

Proof. By the definition of Algorithm A0 and our assumption on the auxiliary grid
T h(Ω) that coincides with T hH(Ω) on Ω0, we have

a(uhH − uh, v) = 0, ∀v ∈ S0
h(Ω0).

By Lemma 3.2, we get

‖uh − uhH‖1,D . ‖uh − uhH‖0,Ω0 ,

and then finish the proof.

We would like to remark here that similar locally refined grids have been used for
different purposes in the literature, cf. Bramble [19], Bramble, Ewing, Parashkevov
and Pasciak [20], and Bramble, Ewing, Pasciak and Schatz [21].
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4.1.2. Second approach. Our second strategy is in a way an improvement of the first
strategy. In this strategy, we first solve a global problem only on the given coarse
grid TH(Ω), and we then correct the residue locally on the fine mesh T h(Ω0) (=
T hH(Ω0)). Let SH0 (Ω) ⊂ H1

0 (Ω) be the finite element space of degree r defined on
TH(Ω).

A prototype of our new local algorithms is as follows.
Algorithm B0. 1. Find a global coarse grid solution uH ∈ SH0 (Ω):

a(uH , v) = (f, v), ∀v ∈ SH0 (Ω).

2. Find a local fine grid correction eh ∈ Sh0 (Ω0):

a(eh, v) = (f, v)− a(uH , v), ∀v ∈ Sh0 (Ω0).

3. Update: uh = uH + eh, in Ω0.

Theorem 4.2. Assume that uh ∈ Sh(Ω0) is obtained by Algorithm B0, and As-
sumption R(Ω0) holds. Then

‖uh − uh‖1,D . ‖uh − uH‖0,Ω +Hα‖uh − uH‖1,Ω . Hr+α|u|r+1,Ω.

Proof. By the definition of Algorithm B0,

a(uh − uh, v) = 0, ∀v ∈ S0
h(Ω0).

By Lemma 3.2, we get

‖uh − uh‖1,D . ‖uh − uh‖0,Ω0 . ‖uh − uH‖0,Ω0 + ‖eh‖0,Ω0 .

To estimate ‖eh‖0,Ω0 , we use the Aubin-Nitsche duality argument. Given any φ ∈
L2(Ω0), there exists w ∈ H1

0 (Ω0) such that

a(v, w) = (φ, v), ∀v ∈ H1
0 (Ω0).

Let w0
h ∈ Sh0 (Ω0) and w0

H ∈ SH0 (Ω0) satisfy

a(vh, w0
h) = a(vh, w), ∀vh ∈ Sh0 (Ω0), a(vH , w0

H) = a(vH , w), ∀vH ∈ SH0 (Ω0).

Then

‖w − w0
h‖1,Ω0 . hα‖φ‖0,Ω0 , ‖w − w0

H‖1,Ω . Hα‖φ‖0,Ω0 .

It follows that

(eh, φ) = a(eh, w) = a(eh, w0
h) = a(uh − uH , w0

h)
= a(uh − uH , w0

h − w) + a(uh − uH , w)
= a(uh − uH , w0

h − w) + a(uh − uH , w − w0
H)

. Hα‖uh − uH‖1,Ω‖φ‖0,Ω0 ,

which implies

‖eh‖0,Ω0 . Hα‖uh − uH‖1,Ω.
The desired result then follows.

Following the basic idea in Xu [48, 50, 51], for non-SPD problems Algorithm B0
may be modified in such a way that the local fine grid correction in Algorithm B0
is only carried out for the symmetric positive definite leading part of the equation.

Algorithm C0. 1. Find a global coarse grid solution uH ∈ SH0 (Ω):

a(uH , v) = (f, v), ∀v ∈ SH0 (Ω).
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2. Find a local fine grid correction eh ∈ Sh0 (Ω0):

a0(eh, v) = (f, v)− a(uH , v), ∀v ∈ Sh0 (Ω0).

