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GALERKIN EIGENVECTOR APPROXIMATIONS

CHRISTOPHER BEATTIE

Abstract. How close are Galerkin eigenvectors to the best approximation
available out of the trial subspace? Under a variety of conditions the Galerkin
method gives an approximate eigenvector that approaches asymptotically the
projection of the exact eigenvector onto the trial subspace—and this occurs
more rapidly than the underlying rate of convergence of the approximate eigen-
vectors. Both orthogonal-Galerkin and Petrov-Galerkin methods are consid-
ered here with a special emphasis on nonselfadjoint problems, thus extending
earlier studies by Chatelin, Babuška and Osborn, and Knyazev. Consequences
for the numerical treatment of elliptic PDEs discretized either with finite ele-
ment methods or with spectral methods are discussed. New lower bounds to
the sep of a pair of operators are developed as well.

1. Introduction

Consider the eigenvalue problem for a linear operator A:

Find λ ∈ C and v̂ 6= 0 so that
Av̂ = λv̂.

(1.1)

We seek a family of approximations {λh, v̂h}h>0 to the eigenpair {λ, v̂} using the
Galerkin method.

The Galerkin method approximates the operator A with a finite rank operator,
Ah—the “projection” of A, that samples the action of A on a given subspace. The
solution to (1.1) is then approximated with a matrix eigenvalue problem associated
with Ah.

This work focuses on one particular bit of Galerkin folklore—“the Galerkin
method yields an approximate eigenvector for A that is essentially the projection
of the exact eigenvector v̂ onto the trial subspace” (see Figure 1). We discover that
this statement is correct under some mild conditions if 1) “essentially” is taken to
mean “asymptotically,” and 2) the projection involved is intrinsic to the Galerkin
method and may be either orthogonal or oblique depending on how the discretiza-
tion is organized and what point of view is taken. Results of this nature have
been found for self-adjoint operators by Chatelin [3], Babuška and Osborn [2], and
Knyazev [10] in various settings. Although more generality is possible, we restrict
ourselves to a Hilbert space setting—specific assumptions are found in Section 2.
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Figure 1. How close is the approximate eigenvector v̂hto the pro-
jected exact eigenvector Phv̂?

The basic features of Galerkin methods that play a role in our analysis are
reviewed in Section 3. Of particular note here is that discussion is not restricted
to self-adjoint problems. Section 4 provides analysis for the simplest case—when A
is a bounded operator. The case where A is an unbounded operator is considered
from two vantage points in the next two sections: with respect to the “energy”
norm in Section 5 where a discussion of consequences for the finite element method
on elliptic problems may be found; and with respect to the underlying Hilbert space
norm in Section 6 where an elliptic problem discretized using a spectral method is
discussed. The Appendix contains a development of new lower bounds to the sep
of a pair of operators, which plays a role in derivations in the main body of the
paper but may also be of independent interest.

2. Setting of the problem

2.1. Operators defined via quadratic forms. Although eigenvalue problems
are most naturally posed for linear operators, the operators themselves are often
difficult to specify fully—particularly with regard to the operator’s precise domain
of definition. It is often easier to characterize an operator in terms of a quadratic
form that is naturally associated with it. This approach usually leads spontaneously
to the appropriate choice of underlying Hilbert spaces. The reader may refer to the
excellent tract of Kato [9] for background material on quadratic forms.

Let H be a complex separable Hilbert space with inner product1 and norm
denoted by 〈 · , · 〉H and ‖ · ‖H, respectively. Let a(·, ·) be a closed sectorial
sesquilinear form, densely defined in H. “Sectorial” means that

<e a(v, v) ≥ α‖v‖2H,
|=m a(v, v)| ≤M(<e a(v, v)− α‖v‖2H)(2.1)

for all v ∈ Dom(a) and some fixed α > 0 and M > 0. Following the notation of
Kato [9], define symmetric sesquilinear forms associated with a,

[[<e a ]] (w, v) = 1
2 (a(w, v) + a(v, w)),

[[=m a ]] (w, v) = 1
2ı (a(w, v) − a(v, w)),

(2.2)

1Inner products and sesquilinear forms are conjugate linear in the first argument.
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so that a(w, v) = [[<e a ]] (w, v) + ı [[=m a ]] (w, v). Notice that (2.1) implies

α‖v‖2H ≤ [[<e a ]] (v, v) ≤ |a(v, v)| ≤
√

1 +M2 [[<e a ]] (v, v),

so [[<e a ]] is a closed, symmetric, positive-definite, sesquilinear form that induces
an inner product on Dom(a) with respect to which Dom(a) is a Hilbert space.
a(u, v) is then a bounded sesquilinear form on this Hilbert space. Furthermore,
there is a closed operator, Ca, densely defined on H so that Dom(Ca) = Dom(a)
and [[<e a ]] (v, v) = ‖Cav‖2H (cf. [9], p. 331).

Suppose now that V = Dom(a) is equipped with an inner product 〈 · , · 〉V
equivalent to [[<e a ]] . The Hilbert space V is continuously and densely imbedded in
H and we may assume without loss of generality that ‖u‖H ≤ ‖u‖V for all u ∈ V .

Observe that any H-bounded linear functional on H may be viewed immediately
as the extension of some V-bounded linear functional on V , so letting V ′ denote the
dual space of V , the imbedding V ↪→ H may be extended to a Gelfand triple (see
e.g., [13]) V ↪→ H ↪→ V ′ with the norm on V ′ defined by

‖v‖V′ = sup
w∈V

|〈w, v〉H|
‖w‖V

.

The Cauchy-Schwartz inequality yields ‖v‖V′ ≤ ‖v‖H for all v ∈ H.
Under the hypotheses given, Kato’s first representation theorem ([9], p. 322)

guarantees the existence of a closed m-sectorial operator, A, defined on

Dom(A) = {v ∈ V | |a(w, v)| ≤ mv‖w‖H for all w ∈ Dom(a)}(2.3)

where mv is independent of w but will generally depend on v. Then

a(u, v) = 〈u,Av〉H
for all v ∈ Dom(A) and u ∈ V . Furthermore, there is a closed operator Ba with
Dom(Ba) = Dom(Ca) = Dom(a), so that A may be decomposed as A = B∗aCa
(see e.g., [9] p. 337). “∗” denotes the H-adjoint.

Since Dom(A) is dense in V (with respect to the V-norm) and

|a(u, v)| ≤ c‖u‖V‖v‖V ,
we may calculate for any v ∈ Dom(A)

‖Av‖V′ = sup
u∈V

|〈u,Av〉H|
‖u‖V

≤ c‖v‖V .

Thus A may be extended by continuity to a bounded linear transformation from V
to V ′. To avoid adding a further notational burden on the reader, the two available
interpretations of A, as an (unbounded) operator from Dom(A) ⊂ H → H and as
an operator from V to V ′, will be distinguished only by the context in which they
appear. “Dom(A)” will always refer to the definition given in (2.3). Note that

‖Av‖V′ = sup
u∈V

|a(u, v)|
‖u‖V

≥ |a(v, v)|
‖v‖V

≥ [[<e a ]] (v, v)
‖v‖V

≥ α̂‖v‖V ,

thus A (now extended to V) is an isomorphism of V onto V ′ with a bounded inverse,
T = A−1 mapping V ′ back to V . T may be defined alternatively for each v ∈ V ′,
so that Tv ∈ V solves

〈u, v〉H = a(u, T v)(2.4)

for all u ∈ V . A maps vectors in Dom(A) to H, whereas T maps vectors in H ⊂ V ′
back to Dom(A) ⊂ V .
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2.2. The gap. Given two closed subspaces, M and N of H, the proximity of one
to the other is measured in terms of the containment gap (or just gap2), which we
define as

δH(M,N ) = sup
x∈M

inf
y∈N

‖y − x‖H
‖x‖H

= sin(Θmax(M,N )).

Θmax(M,N ) is the largest canonical angle betweenM and a “closest” subspace N̂
of N isomorphic to dimM. Notice that if dimN < dimM, then δH(M,N ) = 1
and δH(M,N ) = 0 if and only if M ⊂ N . If dimN = dimM < ∞, then
δH(M,N ) = δH(N ,M). Conversely, if both δH(M,N ) < 1 and δH(N ,M) < 1,
then δH(M,N ) = δH(N ,M) and N and M are isomorphic.

The gap can be expressed directly as the norm of a composition of projections, so
that if ΠM and ΠN denote H-orthogonal projections ontoM and N , respectively,
then δH(M,N ) = ‖(I −ΠN )ΠM‖H.

If M and N are closed subspaces of V , we have the completely analogous defi-
nition of gap relative to V :

δV(M,N ) = sup
x∈M

inf
y∈N

‖y − x‖V
‖x‖V

.

