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ON THE SPECTRUM OF THE ZHANG-ZAGIER HEIGHT

CHRISTOPHE DOCHE

Abstract. From recent work of Zhang and of Zagier, we know that their
height H(α) is bounded away from 1 for every algebraic number α different from
0, 1, 1/2±

√
−3/2. The study of the related spectrum is especially interesting,

for it is linked to Lehmer’s problem and to a conjecture of Bogomolov. After
recalling some definitions, we show an improvement of the so-called Zhang-
Zagier inequality. To achieve this, we need some algebraic numbers of small
height. So, in the third section, we describe an algorithm able to find them,
and we give an algebraic number with height 1.2875274 . . . discovered in this
way. This search up to degree 64 suggests that the spectrum of H(α) may have
a limit point less than 1.292. We prove this fact in the fourth part.

1. Introduction

Let P be a polynomial in n variables with coefficients in Z. We define the Mahler
measure of P as

M(P (z1, . . . , zn)) = exp
{∫ 1

0

· · ·
∫ 1

0

log |P (e2iπt1 , . . . , e2iπtn)| dt1 · · ·dtn
}
.

If P is a one variable polynomial, P (z) = a0

∏d
j=1(z − αj), it is well known that

M(P ) = |a0|
d∏
j=1

max(1, |αj |).

We denote in this case the absolute Mahler measure of P , i.e., M(P )1/d by M(P ).
For α ∈ Q, M(α) and M(α) are the Mahler and the absolute Mahler measure,
respectively, of the irreducible polynomial of α with coefficients in Z. The Zhang-
Zagier height or simply the height of α, denoted by H(α), is then defined as H(α) =
M(α)M(1 − α). From results of Zhang and Zagier (cf. [Zh92], [Za93]), we know
that if α is an algebraic number different from the roots of (z2 − z)(z2 − z + 1),

H(α) >

√
1 +
√

5
2

= 1.2720196 . . . .(1)

Our work relies on a computer search for polynomials of small height. G. Rhin
and C. J. Smyth made a remark that simplifies greatly this search. They pointed
out in [RS97] that if Q(z) = P (z)P (1− z),

H(P ) = M(Q)1/d = M(Q)2 = H(Q).
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So we only need to consider polynomials of even degree which are symmetric under
z 7→ 1− z, i.e., polynomials in

X = z(1− z).

Using the results of this search we shall prove the following theorem, where Φ10(z)
represents the 10th cyclotomic polynomial.

Theorem 1. Let α be an algebraic number different from the roots of
(z2 − z)(z2 − z + 1)Φ10(z)Φ10(1− z). Then

H(α) > 1.2817770214.

The inequality of Zhang-Zagier and a fortiori this last theorem incidentally give
an answer to Lehmer’s problem for polynomials in X (cf. [B78] for a survey of
the question). Note at this point that M(P (X)) shall always refer to the Mahler
measure with respect to the variable z.

We also studied the spectrum of H(α) because it is connected to an important
conjecture of Bogomolov, now proved (cf. for example [DP98] and [U98]). Indeed,
for certain plane curves, this conjecture asserts the existence of a real µ > 1 which
is the smallest limit point of the set of the normalized heights of the algebraic
numbers which lie, with their conjugates, on the curve. However, we do not know
any value of µ for any curve. A natural example is x+ y = 1, and in this situation
the normalized height coincides with the Zhang-Zagier height, so that a study of
H(α) enables us to compute an approximate value of µ. Namely, we shall show

Theorem 2. The smallest limit point µ of V = {H(α) | α ∈ Q} belongs to
[1.28177702, 1.2916674].

Let us now explain how to improve the lower bound of (1).