3. Update: uh = uH + eh, in Ω0.

Theorem 4.3. Assume that uh ∈ Sh(Ω0) is obtained by Algorithm C0. Then

‖uh − uh‖1,D . ‖uh − uH‖0,Ω +Hα‖uh − uH‖1,Ω . Hr+α|u|r+1,Ω.

Proof. By the definition of Algorithm C0,

a0(uh − uh, v) = N(uh − uH , v), ∀v ∈ S0
h(Ω0).

Thus, by Lemma 3.2, we obtain

‖uh − uh‖1,D . ‖uh − uh‖0,Ω0 + ‖uh − uH‖0,Ω0 . ‖uh − uH‖0,Ω0 + ‖eh‖0,Ω0 .

The rest of the proof is similar to that of Theorem 4.2, and we leave the details to
the interested readers.

4.2. New parallel algorithms based on local algorithms. The parallel algo-
rithms we shall present here are naturally obtained from the local algorithms that
we studied above. Given an initial coarse triangulation TH(Ω), let us first divide Ω
into a number of disjoint subdomains D1, . . . , Dm (see Figure 5), then enlarge each
Dj to obtain Ωj that align with TH(Ω). The basic idea of our parallel algorithm is
very simple: we just apply the local algorithms in parallel in all Ωj ’s.

Figure 5. Domain decomposition: Dj ⊂⊂ Ωj

4.2.1. Basic parallel algorithms. Let us first discuss the parallel version of Algo-
rithm A0. For each j, we use some adaptive process to obtain a shape-regular mesh
Tj(Ω) and the corresponding finite element solution denoted by uj . We note that
each Tj(Ω) looks like the mesh depicted in Figure 1, and it has a substantially finer
mesh inside Ωj . We note that all Tj(Ω) are different triangulations for Ω and they
can be very arbitrary; but for simplicity of exposition, we assume each Tj(Ω) has
the same size h in Ωj (more precisely, Tj(Ωj) = T h(Ωj)) and has the size H away
from Ωj . Let Shj0 (Ω) ⊂ H1

0 (Ω) be the corresponding finite element spaces.
Algorithm A1. 1. Find uj ∈ Shj0 (Ω) (j = 1, . . . ,m) in parallel:

a(uj , v) = (f, v), ∀v ∈ Shj0 (Ω).
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2. Set uh = uj, in Dj (j = 1, . . . ,m).
Define a piecewise norm

|||uh − uh|||1,Ω = (
m∑
j=1

‖uh − uh‖21,Dj)
1/2.(4.1)

By Theorem 4.1, we have

|||uh − uh|||1,Ω . Hr+α|u|r+1,Ω.

Consequently,

|||u − uh|||1,Ω . (hr +Hr+α)|u|r+1,Ω.

We now discuss the parallel versions of Algorithms B0 and C0. Although there
are many possibilities for the generalization, for clarity of exposition, it appears
to be most convenient to discuss these using two globally defined grids: an initial
coarse grid TH(Ω) and a refined (from TH(Ω)) grid T h(Ω) that satisfies h� H .

Algorithm B1. 1. Find a global coarse grid solution uH ∈ SH0 (Ω):

a(uH , v) = (f, v), ∀v ∈ SH0 (Ω).

2. Find local fine grid corrections ejh ∈ Sh0 (Ωj) (j = 1, . . . ,m) in parallel:

a(ejh, v) = (f, v)− a(uH , v), ∀v ∈ Sh0 (Ωj),

3. Set uh = uH + ejh, in Dj (j = 1, . . . ,m).
By Theorem 4.2, for this algorithm, we apparently have the following result.

Theorem 4.4. Assume that uh is the solution obtained by Algorithm B1 and As-
sumptions R(Ωj) hold for j = 1, 2, · · · ,m. Then

|||uh − uh|||1,Ω . Hα‖uh − uH‖1,Ω . Hr+α|u|r+1,Ω

and

|||u − uh|||1,Ω . (hr +Hr+α)|u|r+1,Ω.

