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A CONDITION NUMBER THEOREM
FOR UNDERDETERMINED POLYNOMIAL SYSTEMS

JÉRÔME DÉGOT

Abstract. The condition number of a numerical problem measures the sen-
sitivity of the answer to small changes in the input. In their study of the
complexity of Bézout’s theorem, M. Shub and S. Smale prove that the condi-
tion number of a polynomial system is equal to the inverse of the distance from
this polynomial system to the nearest ill-conditioned one. Here we explain how
this result can be extended to underdetermined systems of polynomials (that
is with less equations than unknowns).

1. Introduction

The condition number of a numerical problem measures the sensitivity of the
answer to small changes in the input. We call the problem ill-posed if its condition
number is infinite. For a given problem, a condition number theorem asserts that
the condition number µ is equal to the inverse of the distance of that problem to
the set Σ of ill-posed ones.

A first example of such a theorem is due to Eckart and Young [4] about the
problem of matrix inversion. See Demmel [3] and Dedieu [2] for a general study
concerning condition number theorems for various numerical problems like: matrix
inversion, computing eigenvalues and eigenvectors, finding zeroes of polynomials,
pole assignment in linear control, . . .

In the case of polynomial systems with the same number of equations as un-
knowns, Shub and Smale [6] have proved a condition number theorem. We will
give a direct and elementary proof of this theorem, using various properties of
Bombieri’s scalar product. This allows us to extend their result to the case of
underdetermined polynomial systems (that is with less equations than unknowns).

2. Background

Here, we deal only with homogeneous polynomials. Extensions to the affine case
are generally trivial, fixing the first variable to 1.

Let Hd denote the linear space of all homogeneous polynomial systems P =
(P1, . . . , Pm) : Cn+1 → Cm, where each Pi is a homogeneous polynomial of n+ 1-
variables, of degree di and d = (d1, . . . , dm).

Remark 1. We denote by n + 1 the number of variable, because the first variable
z0 is added to homogenize an ordinary affine polynomial system Cn → Cm.
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For two homogeneous polynomials Pi, Qi : Cn+1 → C of degree di, Bombieri’s
scalar product is defined by

[Pi, Qi](di) =
∑
|α|=di

α!
di!
aαbα,

where Pi(z) =
∑
|α|=di aαz

α, Qi(z) =
∑
|α|=di bαz

α. With the usual notations,
if α = (α0, . . . , αn) ∈Nn+1, we have |α| = α0 + · · · + αn, α! = α0! . . . αn! and
zα = zα0

0 . . . zαnn . This induces a hermitian inner product on Hd for P,Q ∈ Hd,

[P,Q] =
m∑
i=1

[Pi, Qi](di),

we denote by ‖P‖ and d(P,Q) the associated norm and distance defined by

‖P‖ = [P, P ]
1
2 and d(P,Q) = ‖P −Q‖ .

We now give a series of lemmas concerning Bombieri’s scalar product. If x ∈ Cn+1,
we use δx to denote the homogeneous (n + 1)-variable polynomials of degree 1,
defined by

δx(z) =
n∑
i=0

xizi .

Remark 2. If x, y ∈ Cn+1, we have

[δx, δy](1) = 〈y, x〉 ,

where 〈., .〉 is the usual inner product of Cn+1.

The following lemma allows us to replace the evaluation of a polynomial at a
point by a duality formula.

Lemma 1 (B. Reznick [5]). Let P : Cn+1 → C be a homogeneous polynomial of
degree d. For every x ∈ Cn+1 we have

P (x) = [P, δdx](d).

Lemma 2 (B. Reznick [5]). Let P,Q and R be three homogeneous polynomials of
respective degrees p, q and r such that p+ q = r; then

[PQ,R](r) =
q!
r!

[Q,P (D)R](q) ,

where P(D) is the differential operator defined by

P (D) = P (
∂

∂x0
, . . . ,

∂

∂xn
).

The next lemma is a corollary of Proposition 4 of Beauzamy-Dégot [1].