2. Proof of Theorem 1

First, we recall the lemma Zagier used in [Za93] in order to prove his theorem.
The standard notation log+ |z| represents max(0, log |z|).
Lemma 1. Let z ∈ C. We then have

log+ |z|+ log+ |1− z| > C1 log |z2 − z|+ C2 log |z2 − z + 1|+ C,

where C1 =
√

5−1
2
√

5
, C2 = 1

2
√

5
and C = 1

2 log
(

1+
√

5
2

)
·

The lemma comes from what we call from now on an auxiliary function. Here it
is

f(z) = log+ |z|+ log+ |1− z| − C1 log |P1(X)| − C2 log |P2(X)|,
where P1(X) and P2(X) are simply z − z2 and z2− z + 1 expressed in terms of X ,
namely P1(X) = X and P2(X) = 1−X . The constants C1 and C2 are tuned with
the aim of maximizing the minimum of f on C. For these constants, the inequality
becomes an equality if and only if z is a root of Φ10(z)Φ10(1 − z).

One way to get a better lower bound in (1) is to add a third polynomial to f .
The first we tried was of course Φ10(z)Φ10(1 − z). Since this product is clearly
symmetric under z 7→ 1 − z, it is a polynomial P3 of the variable X , namely
P3(X) = X4 − 2X3 + 4X2 − 3X + 1. We then needed to find the constants
C1, C2, C3 which give the largest C such that the auxiliary function

log+ |z|+ log+ |1− z| − C1 log |P1(X)| − C2 log |P2(X)| − C3 log |P3(X)|
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Table 1.

Polynomial Pi Constant Ci H(Pi)
X 85682

350099 1
1−X 70486

375995 1
X4−2X3+4X2−3X+1 7895

1046601 1.2720196 . . .
X8−3X7+8X6−16X5+26X4−27X3+17X2−6X+1 1154

848811 1.2974311 . . .
X3+X2−2X+1 399

322591 1.3030333 . . .
X8−2X7+4X6−7X5+13X4−16X3+12X2−5X+1 620

672441 1.2919397 . . .
X16−4X15+10X14−19X13+39X12−85X11+179X10−337X9

+554X8−761X7+830X6−691X5+427X4−190X3+58X2−11X+1 617
675843 1.2944955 . . .

X12−3X11+8X10−18X9+36X8−62X7+97X6

−123X5+114X4−73X3+31X2−8X+1 2264
6600679 1.2888421 . . .

X16−4X15+10X14−17X13+26X12−47X11+119X10−298X9

+592X8−878X7+963X6−780X5+464X4−199X3+59X2−11X+1 1197
5000683 1.2875274 . . .

is greater than C for all z ∈ C. We computed them by means of an algorithm of
C. J. Smyth, detailed in [Sm81]. Thus we were able to compute an approximation
of C, namely C = log 1.2789960 . . . . But the auxiliary function takes this value at
some complex numbers which do not appear to be conjugate algebraic numbers. We
then realized that no algebraic number is of height expC. So we were not able to
repeat the process. Instead, we decided to complete the last auxiliary function by
polynomials with particularly small height. First, we tested the ones V. Flammang
found in her thesis (cf. [F94]). Then we carried out our own search for higher
degrees by a method that we shall discuss in the next section.

Proof of Theorem 1. There are two steps: first an analytic part and then an arith-
metic one. The analytic part copies the ideas of Lemma 1 and therefore relies on
the concept of an auxiliary function. We describe further the polynomials involved,
their respective heights and the optimal constants found by Smyth’s algorithm.
Note that we did not find exact values. The Ci’s in Table 1 are only approxima-
tions.

With these settings, let

fc(z) = log+ |z|+ log+ |1− z| −
9∑
i=1

Ci log |Pi(X)|.

If di denotes degXPi, we remark that

1−
9∑
i=1

diCi = 0.4931085 . . . .(2)

So fc(z) tends to +∞ as z tends to infinity. The same conclusion holds if z tends
to any root of

∏9
i=1 Pi(z(1− z)). Besides, it is easy to see that fc is harmonic off

the two circles |z| = 1, |z − 1| = 1 and away from the roots of
∏9
i=1 Pi(z(1 − z)).