If A and B are closed operators in H the gap between A and B is defined as the
gap between their graphs, considered as subspaces of H×H:

δH(A,B) = sup
x∈Dom(A)

inf
y∈Dom(B)

‖x− y‖H + ‖Ax−By‖H
‖x‖H + ‖Ax‖H

.

2.3. The eigenvalue problem. Our focus rests on the (weakly posed) eigenvalue
problem for a:

Find λ and 0 6= v̂ ∈ Dom(a) so that
a(w, v̂) = λ〈w, v̂〉H for all w ∈ Dom(a).(2.5)

Note that {λ, v̂} is an eigenpair for (2.5) if and only if v̂ ∈ Dom(A) and {λ, v̂}
is an eigenpair for the operator A; or equivalently when λ 6= 0, if {λ−1, v̂} is an
eigenpair for the operator T .

Denote the resolvent set of A by

ρ(A) = {z ∈ C |z −A has a bounded inverse on H}

and the spectrum of A by σ(A) = C\ρ(A). λ is an isolated eigenvalue of (2.5)
if there is a neighborhood of λ, call it Ω(λ), so that Ω(λ) ∩ σ(A) contains only
the point {λ} (i.e., λ is an isolated eigenvalue of the associated operator A). If
λ is an isolated nonzero eigenvalue of (2.5) then Ker[A − λI] is the associated
eigenspace. U =

⋃∞
k=1 Ker[(A − λI)k] similarly will be the invariant subspace for

(2.5) associated with λ. No compactness assumptions have been made for either A
or T , so a priori it may happen that (2.5) has no eigenvalues at all or those that
it has may be embedded in essential spectrum (defined with respect to A) and not
isolated. λ has finite multiplicity m if dim U = m <∞. If λ has finite multiplicity,
then there is a finite integer, r ≤ m for which Ker[(A− λI)r ] = Ker[(A− λI)r+1].
The smallest such integer is called the ascent of λ.

2Kato [9] defines the gap as max[δH(M,N ), δH(N ,M)].
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Furthermore, if λ is an isolated eigenvalue with finite multiplicity, then for
each k = 1, 2, . . . , (A − λ)k is a Fredholm operator with zero index implying
nullity(A− λ)k = nullity(A∗ − λ̄)k for each k (cf. [9], p. 239). In particular, λ̄ is
an eigenvalue of A∗ with the same multiplicity and ascent as λ. A “left eigenvector”
associated with such a λ ∈ σ(A) may be characterized variationally as

Find 0 6= u∗ ∈ Dom(a) so that
a(u∗, v) = λ〈u∗, v〉H for all v ∈ Dom(a).(2.6)

Note that u∗ is a solution for (2.6) if and only if u∗ ∈ Dom(A∗) and {λ̄, u∗} is an
eigenpair for the operator A∗.

Henceforth we will assume that there is an isolated eigenvalue λ 6= 0 for (2.5)
having finite multiplicity m with an associated maximal invariant subspace U for
which we seek approximations. We denote with U∗ the maximal invariant subspace
for A∗ associated with λ̄.

The spectral projection for A onto U is defined by the Dunford integral

E =
1

2πı

∫
Γ

(z −A)−1dz,

where Γ is a circle in C centered at λ leaving the origin and all points of σ(A)
other than λ in its exterior. The complementary A-invariant subspace is denoted
Uc = Ran(I − E).

Notice that µ = 1/λ will be an isolated eigenvalue of T also with multiplicity m
and the same m-dimensional invariant subspace U as for λ. The spectral projection
may be defined with respect to T as

E =
1

2πı

∫
Σ

(z − T )−1dz,

where Σ is a circle in C centered at µ leaving the origin and all points of σ(T ) other
than µ in its exterior.

3. The Galerkin method

3.1. Discretization. In order to approximate the eigenvalue λ and its associated
invariant subspace U , we introduce two parameterized families of finite dimen-
sional subspaces S1,h ⊂ V and S2,h ⊂ V—the trial and test subspaces, respectively.

Assume that dimS1,h = dimS2,h
def= N(h). Typically, the dimension N(h) is mono-

tone increasing as the “mesh size” parameter h decreases.
The Galerkin method proceeds by solving an eigenvalue problem as in (2.5) for

the form a restricted to the finite dimensional space S2,h × S1,h:

Find λh and 0 6= vh ∈ S1,h so that
a(u, vh) = λh〈u, vh〉H

for all u ∈ S2,h.
(3.1)

The name is sometimes further qualified as either an orthogonal-Galerkin method
or a Petrov-Galerkin method depending on whether S1,h = S2,h or not. When A is
self-adjoint and S1,h = S2,h, this approach is called the Rayleigh-Ritz method.

For any given h, the computational realization proceeds by fixing bases for S1,h

as φ1, φ2, . . . , φN(h), and for S2,h as ψ1, ψ2, . . . , ψN(h). The problem (3.1) is
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then reduced to resolving the generalized matrix eigenvalue problem

Ahy =λhBhy(3.2)

where Ah = [a(ψi, φj)] ∈ CN(h)×N(h)

and Bh = [〈ψi, φj〉H] ∈ CN(h)×N(h).

If an eigenvector y of (3.2) has components yt = {y1, y2, . . . , yN(h)}, then the
corresponding vh that solves (3.1) is represented as vh =

∑N(h)
j=1 yjφj .

For any τ ∈ C, define Tτ = T +τ , which may be defined variationally by analogy
to (2.4) as that operator that satisfies

〈u, v〉H + τa(u, v) = a(u, Tτv)(3.3)

for all u, v ∈ V . Notice that {λ, u} is an eigenpair for (2.5) if and only if
{(λ−1 + τ), u} is an eigenpair for the operator Tτ and more generally, σ(Tτ ) =
σ(T ) + τ . T and Tτ have the same invariant subspaces U associated with each of
the eigenvalues λ−1 and λ−1 + τ , respectively. The effect of a translation of σ(T )
by τ produces (from (3.3)) a discrete problem with translated spectrum. Instead
of (3.2), we have

Ahy = λ̂h(Bh + τAh)y.(3.4)

The approximate spectra produced by (3.2) and (3.4) are related as λ̂−1
h = λ−1

h + τ
but eigenvectors and invariant subspaces are identical. Since our principal interest is
in eigenvector approximations, choices for τ are immaterial, and particular choices
will entail no loss of generality.

Assume that the following “discrete inf-sup” conditions are satisfied:

inf
u∈S2,h
‖u‖V=1

sup
v∈S1,h
‖v‖V=1

|a(u, v)| def= β(h) > 0,(3.5)

and

inf
u∈S2,h
‖u‖H=1

sup
v∈S1,h
‖v‖H=1

|〈u, v〉H| def=
◦
β(h) > 0.(3.6)

Since dimS1,h = dimS2,h = N(h), these are equivalent to the complementary
conditions,

inf
v∈S1,h
‖v‖V=1

sup
u∈S2,h
‖u‖V=1

|a(u, v)| = β(h) > 0(3.7)

and

inf
v∈S1,h
‖v‖H=1

sup
u∈S2,h
‖u‖H=1

|〈u, v〉| =
◦
β(h) > 0,(3.8)

respectively. Condition (3.5) is the usual discrete inf-sup condition (cf. [1]) and
guarantees that Ah is invertible for each h. Analogously condition (3.6) guarantees
that Bh is invertible for each h. Either (3.5) or (3.6) will guarantee that the discrete
eigenvalue problem (3.2) is well posed and associated with a regular matrix pencil
for each h > 0.
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3.2. Projections. Define Ph : V → S1,h as Phv =
∑N(h)

i,j=1 a(ψj , v)γijφi where
[γij ] = A−1

h . Direct calculation verifies P 2
h = Ph, hence Ph is a projection, albeit

nonorthogonal typically. Ph maps each v ∈ V to a unique vector, w] = Phv in S1,h

that solves

Find w] ∈ S1,h so that
a(u, v − w]) = 0 for all u ∈ S2,h.(3.9)

Ph arises spontaneously in discussing solutions to boundary value problems associ-
ated with a. For any given f ∈ H, the weakly posed boundary value problem

Find v̂ ∈ V so that
a(w, v̂) = 〈w, f〉H for all w ∈ V

admits a solution v̂ which may be approximated with a Galerkin method

Find v̂h ∈ S1,h so that
a(w, v̂h) = 〈w, f〉H for all w ∈ S2,h.

Exact and approximate solutions are related via Ph as v̂h = Phv̂.
Along the same lines as above, define P ah as P ahu =

∑N(h)
i,j=1 a(u, φi)γijψj . P ah is

a projection onto S2,h defined on V and w] = P ahu solves, for any u ∈ V ,

Find w] ∈ S2,h so that
a(u− w], v) = 0 for all v ∈ S1,h.(3.10)

Notice that (3.9) and (3.10) together imply for all u, v ∈ V ,

a(u, Phv) = a(P ahu, Phv) = a(P ahu, v).