Proof. Note that

‖uh − uH‖0,Ω . Hα‖uh − uH‖1,Ω.
The desired result follows.

Algorithm C1. 1. Find a global coarse grid solution uH ∈ SH0 (Ω):

a(uH , v) = (f, v), ∀v ∈ SH0 (Ω).

2. Find local fine grid corrections ejh ∈ Sh0 (Ωj) (j = 1, . . . ,m) in parallel:

a0(ejh, v) = (f, v)− a(uH , v), ∀v ∈ Sh0 (Ωj).

3. Update: uh = uH + ejh, in Dj (j = 1, . . . ,m).
For this algorithm, we have

Theorem 4.5. Assume that uh is the solution obtained by Algorithm C1. Then

|||uh − uh|||1,Ω . Hα‖uh − uH‖1,Ω . Hr+α|u|r+1,Ω

and

|||u − uh|||1,Ω . (hr +Hr+α)|u|r+1,Ω.
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4.2.2. Further modifications. We note that the approximations uh obtained by Al-
gorithms A1, B1 and C1 are piecewise defined and they are in general discontinuous.
We also point out that ‖uh − uh‖0,Ω does not in general have higher order than
|||uh − uh|||1,Ω. In this subsection, we shall propose some further modifications for
these algorithms to achieve the following two goals:

1. smooth uh to obtain a global H1(Ω) approximation;
2. improve the error ‖uh − uh‖0,Ω.

The first goal will be achieved by using some more local fine grid problems; the
second will be achieved by carrying out a further global coarse grid correction. We
note that the second goal is realized after the first goal has been achieved.

We now proceed to present a modified algorithm that addresses both of the
aforementioned two issues. To do this, we pick another sequence of subdomains
Gj ⊂⊂ Dj and Gm+1 = Ω \ (

⋃m
j=1 Ḡj) (see Figure 6).

Figure 6. Domain decomposition: Gj ⊂⊂ Dj ⊂⊂ Ωj and Gm+1

Algorithm C2. 1. Find a global coarse grid solution uH ∈ SH0 (Ω):

a(uH , v) = (f, v), ∀v ∈ SH0 (Ω).

2. Find local fine grid corrections ejh ∈ Sh0 (Ωj) (j = 1, . . . ,m) in parallel:

a0(ejh, v) = (f, v)− a(uH , v), ∀v ∈ Sh0 (Ωj),

3. Set uh = uH + ejh, in Gj (j = 1, . . . ,m) and uh on Ḡm+1 is defined by
uh |∂Gj∩∂Gm+1= uH + ejh (j = 1, . . . ,m) and satisfying

a0(uh, v) = (f, v)−N(uH , v), ∀v ∈ Sh0 (Gm+1).

4. Find a further coarse grid correction eH ∈ SH0 (Ω):

a(eH , v) = (f, v)− a(uh, v), ∀v ∈ SH0 (Ω).

5. Update: ũh = uh + eH , in Ω.
In the above algorithm, Step 3 is for obtaining a global H1 solution and Step 4

is for improving the L2 error.
For the analysis of the above algorithm, we need an additional assumption on

the finite element space.
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Theorem 4.6. Assume that uh is the solution obtained by Algorithm C2 and As-
sumption A.5. Then

‖uh − uh‖1,Ω . Hα‖uh − uH‖1,Ω . Hr+α|u|r+1,Ω

and

‖uh − ũh‖0,Ω . H2α‖uh − uH‖1,Ω . Hr+2α|u|r+1,Ω.

Proof. From the definition, we have

a0(uh − uh, v) = N(uH − uh, v), ∀v ∈ Sh0 (Gm+1).(4.2)

Let

aGm+1(u, v) =
∫
Gm+1

d∑
i,j=1

aij
∂u

∂xi

∂v

∂xj
;

then

‖∇(uh − uh)‖20,Gm+1
. aGm+1(uh − uh, uh − uh).