Therefore, fc attains its minimum at some points located on |z| = 1 and |z−1| = 1.
As fc(z) = fc(1− z), we only search for the minimum on the circle |z| = 1 and, for
these z, we set S = |z(1−z)|2. We see that the auxiliary function can be expressed in
terms of S, i.e., fc(z) = g(S). So to prove the theorem, we first search the minimum
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of g(S) on [0, 4]. The derivative of g vanishes at the roots of a polynomial which is
of degree 133 with large integer coefficients. By the command realroot of Maple,
we exhibited 28 intervals at a precision of 10−7, each one containing a root of g′(S).
Here are these intervals.

[0.260236844, 0.260236852] [0.279423587, 0.279423594] [0.302677564, 0.302677572]

[0.306441359, 0.306441367] [0.325068042, 0.325068049] [0.436903372, 0.436903380]

[0.448283918, 0.448283926] [0.478844501, 0.478844509] [0.502754539, 0.502754547]

[0.524517529, 0.524517536] [0.529897101, 0.529897109] [0.539879933, 0.539879940]

[1.929120556, 1.929120563] [1.959240399, 1.959240407] [2.038860343, 2.038860351]

[2.117468275, 2.117468283] [2.222416870, 2.222416878] [3.016049951, 3.016049959]

[3.055418812, 3.055418819] [3.113223948, 3.113223955] [3.249860741, 3.249860749]

[3.400025241, 3.400025249] [3.573429264, 3.573429272] [3.657728590, 3.657728598]

[3.785134435, 3.785134443] [3.833153583, 3.833153591] [3.844168827, 3.844168834]

[3.931477770, 3.931477778]

We then used Sturm sequences, through the command polsturm of PARI, to
check that we did not omit any root and that the second derivative did not vanish
in these intervals. Therefore, fc keeps the same concavity and thus stays over its
tangent near each one of its minimums. So we ended up computing a lower bound
for fc, as claimed. Finally,

fc(z) > log(1.2817770214)

for all z ∈ C.
Then comes the arithmetic argument. Let α be an algebraic number different

from the roots of
∏9
i=1 Pi(z(1− z)) and let P (z) = a0

∏d
j=1(z−αj) be its minimal

polynomial. By the previous result,

log+ |αj |+ log+ |1− αj | −
9∑
i=1

Ci log |Pi(αj(1− αj))| > log(1.2817770214)

for each conjugate of α. Summing these inequalities for j from 1 to d, one gets

d∑
j=1

log+ |αj |+
d∑
j=1

log+ |1− αj | −
9∑
i=1

Ci log
d∏
j=1

|Pi(αj(1− αj))|

> d log(1.2817770214).

Observing that

a2di
0

d∏
j=1

|Pi(αj(1− αj))| = |Res(P (z), Pi(z(1− z)))|
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and adding 2 log |a0| on both sides, we obtain

2 log |a0|+
d∑
j=1

log+ |αj |+
d∑
j=1

log+ |1− αj | >
9∑
i=1

Ci log |Res(P (z), Pi(z(1− z)))|

+2
(

1−
9∑
i=1

diCi

)
log |a0|+ d log(1.2817770214).

Now, |Res(P (z), Pi(z(1− z)))| is a positive integer and (1−
∑9
i=1 diCi) > 0. Thus

M(α)M(1 − α) > 1.2817770214d

which completes this proof.

Remark. As all the Pi’s but P1, P2, P3 have a height greater than 1.2817770214, no
new isolated point of the spectrum of H(α) was discovered.

It is time to explain how we found some of the Pi’s.

3. Search for polynomials of small height

Initially, we searched small heights in the hope of improving (1). After a while,
we found the problem interesting in itself. We first checked roots of unity ζn.
Unfortunately, if we consider (pk)k∈N, the prime numbers sequence, we shall show,
in the next section, that H(ζpk) tends to 1.3813545 . . . as k tends to infinity. The
best candidate turned out to be ζ14 with a height of 1.3097840 . . . , which is far too
large. In the previous section, we said a few words on the work of V. Flammang.
More precisely, she made an inventory of all polynomials of height less than 1.3
up to degree 18 in z, i.e., degree 9 in X . Her method consists of computing the
height of polynomials whose integers coefficients are bounded by some inequalities
and linked to one another by certain linear relationships. However, these bounds
are exponential and higher degrees are completely unreachable.