Lemma 3. Let P1, . . . , Pk and Q1, . . . , Qk be homogeneous polynomials of degree
1. We have

[P1 . . . Pk, Q1 . . . Qk](k) =
1
k!

∑
σ

[P1, Qσ(1)]× · · · × [Pk, Qσ(k)],

where σ runs over the set Sk of all the permutations of {1, . . . , k}.

Combining Lemmas 1 and 2, we obtain a duality formula for polynomial systems.
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Lemma 4. Let P = (P1, . . . , Pm) : Cn+1 → Cm be a homogeneous polynomial
system, such that each Pi is of degree di. For x, y ∈ Cn+1 we have

DP (x)y|i = di [Pi, δdi−1
x δy](di) for all i = 1, . . . ,m ,

where DP (x)y|i denotes the ith coordinate of DP (x)y, the differential of P at x
applied to y.

Proof. For all i = 1, . . . ,m, we have

DP (x)y|i =
n∑
j=0

yj
∂Pi
∂xj

(x).

Using Lemmas 1 and 2, we obtain

DP (x)y|i = [δy(D)Pi, δdi−1
x ](di−1)

= di [Pi, δdi−1
x δy](di) ,

which proves the lemma.

For the proof of the first three lemmas and for a detailed study of the properties
of Bombieri’s scalar product, we refer the reader to [1].

3. The condition number of a polynomial system

We consider the numerical solution of the equation

P (x) = 0

where P : Cn+1 → Cm is a homogeneous polynomial system. We want to define
the condition number of the system P . The condition number should measure the
relative sensitivity of the solution (output) with respect to the change of the data
(input). Let ∆P be an infinitesimal perturbation of P , and let ∆x be the first order
corresponding perturbation of x, in the following sense:

‖∆x‖ ' inf{‖y − x‖ ; (P + ∆P )(y) = 0}.(1)

Lemma 5. The previous formula implies that ∆x ∈ (KerDP (x))⊥.

Lemma 6. We have

∆x = −DP (x)∗∆P (x) ,

where DP (x)∗ is the Moore-Penrose inverse of DP (x), that is

DP (x)∗ = (DP (x)|(KerDP (x))⊥)−1 .

Proofs. The Taylor expansion of P + ∆P gives

0 = (P + ∆P )(x + ∆x)
= P (x+ ∆x) + ∆P (x+ ∆x)
= P (x) +DP (x)∆x + ∆p(x) + o(‖∆x‖) .

Then DP (x)∆x = −∆P (x). By relation (1), we deduce that ∆x ∈ (KerDP (x))⊥,
and so we have ∆x = −DP (x)∗∆P (x), which gives the lemma.
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We can now compute the condition number:
‖∆x‖
‖x‖ =

‖DP (x)∗∆P (x)‖
‖x‖

=
‖DP (x)∗Diag(‖x‖di)Diag(‖x‖−di)∆P (x)‖

‖x‖
where Diag(‖x‖di) is the diagonal matrix such that

Diag(‖x‖di) = Diag(‖x‖d1 , . . . , ‖x‖dm).

Then

‖∆x‖
‖x‖ ≤

‖DP (x)∗Diag(‖x‖di)‖op
‖x‖ ‖Diag(‖x‖−di)∆P (x)‖2.

By Lemma 1, we have

|Pi(x)| = |[Pi, δdix ]| ≤ [Pi] ‖x‖di ,
so

‖Diag(‖x‖−di)∆P (x)‖2 ≤ ‖∆P‖ .
Therefore,

‖∆x‖
‖x‖ ≤ ‖DP (x)∗Diag(‖x‖di−1)‖op‖∆P‖ .

The condition number of P at x is then given by

µ(P, x) = ‖DP (x)∗Diag(‖x‖di−1)‖op .
For sharper estimates on complexity it is convenient to have a further factor of√
di. Thus like in Shub-Smale [6], we will use the following normalization of the

condition number

µnorm(P, x) = ‖DP (x)∗Diag(
√
di‖x‖di−1)‖op .