Thus, for any v ∈ Sh0 (Gm+1)

‖∇(uh − uh)‖20,Gm+1
. aGm+1(uh − uh, uh − uh − v) + ‖uh − uH‖0,Ω‖v‖1,Ω

and

‖∇(uh − uh)‖20,Gm+1
. ‖∇(uh − uh)‖0,Gm+1 inf

χ∈Sh0 (Gm+1)
‖uh − uh − χ‖1,Gm+1

+‖uh − uH‖0,Ω inf
χ∈Sh0 (Gm+1)

(‖uh − uh − χ‖1,Gm+1 + ‖χ‖1,Ω).

From Assumption A.5, we have

‖∇(uh − uh)‖20,Gm+1
. ‖∇(uh − uh)‖0,Gm+1‖uh − uh‖1/2,∂Gm+1

+‖uh − uH‖0,Ω(‖uh − uh‖1/2,∂Gm+1 + ‖uh − uh‖1,Gm+1).

Using

‖uh − uh‖1/2,∂Gm+1 .
m∑
j=1

‖uh − uh‖1/2,∂Gj .
m∑
j=1

‖uh − uh‖1,Gj ,

or

‖uh − uh‖1/2,∂Gm+1 . |||uh − uh|||1,Ω,
we get

‖∇(uh − uh)‖20,Gm+1
. |||uh − uh|||21,Ω
+ (|||uh − uh|||1,Ω + ‖uh − uh‖1,Gm+1)‖uh − uH‖0,Ω.

Thus

‖uh − uh‖21,Ω . ‖∇(uh − uh)‖20,Ω

. |||uh − uh|||21,Ω + ‖uh − uH‖20,Ω + ‖uh − uh‖1,Ω‖uh − uH‖0,Ω,
namely,

‖uh − uh‖1,Ω . |||uh − uh|||1,Ω + ‖uh − uH‖0,Ω,(4.3)
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which together with Theorem 4.5 and

uh − ũh = (I − PH)(uh − uh)(4.4)

finishes the proof.

5. Local and parallel adaptive process

The local error estimates and local/parallel algorithms presented in previous
sections make it possible to design many new local and parallel adaptive algorithms
for finite element computations. In this section, we shall give some examples.

5.1. On the traditional adaptive process. Before we present our new local and
parallel adaptive method, we would like to recall some traditional finite element
adaptive process based on a posteriori error estimates. We would like to illustrate
that our local a posteriori error estimates give a certain theoretical justification of
some traditional finite element adaptive techniques.

The basic idea of an adaptive algorithm is to use a given computed finite element
solution to detect the behavior of the exact solution so that the underlying finite
element meshes can get properly refined or de-refined in certain regions of the
domain according to the behavior of the solution. The behavior of the solution
is detected by using certain a posteriori error estimates like the ones presented in
§3.2. In the existing literature, these a posteriori error estimates are often given
and analyzed in a global form. For example, in view of (3.19), one can often use
the following kind of global a posteriori error estimate:

‖u− uh‖1,Ω ≤ Eh ≡ C0‖hη(uh)‖0,Ω.(5.1)

The constant C0 only depends on the shape of the grids, and it may be properly
estimated, or, for simplicity, one may take C0 = 1. In practice, we wish to find
a mesh T h(Ω) (with least possible number of nodes) such that the corresponding
finite element approximation uh satisfies

‖u− uh‖1,Ω ≤ δ,(5.2)

for a given a tolerance error δ.
Using, for example, (5.1), it suffices to refine the mesh in such a way that

Eh ≡ C0‖hη(uh)‖0,Ω ≤ δ.
If the above estimate is satisfied for the given mesh, then we have achieved our
goal. Otherwise, we need to further refine the mesh locally. In order to use the
global error estimate for local mesh refinement, one often uses the principle of
equi-distribution for the error. Let Nh be the total number of elements. For each
element, we then check if the following is satisfied:

C2
0‖hη(uh)‖0,τ ≤ δ2/Nh.(5.3)

Here δ2/Nh is the averaged error on τ obtained by the aforementioned equi-
distribution principle.