That is, P ah is the “a-adjoint” of Ph.
Now, for all u ∈ S2,h and all v ∈ S1,h,

〈u, v〉H = 〈P ahu, Phv〉H
= a(P ahu, TPhv)
= a(u, PhTPhv),

so we have that λh 6= 0 and vh together solve (3.1) if and only if λ−1
h and vh

constitute an eigenpair for Th
def= PhTPh.

From (3.7), we find for any v ∈ V with ‖Phv‖V 6= 0,

0 < β(h) ≤ sup
u∈S2,h
‖u‖V=1

|a(u, Phv)|
‖Phv‖V

= sup
u∈S2,h
‖u‖V=1

|a(u, v)|
‖Phv‖V

≤ sup
u∈S2,h
‖u‖V=1

c1‖v‖V‖u‖V
‖Phv‖V

≤ c1
‖v‖V
‖Phv‖V

.

Thus,

‖Ph‖V ≤ c1/β(h).(3.11)

Similarly from (3.6), ‖P ah ‖V ≤ c1/β(h). The following result leads us to conclude
that both ‖I − Ph‖V ≤ c1/β(h) and ‖I − P ah ‖V ≤ c1/β(h) as well.
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Lemma 3.1. If Z is a bounded (nonorthogonal) projection on a Hilbert space W
such that Z 6= I and Z 6= 0, then ‖I − Z‖W = ‖Z‖W. Furthermore, if Π denotes
the W-orthogonal projection onto Ran(Z),

1
‖Z‖W

‖(I − Z)u‖W ≤ ‖(I −Π)u‖W ≤ ‖(I − Z)u‖W .(3.12)

Proof. The first assertion was proved by Kato ([8], p. 28). Since (I − Z) =
(I − Z)(I − Π), ‖(I − Z)u‖W ≤ ‖(I − Z)‖W‖(I − Π)u‖W which then gives the
first inequality of (3.12). The second inequality of (3.12) is the best approximation
property of orthogonal projections.

Π1,h and Π2,h will always denote orthogonal projections onto S1,h and S2,h re-
spectively. However, depending on the context, they will be considered either or-
thogonal in H or orthogonal in V with no distinction in notation.

Define Qh : H → S1,h as Qhv =
∑N
i,j=1〈ψj , v〉H

◦
γijφi where [

◦
γij ] = B−1

h . Qh has
a natural extension to v ∈ V ′ so the composition of operators AQh : V ′ → V ′ and
QhAQh : V ′ → S1,h are each well defined. Since Q2

h = Qh, Qh is also a projection,
but is H-orthogonal if and only if S1,h = S2,h. Qh maps each v ∈ H to a unique
vector, w] = Qhv in S1,h that solves

Find w] ∈ S1,h so that
〈u, v − w]〉H = 0 for all u ∈ S2,h.(3.13)

Evidently, the H-adjoint Q∗h : H → S2,h has the form Q∗hu =
∑N

i,j=1〈φi, u〉H
◦
γijψj .

Q∗h is a projection onto S2,h and solves, for any u ∈ H,

Find w] ∈ S2,h so that
〈u− w], v〉H = 0 for all v ∈ S1,h.(3.14)

Now, for all u ∈ S2,h and all v ∈ S1,h,

a(u, v) = a(Q∗hu,Qhv)
= 〈Q∗hu,AQhv〉H
= 〈u,QhAQhv〉H,

so we have that λh 6= 0 and vh together solve (3.1) if and only if λh and vh constitute
an eigenpair for Ah

def= QhAQh.

3.3. Convergence. Convergence criteria may be framed either in V or in H. Con-
vergence criteria in V appear as

lim
h→0

β(h)−1 inf
w∈S1,h

‖v − w‖V = 0 for each v ∈ V ,(3.15)

and

lim
h→0

δV(Th, T ) = 0,(3.16)

Theorem 3.2 (Descloux, et al. [4, 5]). The hypotheses (3.15) and (3.16) imply:
1. Both Ph → I and P ah → I strongly in V; Ph is uniformly V-bounded with

respect to h; and there is a constant c > 0 so that

δV(Th, T ) ≤ ‖(I − Ph)TPh‖V ≤ c δV(Th, T ).

2. For each compact subset, R, of ρ(T ) there exists h0 > 0 and K > 0 so that
R ⊂ ρ(Th) and ‖(z − Th)−1‖V < K uniformly for z ∈ R for all h < h0.
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3. If µ is an eigenvalue of T with algebraic multiplicity m and with an associated
m-dimensional invariant subspace U , there will be m eigenvalues (counting
multiplicity) of Th, {µ1

h, µ
2
h, . . . , µ

m
h } that are convergent to µ as h→ 0 and

the associated m-dimensional Th-invariant subspace Uh satisfies δ(U ,Uh)→ 0
as h→ 0.

If Σ is a circle in C centered at µ leaving the origin and all points of σ(T ) other
than µ in its exterior, then under the convergence assumptions (3.15) and (3.16),
there will be m eigenvalues of Th, labeled as µ1

h, µ
2
h, . . . , µ

m
h , that will all be

contained in the interior of Σ for sufficiently small h. Thus for sufficiently small h,
the Dunford integral

Eh =
1

2πı

∫
Σ

(ẑ − Th)−1dẑ

defines a spectral projection onto the Th-invariant subspace Uh associated with
µ1
h, µ

2
h, . . . µ

m
h .

Analogous convergence criteria in H appear as

lim
h→0

◦
β(h)−1 inf

w∈S1,h
‖v − w‖H = 0 for each v ∈ H,(3.17)

and

lim
h→0

δH(Ah, A) = 0,(3.18)

with similar consequences:

Theorem 3.3 (Descloux, et al. [4, 5]). The hypotheses (3.17) and (3.18) imply:
1. Both Qh → I and Q∗h → I strongly in H; Qh is uniformly H-bounded with

respect to h; and

δH(Ah, A) ≤ ‖(I −Qh)AQh‖H.
If A is bounded there is, in addition, a constant c > 0 so that

‖(I −Qh)AQh‖H ≤ c δH(Ah, A).

2. For each compact subset R of ρ(A), there exists h0 > 0 and K > 0 so that
R ⊂ ρ(Ah) and ‖(z −Ah)−1‖H < K uniformly for z ∈ R for all h < h0.

3. If λ is an eigenvalue of A with algebraic multiplicity m and with an associated
m-dimensional invariant subspace U , there will be m eigenvalues (counting
multiplicity) of Ah, {λ1

h, λ
2
h, . . . , λ

m
h } that are convergent to λ as h→ 0 and

the associated m-dimensional Ah-invariant subspace Uh satisfies δH(U ,Uh)→
0 as h→ 0.

If Γ is a circle in C centered at λ leaving the origin and all points of σ(A) other
than λ in its exterior, then under the convergence assumptions (3.17) and (3.18),
there will be m eigenvalues of Ah, labeled as λ1

h, λ
2
h, . . . , λ

m
h , that will all be

contained in the interior of Γ for sufficiently small h. Thus for sufficiently small h,
the Dunford integral

Eh =
1

2πı

∫
Γ

(ẑ −Ah)−1dẑ

defines a spectral projection for Ah onto the invariant subspace Uh associated with
λ1
h, λ

2
h, . . . λ

m
h .
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It will be convenient to label the complementary nonzero part of the spec-
trum of Th and Ah as σc(Th) = σ(Th)\{0, µ1

h, µ
2
h, . . . , µ

m
h } and σc(Ah) =

σ(Ah)\{0, λ1
h, λ

2
h, . . . , λ

m
h }, respectively.

Theorem 3.4 (Babuška and Osborn [1]). Suppose A is bounded and the hypothe-
ses (3.17) and (3.18) hold. Then there is a constant c > 0 such that

δH(U ,Uh) ≤ c
[
◦
β(h)−1δH(U ,S1,h)

]1/r

,(3.19)

|λ− λh| ≤ c
[
◦
β(h)−1δH(U∗,S2,h) δH(U ,S1,h)

]1/r

.(3.20)

where r is the ascent of the eigenvalue λ.

These appear as Theorems 8.1 and 8.3 in [1]. As stated there, the proofs given
in [1] presume that A is compact; however, the arguments extend without change
to A having nontrivial essential spectrum once the convergence results of [5] come
into play.

4. Bounded A—The main results

4.1. Basic estimates. Define

εH(h) = sup
u∈U

‖QhA(I −Qh)u‖H
‖(I − Π1,h)u‖H

,

where Π1,h here is the H-orthogonal projection onto S1,h.

Theorem 4.1. Suppose the convergence hypotheses (3.17) and (3.18) hold. There
exists an h0 > 0 sufficiently small so that for each h < h0 and each u ∈ U with
‖u‖H = 1 , there is a uh ∈ Uh so that

‖uh −Qhu‖H ≤ c εH(h) δH(U ,S1,h),(4.1)

where c > 0 is a constant independent of h and independent of the choice of u ∈ U .