4. Condition number theorem

It turns out that for many problems of numerical analysis, there is a simple
relationship between the condition number of the problem and the shortest distance
from that problem to an ill-posed one. A condition number theorem is a theorem
which characterizes this relationship. We will give here a general condition number
theorem for the problem of finding a zero of a polynomial system of equations.

Definition 1. Let d = (d1, . . . , dm) be fixed. We denote by Σx the set of all
ill-posed problems at x, that is

Σx = {Q ∈ Hd ; Q(x) = 0 and the rank of DQ(x) is less than m}.
Theorem 1. Let P : Cn+1 → Cm be a homogeneous polynomial system with n ≥
m, and let x ∈ Cn+1 be such that P (x) = 0 and Rank(DP (x)) = m. Then

µnorm(P, x) =
1

d(P,Σx)
.

Remark 3. In the case where n = m, this is the condition number theorem of
Shub-Smale [6].

We will give here a proof of this theorem, using the properties of the linear space
Hd equipped with the hermitian structure described in section 2.
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5. Proof of the theorem

We have

d(P,Σx) = inf
R∈Σx

‖P −R‖ = inf
(P+Q)(x)=0

Rank(D(P+Q)(x))<m

‖Q‖ .

Then we want to find the polynomial system Q ∈ Hd of smallest norm, such that

(P +Q)(x) = 0,(2)

Rank(D(P +Q)(x)) < m.(3)

5.1. First part of the proof: d(P,Σx) ≥ 1
µnorm(P,x) .

Remark 4. We consider homogeneous polynomial systems, so the Euler identity
gives

(P +Q)(x) = 0,
⇐⇒ D(P +Q)(x)x = 0,
⇐⇒ x ∈ Ker(D(P +Q)(x)).

Let Q = (Q1, . . . , Qm) ∈ Hd be one of the homogeneous polynomial systems,
with smallest norm satisfying (2) and (3), and let x, z1, . . . , zk ∈ Cn+1, where
k ≥ n+ 1−m, be an orthogonal basis of Ker(D(P +Q)(x)). Denote by H and M
the linear spaces defined by

M = Span{x, z1, . . . , zk},
H = {R ∈ Hd ; R(x) = 0 and DR(x)y = 0 for all y ∈M}.

Proposition 1. With the previous notations, we have
1. Q ∈ H⊥;
2. H⊥ = {R ∈ Hd ; Ri = δdi−1

x δyi where yi∈M} .

Proof. We can write Q = Q0 +Q1, where Q0∈H⊥ and Q1∈H . Then “Q satisfies
(2) and (3)” implies that “Q0 satisfies (2) and (3)”. We have

‖Q‖2 = ‖Q0‖2 + ‖Q1‖2;

thus Q1 = 0 and then Q ∈ H⊥. For the proof of the second part of the proposition,
denote by K the linear space

K = {R ∈ Hd ; Ri = δdi−1
x δyi where yi∈M}.

We want to show that H⊥ = K or equivalently H = K⊥. We have

Q ∈ K⊥ ⇐⇒ [Qi, δdi−1
x δy](di) = 0 for all y∈M and i = 1, . . . ,m.

By Lemma 4, this is equivalent to Q(x) = 0 and DQ(x)y = 0 for all y ∈M , which
concludes the proof.