One natural question to ask is why a global a posteriori error estimate like (5.1)
can be used locally as in (5.3). We would like to argue that our local estimates
would give a theoretical justification of the aforementioned local application of a
posteriori error estimates. One argument we can make is that the a posteriori
error estimate itself is essentially local, according to Theorem 3.9. Another related
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argument can be based on the locality of a priori error estimates for u−uh according
to Theorem 3.4.

5.2. A local adaptive process. The locality of both a priori and a posteriori
error estimates can be used to devise some local/parallel adaptive algorithms. As
an example, we shall now propose a local adaptive algorithm that can be used to
obtain an approximate solution that has a desired accuracy in a given subdomain
locally.

Let D ⊂ Ω be a given subdomain and δ a given tolerance. Suppose we want to
obtain an approximate solution uh satisfying

‖u− uh‖1,D ≤ δ.
According to the local error estimates in previous sections, this error tolerance can
be achieved by only local mesh refinement around the domain D. Let Ω0 be a
subdomain that is slightly larger than D. By Theorem 3.9, we have the estimate

‖u− uh‖1,D ≤ C0‖hη(uh)‖0,Ω0 + higher order global error term.(5.4)

If our initial grid is reasonably fine, the higher order global error term is negligible.
This means we may only need to refine the mesh in the subdomain Ω0 so that

C0‖hη(uh)‖0,Ω0 ≤ δ.
This adaptive process corresponds precisely to the local algorithm described in
§4.1.1, where a priori error estimates are discussed.

In view of the local algorithm described in §4.1.2, apparently, a corresponding
local adaptive process can also be obtained. We omit the details here.

5.3. A parallel adaptive process. As before, a simultaneous application of a
local algorithm on a number of subdomains naturally leads to a parallel algorithm.
In this subsection, we shall give some details for a parallel adaptive algorithm
corresponding to the local adaptive algorithm described in the previous subsection.

Our goal is to design a parallel procedure to find a finite element approximation
uh (which may be piecewise defined) satisfying (see (4.1))

|||u − uh|||1,Ω ≤ δ,(5.5)

for a given tolerance error δ.
Based on a reasonable good initial mesh, denoted by TH(Ω), and its correspond-

ing solution, denoted by uH , an adaptive process is to make use of some a posteriori
estimates based on information from TH(Ω) and u0 to adaptively come up with
better and better meshes until a desired error tolerance is reached. Traditionally,
after a stage of refinement/de-refinement, the a posteriori estimates are evaluated
on the whole domain. Thanks to the local estimate (3.21), we propose that a pos-
teriori estimates can be evaluated concurrently on a number of proper subdomains
and a parallel adaptive process can then be brought about.

As in §4.2, given an initial coarse triangulation TH(Ω), we divide Ω into a number
of disjoint subdomains D1, . . . , Dm, then enlarge each Dj to obtain Ωj ’s that align
with TH(Ω).

We aim to reach (5.5) by refining the mesh TH(Ω). Note that ‖u − uH‖0,Ω is
of higher order compared with ‖u− uH‖1,Ω; for convenience of exposition, we may
assume that our initial mesh is fine enough so that ‖u − uH‖0,Ω is much smaller
than δ. (This assumption is not crucial in practice, as TH(Ω) can get updated by
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finer meshes in an adaptive process.) Thanks to the estimate (3.21), we have (with
h = H)

‖u− uh‖1,Dj ≈ Cj‖hη(uh)‖0,Ωj .
We use a standard principle of equi-distribution for the error control, in which we
equalize the contribution from each subdomain. More precisely, the finite element
approximation computed on the targeted mesh T h(Ω) in terms of computational
work satisfies

‖u− uh‖21,Dj ≤
δ2

m
, j = 1, 2, · · · ,m.(5.6)

Therefore we can just carry out the mesh refinement locally on Ωj until the following
estimates are satisfied:

Cj‖hη(uh)‖20,Ωj ≤
δ2

m
, j = 1, 2, · · · ,m.(5.7)

We note that the refinement process on each Ωj is independent of those from other
subdomains. Associated with each Ωj , we get a locally refined mesh as in Figure 1
and then find the corresponding finite element solution, denoted by uj, on such
a mesh. After all these are done, we then take final solutions that are defined
piecewise on each Dj restricted from Ωj .