Proof. Ran(Eh) ⊂ S1,h since EhAh = AhEh. Note also that Qh is a spectral
projection for Ah associated with all nonzero eigenvalues of Ah. Thus, Qh − Eh is
a spectral projection for Ah onto Uch associated with all nonzero eigenvalues of Ah
distinct from λ. Let Â = A|U denote the restriction of A to U and Let Âch = Ah|Uch
denote the restriction of Ah to Uch. Then, Âch(Qh − Eh) = (Qh − Eh)Ah and we
have

Âch(Qh − Eh)
∣∣
U − (Qh − Eh)

∣∣
U Â

= (Qh − Eh)(Ah −A)
∣∣
U

= −(Qh − Eh)((I −Qh)A+QhA(I −Qh))
∣∣
U

= −(Qh − Eh)QhA(I −Qh)
∣∣
U

= −(I − Eh)QhA(I −Qh)
∣∣
U .

Thus, the mapping S : U → Uch given by S = (Qh − Eh)
∣∣
U is a solution to the

Sylvester equation

ÂchS − SÂ = −(I − Eh)QhA(I −Qh)
∣∣
U .(4.2)
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There exists K1 > 0 such that

‖(z − Â)−1 |U ‖H ≤ ‖(z −A)−1‖H ≤ K1

uniformly for all z ∈ Γ. Likewise there exists an h0 > 0 and K2 > 0 such that for
h < h0,

‖(z − Âch)−1
∣∣Uch ‖H ≤ ‖(z −Ah)−1‖H ≤ K2

uniformly for z ∈ Γ. Therefore, the pseudospectral sets Λε(Âh) are contained in
the exterior of Γ for any ε < 1/K and for all h > h0. By Lemma A.1(b), there
must then be a c0 > 0 independent of h, such that

‖(Qh − Eh)
∣∣
U ‖U→Uch ≤ c0 ‖(I − Eh)QhA(I −Qh) |U ‖U→Uch .

Thus, for any u ∈ U ,

‖(Qh − Eh)u‖H ≤ c0 ‖I − Eh‖H sup
w∈U

‖QhA(I −Qh)w‖V
‖w‖H

≤ c0 ‖Eh‖H sup
w∈U

‖QhA(I −Qh)w‖V
‖(I −Π1,h)w‖H

sup
w∈U

‖(I −Π1,h)w‖V
‖w‖H

= c0 ‖Eh‖H εH(h) δH(U ,S1,h).

Notice that since Eh converges uniformly to E, ‖Eh‖H is uniformly bounded. The
conclusion follows upon assigning uh = Ehu.

Corollary 4.2. Suppose the convergence hypotheses (3.17) and (3.18) hold and
that S1,h = S2,h. Then

δH(U ,S1,h) ≤ δH(U ,Uh) ≤ (1 + c εH(h))δH(U ,S1,h).(4.3)

Proof. Note that under the hypotheses given, Qh = Π1,h = Π2,h = Q∗h. The first
inequality of (4.3) follows trivially from observing that Uh ⊂ S1,h. For the second,
by Theorem 4.1 there exists an h0 > 0 such that for each h < h0 and u ∈ U with
‖u‖H = 1, there is a ûh ∈ Uh such that ‖Qhu− ûh‖H ≤ c εH(h) δH(U ,S1,h). Then,

min
uh∈Uh

‖u− uh‖H ≤ ‖u− ûh‖H
≤ ‖u−Qhu‖H + ‖Qhu− ûh‖H
≤ δH(U ,S1,h) + c εH(h) δH(U ,S1,h).

Maximizing over u yields the conclusion.

Corollary 4.2 can be interpretted as saying that, provided εH(h) → 0, the or-
thogonal Galerkin method provides optimal zero order approximations to the eigen-
vectors of A: Uh will approach asymptotically the closest m-dimensional subspace
in S1,h to the exact eigenspace U—and this is true even if A is nonselfadjoint. See
the comments following Theorem 5.4.

4.2. Related estimates and interpretation. Since each Qh is a bounded pro-
jection, H may be decomposed into a direct sum of complementary subspaces as
H = Ran(Qh) ⊕Ker(Qh) = S1,h ⊕ S⊥2,h. The operator A can then be partitioned
in a way that reflects this decomposition (see Figure 2).
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Figure 2. Partitioning A and u ∈ U on H = S1,h⊕ S⊥2,h. Shading
indicates influence on εH(h).

For each generalized eigenvector, u ∈ U , define u(1,h) = Qhu and u(2,h) =
(I−Qh)u. The quantity εH(h) is then a measure of the relative size of QhA(I−Qh)
on u(2,h). This follows from observing that from Lemma 3.1

sup
u∈U

‖QhA(I −Qh)u‖)
‖(I −Qh)u‖ ≤ εH(h) ≤ ‖Qh‖ sup

u∈U

‖QhA(I −Qh)u‖)
‖(I −Qh)u‖ ,

which (provided Qh → I strongly) implies immediately

sup
u(2,h)∈Nh

‖QhA(I −Qh)u(2,h)‖H
‖u(2,h)‖H

≤ εH(h) ≤ c sup
u(2,h)∈Nh

‖QhA(I −Qh)u(2,h)‖H
‖u(2,h)‖H

for some constant c > 0, where Nh = (I − Qh)U ⊂ S⊥2,h. Nh is the span of all
components u(2,h) of (generalized) eigenvectors u in U that lie in the direction of
Ker(Qh).

Certainly it may happen that εH(h) 6→ 0, so a variety of additional conditions
will be examined in the next few sections that suffice to guarantee εH(h) → 0.
Perhaps the simplest of these is to require that the A∗h eventually converge to A∗

in gap:

Theorem 4.3. There is a c > 0 such that εH(h) ≤ cδH(A∗h, A
∗).

Proof. Note that I −Qh = (I −Qh)(I −Π1,h). Thus,

εH(h) = sup
u∈U

‖QhA(I −Qh)u‖H
‖(I −Π1,h)u‖H

≤ ‖QhA(I −Qh)‖H = ‖(I −Q∗h)A∗Q∗h‖H
≤ cδH(A∗h, A

∗),

using Part 1 of Theorem 3.3.

We should not expect to do much better than the bound provided by (4.1). The
bound has the “right” asymptotic behaviour in many cases and so in that sense
will be best possible.
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Theorem 4.4. Suppose that λ is a simple eigenvalue of A with an associated eigen-
vector u. There exist constants c0, c1 > 0 (independent of h) so that for each h one
may find a Galerkin eigenvector uh with

c0‖uh −Qhu‖H ≤ ‖QhA(I −Qh)u‖H ≤ c1‖uh −Qhu‖H + |λ− λh| ‖uh‖H.(4.4)

Furthermore there exists a c2 > 0 independent of h so that

c0
‖uh −Qhu‖H
‖(I −Π1,h)u‖H

≤ εH(h) ≤ c1
‖uh −Qhu‖H
‖(I −Π1,h)u‖H

+ (c2
◦
β(h)−1)‖(I −Π2,h)u∗‖H,

(4.5)

where u∗ is a “left eigenvector” satisfying (2.6).

Proof. The first inequalities in each of (4.4) and (4.5) are a consequence of Theorem
4.1. Since λ is simple, Au = λu and for h > 0 sufficiently small, rank(Eh) = 1 and
λh will be simple.

‖QhA(I −Qh)u‖H ≤ ‖(I − Eh)QhA(I −Qh)u‖H + ‖EhQhA(I −Qh)u‖H
≤ ‖(ÂchS − SÂ)u‖H + ‖EhAu− EhAhu‖H
≤
(
‖Âch‖H + |λ|

)
‖Su‖H + ‖λEhu−AhEhu‖H

≤
(
‖Ah‖H + |λ|

)
‖Su‖H + ‖(λ− λh)Ehu‖H

≤ ‖A‖H
(

1 + ‖Qh‖2H
)
‖Ehu−Qhu‖H + |λ− λh|‖Ehu‖H,

where S = (Qh − Eh)
∣∣
U satisfies the Sylvester equation (4.2). Then (4.4) follows

upon assigning uh = Ehu and observing that Qh is uniformly bounded in H.
To show (4.5), note that the ascent of λ is 1, so from (3.20) there is a c2 with

|λ− λh| ≤ c2
◦
β(h)−1‖(I −Π2,h)u∗‖H‖(I −Πh)u‖H

so

εH(h) =
‖QhA(I −Qh)u‖H
‖(I − Πh)u‖H

≤ c1
‖uh −Qhu‖H
‖(I −Πh)u‖H

+ (c2/
◦
β(h)−1)‖(I −Π2,h)u∗‖H.

5. Unbounded A—Estimates in V
5.1. Basic results. The setting considered in this section is the traditional one
encountered in the analysis of finite element methods. With few exceptions, much
of the structure of arguments of Section 4 carry over into this setting.