Therefore, the polynomial system Q is such that

Qi = δdi−1
x δyi with yi∈M ,

for all i = 1, . . . ,m. Observe first that by Lemmas 1 and 3, we have

Qi(x) = [δdi−1
x δyi , δ

di
x ](di) = ‖x‖2(di−1)〈x, yi〉 = 0,
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then 〈x, yi〉 = 0 for all i = 1, . . . ,m. We deduce that

‖Q‖2 =
m∑
i=1

[Qi, Qi](di) =
m∑
i=1

[δdi−1
x δyi , δ

di−1
x δyi ](di),

‖Q‖2 =
m∑
i=1

1
di
‖yi‖2‖x‖2(di−1)

.(4)

Now we want to estimate ‖yi‖. By a dimension argument, we know that there
exists u∈Cn+1 such that ‖u‖ = 1 and u ∈ Ker(DP (x))⊥ ∩KerD(P +Q)(x). We
then have using Lemma 4,

D(P +Q)(x)u = 0,

⇐⇒ [Pi +Qi, δ
di−1
x δu](di) = 0 for all i = 1, . . . ,m ,

⇐⇒ [Pi, δdi−1
x δu](di) = −[δdi−1

x δyi , δ
di−1
x δu](di) ,

= − 1
di
‖x‖2(di−1)〈u, yi〉 ,

for all i = 1, . . . ,m.
Then by the Cauchy-Schwarz inequality, we have

|[Pi, δdi−1
x δu](di)| ≤

1
di
‖x‖2(di−1)‖yi‖ for all i = 1, . . . ,m.

Using this last inequality and (4), we have the following chain of calculus:

‖Q‖2 ≥
m∑
i=1

di |[Pi, δdi−1
x δu]|2

‖x‖2(di−1)

=
m∑
i=1

|DP (x)u|i|
2

di‖x‖2(di−1)

= ‖Diag(
1

√
di‖x‖di−1

)DP (x)u‖2

≥ inf
u∈Ker(DP (x))⊥

‖u‖=1

‖Diag(
1

√
di‖x‖di−1

)DP (x)u‖2 .

Recall that for an invertible linear operator A, we have ‖A−1‖op = 1
inf‖x‖=1 ‖Ax‖ , so

inf
u∈Ker(DP (x))⊥

‖u‖=1

‖Diag(
1

√
di‖x‖di−1

)DP (x)u‖ =
1

‖DP (x)∗Diag(
√
di‖x‖di−1)‖op

=
1

µnorm(P, x)
,

which finishes the first part of the proof. To conclude, it remains to prove the
opposite inequality.

5.2. Second part: d(P, x) ≤ 1
µnorm(P,x) . Assume that u ∈ Ker(DP (x))⊥ is such

that ‖u‖ = 1 and u realizes the following infimum:

inf
y∈Ker(DP (x))⊥

‖y‖=1

‖Diag(
1

√
di‖x‖di−1

)DP (x)y‖ = ‖Diag(
1

√
di‖x‖di−1

)DP (x)u‖ .
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Consider the homogeneous polynomial system Q = (Q1, . . . , Qm) ∈ Hd, defined by

Qi = −di
[Pi, δdi−1

x δu](di)
‖x‖2(di−1)

δdi−1
x δu for all i = 1, . . . ,m .

It can easily be seen that

(P +Q)(x) = 0,
D(P +Q)(x)y = 0 for all y ∈ Ker(DP (x)),
D(P +Q)(x)u = 0.

Thus Q satisfies the conditions (2) and (3). Then

d(P,Σx) ≤ ‖Q‖ = ‖Diag(
1

√
di‖x‖di−1

)DP (x)u‖

= inf
y∈Ker(DP (x))⊥

‖y‖=1

‖Diag(
1

√
di‖x‖di−1

)DP (x)y‖

=
1

‖DP (x)∗Diag(
√
di‖x‖di−1)‖op

=
1

µnorm(P, x)
,

which ends the proof of the theorem.

6. Conclusion

It may be surprising that the proof of the theorem does not use what is usually
considered as the main property of Bombieri’s norm, that is, the unitary invariance
(invariance under unitary change of variables in P ). The use of this property should
allow us to replace the point x at which we compute the condition number of P ,
by (1, 0, . . . , 0). But this simplification would not improve our proof since we never
look at the coefficients of the polynomial system. The second important difference
between our approach and that of Shub-Smale, is that we do not use a result on
matrices to derive the theorem.

The author would like to thank Mike Shub for helpful discussions.
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