The above exposition contains the main ideas of a parallel adaptive process, but
for its application, there are many practical issues that need to be addressed. We
refer to Bank and Holst [12] for a similar approach and implementation details.

6. Some numerical experiments

In this paper, we have presented many new estimates and new algorithms. It
is perhaps a little too much of an undertaking to carry out and report numerical
experiments for all these results in this single work. For illustration, we choose to
report some simple numerical experiments only for Algorithms B1, C1 and C2.

We consider the simple unit square domain Ω = (0, 1) × (0, 1) and a uniform
triangulation T h(Ω) = {τ} (see Figure 7) and piecewise linear finite element spaces:

Sh(Ω) = {v ∈ H1(Ω) : v |τ is linear, ∀τ ∈ T h(Ω)}, Sh0 (Ω) = Sh(Ω) ∩H1
0 (Ω).

Divide Ω into four subdomains (see Figure 8):

D1 = (0, 1/2)× (0, 1/2), D2 = (0, 1/2)× (1/2, 1),

D3 = (1/2, 1)× (0, 1/2), D4 = (1/2, 1)× (1/2, 1).

Set

G1 = (0, 3/8)× (0, 3/8), G2 = (0, 3/8)× (5/8, 1),

G3 = (5/8, 1)× (0, 3/8), G4 = (5/8, 1)× (5/8, 1),

and

Ω1 = (0, 5/8)× (0, 5/8), Ω2 = (0, 5/8)× (3/8, 1),

Ω3 = (3/8, 1)× (0, 5/8), Ω4 = (3/8, 1)× (3/8, 1).

Now we apply Algorithm B1, Algorithm C1 and Algorithm C2 with coarse mesh
size H =

√
h to solve two partial differential equations of second order, respectively.

For the exact solver of all the nonsymmetric and/or indefinite systems of coarse
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Figure 7. A Triangulation

Figure 8. Domain Decomposition

spaces, the Gaussian elimination is used. On the other hand, a standard V-cycle
multigrid algorithm is used to solve all the SPD systems on fine spaces.

We first consider the following simple Poisson equation:{
−∆u = f, in Ω,

u = 0, on ∂Ω,(6.1)

where f = 50(x− y2)ey.
We shall apply Algorithm B1 and Algorithm C2 to solve this problem, using

fine meshes of sizes h = 2−j (j = 6, 8, 10) and corresponding coarse meshes of size
H =

√
h.

Let uh be the standard finite element solution, let uh be obtained by Algorithm
B1, and let ũh be obtained by Algorithm C2. Then, by Theorems 4.4 and 4.6, we
obtain

|||uh − uh|||1,Ω = O(H2) ≈ ch, |||uh − ũh|||0,Ω = O(H3) ≈ ch3/2.(6.2)

The results shown in Table 1 support the above estimate. Actually, for Algorithm
C2, this numerical example shows a better order of convergence than our theory
predicted.
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Table 1. Algorithm B1 and Algorithm C2 for the Poisson problem

h |||uh − uh|||1,Ω
|||u4h − u4h|||1,Ω
|||uh − uh|||1,Ω

‖uh − ũh‖0,Ω
‖u4h − ũ4h‖0,Ω
‖uh − ũh‖0,Ω

2−6 0.7722(-1) 0.4224(-3)
2−8 0.1948(-1) 3.96 0.2933(-4) 14.4
2−10 0.4885(-2) 3.99 0.1952(-5) 15.0