Define

εV(h) = sup
u∈U

‖PhT (I − Ph)u‖V
‖(I − Π1,h)u‖V

,

where Π1,h now is the V-orthogonal projection onto S1,h.

Theorem 5.1. Suppose the convergence hypotheses (3.15)–(3.16) hold. There ex-
ists an h0 > 0 sufficiently small so that for each h < h0 and all u ∈ U , there is a
uh ∈ Uh so that

‖uh − Phu‖V ≤ c εV(h) δV(U ,S1,h),(5.1)
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where c > 0 is a constant independent of h and independent of the choice of u ∈ U .

The proof is the same as for Theorem 4.1 formulated in the Hilbert space V
instead ofH and with T , Th, and Ph playing the roles of A, Ah, and Qh, respectively.

Lemma 5.2. Suppose the convergence hypotheses (3.15)–(3.16) hold. If V is com-
pactly imbedded in H (so that T is compact as a mapping from V to itself) and if
S2,h satisfies the approximation property

lim
h→0

β(h)−1 inf
w∈S2,h

‖v − w‖V = 0 for each v ∈ V ,(5.2)

then εV(h)→ 0 as h→ 0.

Proof. Since a is bounded and coercive on V , there is a bounded and invertible
linear operator on V , A, such that a(u, v) = 〈u,Av〉V . Let “?” denote the V-adjoint
and observe that P ?hu =

∑N
i,j=1〈φi, u〉VγijA?ψj , so that, in particular, Ran(P ?h ) =

A?S2,h. Let Π2,h denote the V-orthogonal projection onto S2,h and notice that
A?Π2,hA−? is a projection (no longer orthogonal, in general) onto Ran(P ?h ). Then
for any u ∈ V , (5.2) implies

‖(I − P ?h )u‖V = ‖(I − P ?h )(I −A?Π2,hA−?)u‖V
= ‖(I − P ?h )A?(I −Π2,h)A−?u‖V
≤ ‖I − P ?h‖V‖A

?‖V‖(I −Π2,h)A−?u‖V
≤ c

β(h)
‖(I −Π2,h)A−?u‖V

=
c

β(h)
inf

w∈S2,h
‖A−?u− w‖V → 0,

for some constant c. Thus, P ?h converges strongly to I in V . Since T ? is compact,
‖(I − P ?h )T ?‖V → 0 and

εV(h) = sup
u∈U

‖PhT (I − Ph)(I −Π1,h)u‖V
‖(I −Π1,h)u‖V

≤ ‖PhT (I − Ph)‖V
= ‖(I − P ?h )T ?P ?h‖V
≤ ‖(I − P ?h )T ?‖V‖P

?
h‖V → 0.

Even when T is not compact, additional conditions on S2,h can yield the same
result:

Lemma 5.3. Let T ∗ denote the H-adjoint of T . Suppose the convergence hypothe-
ses (3.15)–(3.16) hold. If S2,h satisfies the approximation properties

lim
h→0

β(h)−1 inf
w∈S2,h

‖v − w‖V = 0 for each v ∈ V ,(5.3)

and

sup
v∈S2,h
‖v‖V=1

inf
w∈S2,h

‖T ∗v − w‖V
def= γ(h)→ 0 as h→ 0.(5.4)

Then εV(h)→ 0 as h→ 0 and εV(h) = O(γ(h)).
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Proof. We first verify that T ∗ maps V to V . For any u ∈ H, v ∈ Dom(a),
|〈u, v〉H| ≤

1
α‖u‖H ‖Cav‖H. (Recall Ba and Ca were defined in Section 2.) Thus,

for u ∈ Dom(a), w ∈ Ran(Ca|Dom(A)), (so that w = Cav for some v ∈ Dom(A)),
one may observe

|〈T ∗u, B∗aw〉H| = |〈T
∗u, B∗aCav〉H|

= |〈T ∗u, Av〉H|
= |〈u, v〉H|

≤
(‖u‖H

α

)
‖w‖H.

Since Dom(A) is a core for Ca, Ran(Ca|Dom(A)) is dense in H and as a consequence
T ∗u ∈ Dom(B∗∗a ) = Dom(Ba) = Dom(a). For u ∈ Dom(a), v ∈ Dom(A), then

a(T au, v) = a(u, T v) =〈u, v〉H(5.5)
=〈u, TAv〉H
=〈T ∗u, Av〉H = a(T ∗u, v)

(the last equality being a consequence of T ∗u ∈ Dom(a)), and so, T a = T ∗.
Since ‖ · ‖V and [[<e a ]] are equivalent norms on V , there is an m > 0 so that

m‖u‖2V ≤ |a(u, u)| and

m‖PhT (I − Ph)v‖V ≤
|a(PhT (I − Ph)v, PhT (I − Ph)v)|

‖PhT (I − Ph)v‖V
≤ sup

u∈V
‖u‖V=1

|a(u, PhT (I − Ph)v)|

= sup
u∈V
‖u‖V=1

|a((I − P ah )T ∗P ahu, v)|

≤ sup
u∈V
‖u‖V=1

c1‖v‖V‖(I − P
a
h )T ∗P ahu‖V

= c1‖v‖V‖(I − P
a
h )T ∗P ah ‖V .

Thus, εV(h) ≤ ‖PhT (I − Ph)‖V ≤ (c1/m)‖(I − P ah )T ∗P ah ‖V . Now, notice that
Ran(P ah ) = S2,h, so I − P ah = (I − P ah )(I − Π2,h), where Π2,h is the V-orthogonal
projection onto S2,h. Now,

‖(I − P ah )T ∗P ah ‖V ≤ ‖(I − P
a
h )(I −Π2,h)T ∗Π2,hP

a
h ‖V

≤ ‖(I − P ah )‖V‖P
a
h‖V‖(I −Π2,h)T ∗Π2,h‖V

= ‖(I − P ah )‖V‖P
a
h‖V sup

v∈S2,h
‖v‖V=1

inf
w∈S2,h

‖T ∗v − w‖V

≤ cγ(h)→ 0.

If a is symmetric (so that [[<e a ]] = a and [[=m a ]] = 0) and if a(·, ·) itself is used
as the inner product for V , then T is a self-adjoint operator in V . If additionally
S1,h = S2,h, then Ph is a V-orthogonal projection and Th is then also self-adjoint.
In this circumstance, uh is asymptotically the closest vector out of S1,h to u (with
respect to the a-norm on V):
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Theorem 5.4. Suppose a is symmetric, a(u, v) = 〈u, v〉V , and that S1,h = S2,h.
Then

εV(h) ≤ c1δV(Th, T )(5.6)

and

1 ≤ δV(U ,Uh)
δV(U ,S1,h)

≤ 1 + c2 δV(Th, T ).(5.7)

Proof. Note that under the hypotheses given, Ph = Π1,h = Π2,h = P ah . Thus,

εV(h) = sup
u∈U

‖Π1,hT (I −Π1,h)u‖V
‖(I −Π1,h)u‖V

≤ ‖Π1,hT (I −Π1,h)‖V
= ‖(I −Π1,h)TΠ1,h‖V
≤ c1δV(Th, T ).

The first inequality of (5.7) follows trivially from observing that Uh ⊂ S1,h. For the
second, by Theorem 5.1 there exists an h0 > 0 such that for each h < h0 and u ∈ U
with ‖u‖V = 1, there is a ûh ∈ Uh such that ‖Phu − ûh‖V ≤ c εV(h) δV(U ,S1,h).
Then,

min
uh∈Uh

‖u− uh‖V ≤ ‖u− ûh‖V
≤ ‖u− Phu‖V + ‖Phu− ûh‖V
≤ δV(U ,S1,h) + c εV(h) δV(U ,S1,h).

Maximizing over u yields the conclusion.

Theorem 5.4 was essentially given by Chatelin [3], refined by Babuška and Osborn
[1]—each for compact self-adjoint T . Recently, a more general result of this sort
allowing for noncompact self-adjoint T was given by Knyazev [10].

5.2. Elliptic boundary value problems: Finite elements. Let Ω be a bounded
open subset of Rn with a boundary ∂Ω that is at least Cr+1,1 for some integer r > 0.
Given real coefficient functions aij , bi, c ∈ Cr(Ω̄), consider the second order elliptic
differential operator A defined by

A(x, D)v =−
n∑

i, j=1

Djaij(x)Div +
n∑
i=1

bi(x)Div + c(x)v in Ω

with v = 0 on ∂Ω, and the related adjoint operator given by

A∗(x, D)u =−
n∑

i, j=1

Diaij(x)Dju−
n∑
i=1

Di(bi(x)u) + c(x)u in Ω

with u = 0 on ∂Ω.
Suppose that A(x, D) is uniformly strongly elliptic. The associated bilinear form

a(w, v) =
n∑

i, j=1

∫
Ω

aij(x)[Djw][Div]dx +
n∑
j=1

∫
Ω

w bj(x)[Djv]dx

+
∫

Ω

c(x) w v dx,
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defined on Dom(a) = H1
0 (Ω) is a closed sectorial bilinear form densely defined in

H = L2(Ω) and A is manifested as a densely defined m-sectorial operator on H
which can be extended to a continuous bijection from V = H1

0 (Ω) onto the dual
space V ′ = H−1(Ω). Here and elsewhere, Hp(Ω) denotes the completion of the
vector space C∞ with respect to the norm

‖u‖Hp(Ω) =
∑
|α|≤p

∫
Ω

|Dαv|2dx.

The associated seminorm is defined as

u
Hp(Ω)

=
∑
|α|=p

∫
Ω

|Dαv|2dx.

Results governing regularity of solutions to elliptic problems (e.g., [13] p. 328)
guarantee, for any f ∈ Hr−1(Ω), the weakly posed problem

a(w, v) = 〈w, f〉L2(Ω) for all w ∈ H1
0 (Ω)(5.8)

has a solution v ∈ Hr+1(Ω)∩H1
0 (Ω). Since T is a closed mapping from Hr−1(Ω) to

Hr+1(Ω), there exists a constant c > 0 such that ‖Tf‖Hr+1(Ω) ≤ c‖f‖Hr−1(Ω) for
all f ∈ Hr−1(Ω). Furthermore, if U denotes an invariant subspace of A associated
with an isolated eigenvalue of A with finite multiplicity then U ⊂ Hr+1(Ω).

Likewise the adjoint problem,

a(u,w) = 〈w, g〉L2(Ω) for all w ∈ H1(Ω)(5.9)

has a solution u ∈ Hr+1(Ω) for any g ∈ Hr−1(Ω). So, in particular, if g ∈ V ⊂
H1(Ω), then T ∗g = (A∗)−1g ∈ H3(Ω).

Apply the Galerkin method with Sh = S1,h = S2,h chosen to be a family of finite
dimensional subspaces of V , so that for all integers 0 < k ≤ r and some fixed c > 0,
u ∈ Hr+1(Ω) implies

inf
v∈Sh

‖u− v‖H1(Ω) ≤ c hk u Hk+1(Ω)
.(5.10)

For example, C0-finite element spaces constructed from piecewise polynomials of
degree at least r would satisfy this condition.

The discrete inf-sup condition (3.5) is satisfied with β(h) = α > 0. Thus, the
convergence condition (3.15) is immediately satisfied. It remains to verify that
(3.16) holds. Note that for every x ∈ Sh = Dom(Th), Tx ∈ H3(Ω) and

inf
y∈H1(Ω)

‖x− y‖H1(Ω) + ‖Thx− Ty‖H1(Ω)

‖x‖H1(Ω) + ‖Thx‖H1(Ω)
≤

‖Thx− Tx‖H1(Ω)

‖x‖H1(Ω) + ‖Thx‖H1(Ω)

=
‖(I − Ph)Tx‖H1(Ω)

‖x‖H1(Ω) + ‖Thx‖H1(Ω)

≤
c h2 Tx H3(Ω)

‖x‖H1(Ω) + ‖Thx‖H1(Ω)

≤
c h2‖x‖H1(Ω)

‖x‖H1(Ω) + ‖Thx‖H1(Ω)

≤ c h2.

Thus, limh→0 δV(Th, T ) = 0.
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Although Theorem 5.2 is applicable, Theorem 5.3 will yield a concrete rate once
we estimate

γ(h) = sup
v∈Sh
‖v‖V=1

inf
w∈Sh

‖T ∗v − w‖V .

For any v ∈ Sh, T ∗v ∈ H3(Ω) and so

inf
w∈Sh

‖T ∗v − w‖V = ‖(I −Πh)T ∗v‖V
≤ ch2 T ∗v H3(Ω)

≤ ch2‖v‖H1(Ω).

Thus, γ(h) ≤ ch2.
Since U ⊂ Hr+1(Ω),

δV(U ,Sh) = sup
x∈U

inf
y∈Sh

‖y − x‖V
‖x‖V

=
‖(I −Πh)x‖V
‖x‖V

≤ chr
x Hr+1(Ω)

‖x‖V
≤ chr.

Theorem 5.1 asserts that there exists an h0 > 0 sufficiently small so that for each
h < h0 and all u ∈ U , there is a uh ∈ Uh so that

‖uh − Phu‖V ≤ c h
r+2,

whereas ‖uh − u‖V and ‖u− Phu‖V will each be only of order hr typically.

6. Unbounded A—Estimates in H

6.1. Basic results. In the V-setting explored in Section 5, orthogonality of Ph
and the related best approximation property in V could be developed only for
self-adjoint A. In contrast, estimates in H such as were found in Section 4 have
particular appeal since whenever S1,h = S2,h, Qh will be an orthogonal projection
in H, notwithstanding asymmetry in a and nonselfadjointness of A. Unfortunately,
those estimates obtained in Section 4 depend fundamentally on the boundedness of
A. In particular, if A is unbounded then εH(h) might not be uniformly bounded
in h, much less go to zero.

We define an expression that plays a role analogous to that of εH(h) in Section
4:

◦
εH(h) = sup

u∈U

‖(Ph −Qh)u‖H
‖(I −Π1,h)u‖H

,(6.1)

where Π1,h here is once again the H-orthogonal projection onto S1,h.

Theorem 6.1. Suppose the convergence hypotheses (3.17) and (3.18) hold. There
exists an h0 > 0 sufficiently small so that for each h < h0 and all u ∈ U , there is a
uh ∈ Uh so that

‖uh −Qhu‖H ≤ c
◦
εH(h) δH(U ,S1,h),(6.2)

where c > 0 is a constant independent of h and independent of the choice of u ∈ U .
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Proof. Since EhAh = AhEh, Ran(Eh) ⊂ S1,h Note also that Qh is a spectral
projection for Ah associated with all nonzero eigenvalues of Ah. Thus, Qh − Eh
is a spectral projection for Ah onto Uch. Let Â = A|U denote the restriction
of A to U and Let Âch = Ah|Uch denote the restriction of Ah to Uch. Then,
Âch(Qh − Eh) = (Qh − Eh)Ah and we have

Âch(Qh − Eh)
∣∣
U − (Qh − Eh)

∣∣
U Â = (Qh − Eh)(Ah −A)

∣∣
U

= −(Qh − Eh)((I −Qh)A+QhA(I −Qh))
∣∣
U

= −(Qh − Eh)QhA(I −Qh)
∣∣
U

= −(I − Eh)QhA(I −Qh)
∣∣
U .

Now premultiply by Th and postmultiply by T to find

(Qh − Eh)
∣∣
U T̂ − T̂

c
h(Qh − Eh)

∣∣
U =− Th(I − Eh)QhA(I −Qh)T

∣∣
U

=− (I − Eh)ThQhA(I −Qh)T
∣∣
U

=− (I − Eh)(ThQhAT − ThQhAQhT )
∣∣
U

=− (I − Eh)(ThQh −QhT )
∣∣
U

=− (I − Eh)(PhT −QhT )
∣∣
U .

Thus, the mapping S : U → Uch given by S = (Qh − Eh)
∣∣
U is a solution to the

Sylvester equation

T̂ chS − ST̂ = (I − Eh)(Ph −Qh)T
∣∣
U .

The goal now is to show that the bounds developed in the Appendix are appli-
cable. There exists a K1 > 0 such that

‖(z − Â)−1 |U ‖H ≤ ‖(z −A)−1‖H ≤ K1

uniformly for all z ∈ Γ. Likewise there exists an h0 > 0 and K2 > 0 such that for
h < h0,

‖(z − Âch)−1
∣∣Uch ‖H ≤ ‖(z −Ah)−1‖H ≤ K2

uniformly for z ∈ Γ. Therefore, the pseudospectral sets Λε(Âh) are contained in
the exterior of Γ for any ε < 1/K2 and for all h > h0. By Lemma A.1(b), there
must then be a c > 0 independent of h, such that

‖(Qh − Eh)
∣∣
U ‖U→Uch ≤ c ‖(I − Eh)QhA(I −Qh) |U ‖U→Uch .

Thus, for any u ∈ U ,

‖(Qh − Eh)u‖H ≤ c ‖I − Eh‖H sup
w∈U

‖QhA(I −Qh)w‖H
‖w‖H

≤ c ‖Eh‖H sup
w∈U

‖QhA(I −Qh)w‖H
‖(I −Π1,h)w‖H

sup
w∈U

‖(I −Π1,h)w‖V
‖w‖H

= c ‖Eh‖H
◦
εH(h) δH(U ,S1,h).

Since Eh converges uniformly to E, ‖Eh‖H is uniformly bounded. The conclusion
follows upon assigning uh = Ehu.