Table 2. Algorithm C1 and Algorithm C2 for the Non-SPD problem

h |||uh − uh|||1,Ω
|||u4h − u4h|||1,Ω
|||uh − uh|||1,Ω

‖uh − ũh‖0,Ω
‖u4h − ũ4h‖0,Ω
‖uh − ũh‖0,Ω

2−6 0.1063(+0) 0.1089(-2)
2−8 0.2827(-1) 3.76 0.1307(-3) 8.33
2−10 0.7217(-2) 3.92 0.1606(-4) 8.14

We next consider a simple example of convection-diffusion problems:{
−∆u+ b · ∇u = f, in Ω,

u = 0, on ∂Ω,
(6.3)

where b = (2x− ey, 3y cos(πx)), f = 70 log((x + 1/10)(sin(πy) + 1)).
As for the convection-diffusion equation above, we again apply Algorithm C1

and Algorithm C2 to solve this problem. The corresponding computational results
are shown in Table 2, and again support our theory.

7. Some further remarks

In this last section, we shall make a few technical comments and a concluding
remark.

7.1. On the dependence of subdomains. We would like to point out that most
of the error estimates presented in this paper depend on the distance between the
boundaries of the underlying subdomains (cf. Schatz and Wahlbin [39, 40], and
Wahlbin [46, 47]). To avoid notational complication, we chose not to explicitly
spell out this kind of dependence.

7.2. Estimates in terms of different norms. Most of the local estimates in
this paper can be generalized to other norms such as the W 1,∞ and L∞ norms. As
an illustration, let us discuss briefly the possible maximum norm estimates in two
dimensions.

For any z ∈ Ω, let Gz be the Green function with respect to the singular point
z:

a(v,Gz) = v(z), ∀v ∈ H1
0 (Ω).(7.1)

We assume that
A.6. Green function.

inf
v∈Sh0 (Ω)

(‖h−2(Gz − v)‖0,1,Ω0 + ‖h−1(Gz − v)‖1,1,Ω0) .| log hm |,(7.2)
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where hm = minx∈Ω h(x). Moreover, if z ∈ D ⊂⊂ D1 ⊂ Ω0, then

‖Gz‖2,Ω\D1 . 1.(7.3)

(The above assumption is reasonable; we refer, for example, to [17, 37] for details.)
A.1′′ Approximation. If w ∈W 1,1

0 (Ω), then as hΩ → 0,

inf
v∈Sh0 (Ω)

(‖h−1(w − v)‖0,1,Ω + ‖w − v‖1,1,Ω) = o(1).(7.4)

A.4′. Trace.

‖v‖0,1,∂τ . ‖h−1w‖0,1,τ + ‖∇w‖0,1,τ , ∀w ∈ H1(τ), τ ∈ T h(Ω0).(7.5)

The following theorem can be proved.

Theorem 7.1. If Assumptions A.1′′, A.4′ and A.6 hold, then

‖u− uh‖0,∞,D .| log hm | ‖h2η(uh)‖0,∞,Ω0 + ‖u− uh‖−1,Ω.(7.6)

7.3. Improved estimates in some special cases. In our local error estimates,
the global errors are all measured in L2 norms. As in the existing literature on local
a priori error estimates (cf. Schatz and Wahlbin [39, 40], and Wahlbin [46, 47]),
it is possible to replace the global L2 norm by some negative Sobolev norms. For
example, the following estimate may be obtained:

‖u− uh‖1,D . inf
v∈Sh0 (Ω)

‖u− v‖1,Ω0 + ‖u− uh‖1−r,Ω

for a finite element space of degree r. As a result, the following estimate similar to
(1.3) may be obtained:

‖u− uh‖1,D = O(hr +H2r).

For simplicity and generality, we did not get into details in this paper when the
above improved estimates may be obtained. We will report this kind of results in
our future work.

7.4. Conclusion. In this paper, we have used a simple second oder elliptic model
problem and a class of finite element discretization methods to demonstrate how
to use a coarse grid to capture the global component of the approximate solution
and then parallelize the major computation in a much finer grid. We believe this is
a general and powerful parallel-computing technique that can be used for a variety
of partial differential equations with different types of discretization methods.
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