When A is unbounded on H (so that V 6= H), ‖Ph‖H will not typically be
uniformly bounded with respect to h. Estimating the rate at which

◦
εH(h) → 0
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as h→ 0 becomes technically more demanding and additional hypotheses are hon-
orably acquired. For the remainder of the section we assume that

S1,h = S2,h
def= Sh = span{φ1, φ2, . . . , φN(h)}

and that

The trial vectors φi are eigenvectors of an auxiliary operator A0.

Theorem 6.2. Suppose that A is decomposable as A = A0+B so that A0 is positive
definite and self-adjoint on Dom(A0) = Dom(A) and B∗ is bounded relative to A0

with relative A0-bound less than 1. Furthermore, assume that λ is a nondefective
eigenvalue of A.

(1) If B∗ is relatively compact with respect to A0, then
◦
εH(h)→ 0 as h→ 0.

(2) If

sup
v∈Sh

inf
w∈Sh

‖B∗v − w‖H
‖A0v‖H

def=
◦
γ(h)→ 0,

then
◦
εH(h)→ 0 as h→ 0 and

◦
εH(h) ≤ O(

◦
γ(h)) as h→ 0.

Proof. Since B∗ has relative bound with respect to A0 smaller than 1, there is a
τ ∈ C so that ‖B∗(A0 − τ)−1‖H = 1 − κ < 1 for some κ > 0. It will be useful to
translate the spectrum of A by τ and write A− τ = (A0− τ) +B. Referring to the
discussion around (3.3), we absorb this shift in spectrum into both A and A0, and
assume without loss of generality that ‖B∗A−1

0 ‖H = 1− κ < 1. Before continuing,
we verify that the assumptions of (6.2) and (6.2) are preserved for any appropriate
choice of τ . First considering (6.2), if τ is in the resolvent set for A0, then τ−1 is
in the resolvent set for A−1

0 and

B∗(A0 − τ)−1 =
1
τ
B∗A−1

0 (τ−1 −A−1
0 )−1.

B∗A−1
0 is compact, (τ−1 − A−1

0 )−1 is bounded, so B∗(A0 − τ)−1 is also compact
and the assumption of (6.2) will be independent of any feasible shift τ . Likewise
for (6.2), there is an m > 0 so that for any v ∈ Dom(A0), ‖(A0− τ)v‖H ≥ m‖v‖H.
Thus for any v ∈ Dom(A0),

‖A0v‖H ≤ ‖(A0 − τ)v‖H + |τ | · ‖v‖H ≤ (1 +
|τ |
m

)‖(A0 − τ)v‖H.

If the assumption of (6.2) holds, then

sup
v∈Sh

inf
w∈Sh

‖B∗v − w‖H
‖(A0 − τ)v‖H

≤ (1 +
|τ |
m

)
◦
γ(h)→ 0

so the assumption of (6.2) is independent of the selected shift τ .
Now we prove (6.2) first. Write A = A0(I +A−1

0 B) and observe then that

ThQhA(I −Qh)Tu = PhTQhA(I −Qh)Tu

= PhTA0QhA
−1
0 A(I −Qh)Tu

= PhTA0QhA
−1
0 B(I −Qh)Tu.
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Note that

‖PhTA0v‖2H = ‖
N(h)∑
i,j=1

a(φj , TA0v)γijφi‖2H

=
N(h)∑
i=1

|
N(h)∑
j=1

〈φj , v〉Hλ
0
jγij |2

= ‖Ĝx‖2CN(h) ,

where

x = {〈φ1, v〉H, 〈φ2, v〉H, . . . , 〈φN(h), v〉H}
t

and Ĝ is the matrix inverse to

[(λ0
` )
−1a(φ`, φk)] = [〈A−1

0 φ`, Aφk〉H]

= [〈φ`, (I +A−1
0 B)φk〉H]

= I + [〈B∗A−1
0 φ`, φk〉H].

Observe that for any y ∈ CN(h) with ‖y‖CN(h) = 1,

‖[〈B∗A−1
0 φ`, φk〉H]y‖CN(h) ≤ ‖B∗A−1

0 ‖H ≤ 1− κ,
hence we obtain a bound for PhTA0 that is uniform in h:

‖PhTA0‖H ≤ ‖Ĝ‖CN(h) ≤ 1
1− (1− κ)

=
1
κ
.

Since λ is nondefective, λTu = u for any u ∈ U and we find

◦
εH(h) = sup

u∈U

‖ThQhA(I −Qh)Tu‖H
‖(I −Qh)u‖H

≤ sup
u∈U

‖QhA−1
0 B(I −Qh)Tu‖H
κ‖(I −Qh)u‖H

≤ sup
u∈U

‖QhA−1
0 B(I −Qh) · (I −Qh)Tu‖H
κ|λ| · ‖(I −Qh)Tu‖H

≤ 1
κ|λ| ‖QhA

−1
0 B(I −Qh)‖H.

Now if the condition of (6.2) above holds, then

‖QhA−1
0 B(I −Qh)‖H ≤ ‖A

−1
0 B(I −Qh)‖H = ‖(I −Qh)B∗A−1

0 ‖H.
Since B∗A−1

0 is compact and Qh → I strongly, ‖(I −Qh)B∗A−1
0 ‖H → 0 as h → 0

from which follows the conclusion of (6.2).
Now observe that A−1

0 Sh = Sh so that, if the assumption (6.2) holds, then

‖QhA−1
0 B(I −Qh)‖H = ‖(I −Qh)B∗A−1

0 Qh‖H

= sup
u∈Sh

inf
w∈Sh

‖B∗A−1
0 u− w‖H
‖u‖H

= sup
v∈Sh

inf
w∈Sh

‖B∗v − w‖H
‖A0v‖H

,

and as a consequence,
◦
εH(h) ≤ O(

◦
γ(h)) as h→ 0.
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6.2. Elliptic boundary value problems: Spectral methods. Let Ω be the
unit square in R2 : [0, 1]×[0, 1] and let there be given a function b=[b1(x), b2(x)]∈
C1(Ω)×C1(Ω) such that b = 0 on ∂Ω. Consider the differential operator given by

A(x, D)u = −∆u+ b(x) · ∇u+ c(x)u in Ω

with u = 0 on ∂Ω. The regularity results of Kadlec [7], for example, show that
Dom(A) = H2 ∩H1

0 .
The application of a Fourier Galerkin method involves trial functions of the

form φk(x) = sin(k1πx1) · sin(k2πx2). If |k| = k1 + k2 denotes the length of the
multi-index k, parameterize the family of subspaces as Sh = span|k|h<1{φk}, and
assign Sh = S1,h = S2,h. Define A0 = −∆ with Dom(A0) = H2(Ω) ∩H1

0 (Ω) and
Dom(A1/2

0 ) = V = H1
0 (Ω). Observe that A0 is positive definite and self-adjoint in

H = L2(Ω) and

A0φk = λ0
kφk,

with λ0
k = (k2

1 + k2
2)π2. If B denotes the closure of b(x) · ∇ + c(x) on C∞0 (Ω) then

the H-adjoint of B may be calculated as B∗u = −∇·(b(x)u) = −b(x)·∇u+(c(x)−
∇ · b(x))u and Dom(B∗) ⊃ Dom(A0). Since B∗ is compact relative to A0, B∗ has
relative A0-bound of 0 and Theorem 6.2 (1) asserts that

◦
εH(h)→ 0. Furthermore,

Theorem 6.2 (2) provides a mechanism for estimating the rate at which
◦
εH(h)→ 0.

First, notice that if {λ, û} is an eigenpair for A, then

−∆û = (λ − c)û− b · ∇û ∈ H1
0 (Ω) = Dom(A1/2

0 ).

Thus, û ∈ Dom(A3/2
0 ) and

‖(I −Qh)û‖2 =
∑
|k|h≥1

|〈φk, û〉|2

=
∑
|k|h≥1

|〈A−3/2
0 φk, A

3/2
0 û〉|2

=
∑
|k|h≥1

(λ0
k)−3|〈φk, A

3/2
0 û〉|2

≤ h6

(
2
π2

)3 ∑
|k|h≥1

|〈φk, A
3/2
0 û〉|2

≤ h6

(
2
π2

)3

‖A3/2
0 û‖2H.

The first inequality is a consequence of k2
1 + k2

2 ≥ 1
2 |k|2 ≥ 1/(2h2); the second is

Bessel’s inequality with respect to the orthonormal system {φk}.
A similar argument can be organized to estimate

◦
γ(h). For any v ∈ L2(Ω),

A−1
0 v ∈ H2(Ω) ∩ H1

0 (Ω) and B∗A−1
0 v ∈ H1

0 (Ω) ⊂ Dom(A1/2
0 ). A

1/2
0 B∗A−1

0 is
a closed, everywhere defined operator on L2(Ω); hence A1/2

0 B∗A−1
0 is a bounded

operator on L2(Ω).
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Now for any v ∈ H with ‖v‖H = 1,

inf
w∈Sh

‖B∗A−1
0 v − w‖2H =

∑
|k|h≥1

|〈φk, B
∗A−1

0 v〉|2

=
∑
|k|h≥1

|〈A−1/2
0 φk, A

1/2
0 B∗A−1

0 v〉|2

=
∑
|k|h≥1

(λ0
k)−1|〈φk, A

1/2
0 B∗A−1

0 v〉|2

≤ h2

(
2
π2

) ∑
|k|h≥1

|〈φk, A
1/2
0 B∗A−1

0 v〉|2

≤ h2

(
2
π2

)
‖A1/2

0 B∗A−1
0 v‖2H ≤Mh2

for some M <∞. From this we obtain

◦
γ(h) ≤ sup

v∈H
inf
w∈Sh

‖B∗A−1
0 v − w‖H
‖v‖H

≤ O(h).

Theorem 6.1 asserts that there exists an h0 > 0 sufficiently small so that for each
h < h0 and all u ∈ U , there is a uh ∈ Uh so that

‖uh −Qhu‖H ≤ c h
4,

whereas ‖uh − u‖H and ‖u−Qhu‖H will each be only of order h3 in general.

Appendix: Lower bounds to sep

Let W1 and W2 be complex Hilbert spaces and denote with L(W2,W1) the as-
sociated Banach space of bounded linear transformations fromW2 toW1. Suppose
there are given two linear operators, L1 :W1 →W1, L2 :W2 →W2 such that L1 is
closed, densely defined (but not necessarily bounded) onW1 and L2 is bounded (and
everywhere defined) inW2. Define an operator T : L(W2, Dom(L1))→ L(W2,W1)
as T (S) = L1S − SL2 and let

sep(L1, L2) def= inf
S∈L(W2,Dom(L1))

‖T (S)‖W2→W1

‖S‖W2→W1

,(A.1)

so that, in particular, if S solves T (S) = M and 0 < η < sep(L1, L2), then

‖S‖W2→W1 ≤
1

sep(L1, L2)
‖M‖W2→W1 ≤

1
η
‖M‖W2→W1 .

The following results are mild generalizations of [12] Theorem 3.1, p. 264 and [6]
Theorem 5, p. 427. For all ε > 0, we define the pseudospectral sets

Λε(L) =
{
z ∈ C

∣∣∣∣ ‖(z − L)−1‖ ≥ 1
ε

}
.

As ε→ 0, Λε(L) shrinks to σ(L).

Lemma A.1. Suppose that σ(L1) and σ(L2) are disjoint. Then for every M ∈
L(W2,W1), the operator equation

L1S − SL2 = M(A.2)

has a unique solution S that is a bounded linear transformation from W2 to
Dom(L1) ⊂ W1. That is, T (S) is bijective.
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(a) S has the representation

S =
1

2πı

∫
Γ2

(L1 − z)−1M(z − L2)−1 dz,(A.3)

where Γ2 consists of a finite number of closed rectifiable Jordan curves enclosing all
points of σ(L2) and no points of σ(L1).

(b) Let ε1, ε2 > 0 be chosen so that Λε1(L1) ∩ Γ2 = ∅ and Λε2(L2) ∩ Γ2 = ∅,
respectively. That is, Λε1(L1) lies entirely outside Γ2 and Λε2(L2) lies entirely inside
Γ2. Then

sep(L1, L2) ≥ 2πε1ε2
length(Γ2)

,(A.4)

where length(Γ2) is the arc length of Γ2.
(c) If the numerical ranges of L1 and L2, denoted respectively w(L1) and w(L2),

are disjoint sets in C and ∆ = dist(w(L1), w(L2)) > 0, then

sep(L1, L2) ≥ ∆.(A.5)

Proof. A trivial extension of Corollary 3.3 of [12] guarantees that there are a finite
number of closed rectifiable Jordan curves enclosing all points of σ(L2) and no
points of σ(L1). We orient each of the curves positively (i.e., counterclockwise)
and refer to them collectively as Γ2. Observe that Γ2 ⊂ ρ(L1) ∩ ρ(L2), so the
right-hand side of (A.3) is well defined and maps W2 into Dom(L1) ⊂ W1. Since

1
2πı

∫
Γ2

(z−L2)−1 dz = I, 1
2πı

∫
Γ2

(z−L1)−1 dz = 0, and L(L−z)−1 = I+z(L−z)−1,
direct substitution of (A.3) into (A.2) yields

L1S − SL2 =
1

2πı

∫
Γ2

M(z − L2)−1 − (L1 − z)−1M dz

= M

(
1

2πı

∫
Γ2

(z − L2)−1dz

)
−
(

1
2πı

∫
Γ2

(L1 − z)−1 dz

)
M

= M.

Suppose N is the difference between any two solutions of (A.2). Then L1N = NL2

and

(z − L1)N = N(z − L2),

N(z − L2)−1 = (z − L1)−1N,

N

(
1

2πı

∫
Γ2

(z − L2)−1dz

)
=
(

1
2πı

∫
Γ2

(z − L1)−1dz

)
N,

N = 0.

Thus (A.3) gives the one, unique solution to (A.2).
To show (b) note that,

‖S‖W2→W1 ≤
1

2π

∫
Γ2

‖(L1 − z)−1‖W1‖M‖W2→W1‖(z − L2)−1‖W2 |dz|

≤ length(Γ2)
2π

max
z∈Γ2

‖(L1 − z)−1‖W1‖M‖W2→W1 max
z∈Γ2

‖(z − L2)−1‖W2

≤ length(Γ2)
2π

1
ε1
· 1
ε2
‖M‖W2→W1 .

For (c), note that existence and uniqueness of S follows from (a) and the ob-
servation that disjoint numerical ranges of L1 and L2 imply disjoint spectra for L1
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and L2. However, we will use a different representation for S to obtain estimates.
Define ẑ1, ẑ2 ∈ C so that ẑ1 ∈ closure{w(L1)}, ẑ2 ∈ closure{w(L2)}, and

∆ = |ẑ1 − ẑ2| = inf
z1∈w(L1)
z2∈w(L2)

|z1 − z2|(A.6)

= inf
x∈W1
y∈W2

| 〈x, L1x〉W1

〈x, x〉W1

− 〈y, L2y〉W2

〈y, y〉W2

|.

Define θ ∈ [0, 2π) as θ = arg(ẑ1 − ẑ2). Let L̂1 = e−ıθ(L1 − ẑ1) and L̂2 =
e−ıθ(L2 − ẑ1). Then w(L̂1) = e−ıθ(w(L1)− ẑ1) and w(L̂2) = e−ıθ(w(L2)− ẑ1).

The goal of this translation and rotation is to insure

<e 〈x, L̂1x〉W1 ≥ 0

for all x ∈ Dom(L1), and

<e 〈y, L̂2y〉W2 ≤ −∆‖y‖2W2

for all y ∈ W2.
Under these circumstances, the Lumer-Phillips theorem (cf. [11], §1.4) guaran-

tees that−L̂1 and L̂2 each generate strongly continuous, one parameter semigroups,
e−tL̂1 and etL̂2, respectively. Furthermore, ‖e−tL̂1‖W1 ≤ 1 and ‖etL̂2‖W2 ≤ e−t∆

for all t ≥ 0.
Notice that S satisfies (A.2) if and only if it is also a solution to L̂1S − SL̂2 =

e−ıθM and this leads to the following representation for S:

S = e−ıθ
∫ ∞

0

e−tL̂1MetL̂2 dt.(A.7)

Indeed, note that with this expression for S, we have for any v ∈ W2

‖ (L1S − SL2 −M) v‖W1

= ‖
(
L̂1S − SL̂2 − e−ıθM

)
v‖W1

= ‖
∫ ∞

0

L̂1e
−tL̂1MetL̂2v − e−tL̂1MetL̂2L̂2v dt−Mv‖W1

= ‖
∫ ∞

0

− d

dt

(
e−tL̂1MetL̂2v

)
dt−Mv‖W1

= ‖ lim
t→0

(
e−tL̂1Mv −Mv

)
+ lim
t→0

e−tL̂1M
(
etL̂2v−vv

)
− lim
t→∞

(
e−tL̂1MetL̂2v

)
‖W1

≤ lim
t→0
‖(e−tL̂1Mv −Mv‖W1 + ‖M‖W2→W1 lim

t→0
‖etL̂2v − v‖W1

+ lim
t→∞

‖M‖W2→W1e
−t∆‖v‖W2 = 0.

Immediately then, one obtains

‖S‖W2→W1 ≤
∫ ∞

0

‖e−tL̂1‖W1‖M‖W2→W1‖etL̂2‖W2 dt(A.8)

≤
∫ ∞

0

e−t∆ dt ‖M‖W2→W1 =
(

1
∆

)
‖M‖W2→W1 .
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