So we conceived a new approach which we hoped would produce more poly-
nomials of small height. Let P (X) =

∑d
j=0 ajX

d−j be a polynomial. First, we
restricted our search to monic polynomials. Indeed, from Theorem 1 and relation
(2), the inequality

|a0| 6 (1.3/1.2817770214)d/0.4931085

asserts that up to degree 24 a polynomial of height less than 1.3 is necessarily
monic. Besides, we noticed that interesting polynomials have low resultant, often
equal to 1 or −1, with some polynomials with a very small height or belonging to
the previous auxiliary function. This is quite normal. If the height of P is low, the
auxiliary function must have a value close to its minimum at each root of P , and
log |Res(P, Pi)| must be as little as possible. Moreover, we can easily show that

logM(P (X))− C1 log |Res(P,X)| − C2 log |Res(P, 1 −X)| > d log 1.2817770214.

Hence

|Res(P,X)| 6
(

H(P )
1.2817770214

)d/C1

and |Res(P, 1−X)| 6
(

H(P )
1.2817770214

)d/C2

·

For example, for d less than 12, |Res(P,X)| is 1 or less under the assumption that
H(P ) < 1.3. In the same manner, |Res(P, 1−X)| 6 1 if d 6 9 and H(P ) < 1.3. For
any other polynomial Pi of the auxiliary function, the corresponding constant Ci
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is too small, so the bound is too large. Thus, we simply ask that |Res(P, Pi)| = 1
a priori. As we all know,

Res(P, Pi) = Res(P mod Pi, Pi).

So the main idea is to build P from each remainder Ri of the Euclidean division of
P by Pi. Of course, there are, in general, infinitely many polynomials Ri having
resultant with Pi equal to ±1. However, as the Mahler measure of P and the degree
of Ri are both bounded above, only a finite subset Ri of the Ri need be considered.
The construction of Ri relies on the following remark. If |Res(P, Pi)| = 1, then
P (θi) is a unit of K = Q(θi), where θi is a root of Pi. By Dirichlet’s theorem, the
algebraic number P (θi) can be expressed in terms of the fundamental units and of
the roots of unity which belong to K. As we can write any fundamental unit or
root of unity of K as a polynomial in θi, the Ri’s are simply the product modulo
Pi of these polynomials to some power. The commands bnfinit and bnfisunit
of PARI are very useful at this point. The technique used to build P from Ri is
a matter of linear algebra. In general, we select two polynomials P1 and P2 whose
degrees d1 and d2 verify d = d1 +d2. Then, we build P from the remainders R1 and
R2 belonging respectively to R1 and R2 and compute its height, by the method of
Graeffe (cf. [DHJ95]).

The algorithm was programmed in PARI. The computations, performed on a
Pentium PII at 233Mhz, took from a few minutes to a couple of days, depending on
the degree. More than 41000 polynomials were found for degrees in X ranging from

Table 2.

H 1.29 1.291 1.292 1.293 1.294 1.296 1.298 Record
Degree

10 8 28 1.2945155 . . .
11 1 6 22 1.2939545 . . .
12 2 2 4 7 14 34 87 1.2888421 . . .
13 4 7 51 186 1.2926938 . . .
14 1 6 18 102 265 1.2917134 . . .
15 1 1 3 11 91 1.2914361 . . .
16 1 2 5 18 45 197 430 1.2875274 . . .
17 2 11 33 70 272 369 1.2907680 . . .
18 1 8 20 196 612 1.2913799 . . .
19 1 4 26 51 1.2926006 . . .
20 2 9 49 121 280 1084 2612 1.2893428 . . .
21 4 11 36 109 706 1155 1.2904063 . . .
22 1 5 20 41 46 1.2913747 . . .
23 1 2 10 42 60 1.2917477 . . .
24 2 35 129 440 1351 7991 22056 1.2888365 . . .
25 1 8 32 134 384 1768 2369 1.2893561 . . .
26 1 32 130 374 1722 2411 1.2909655 . . .
27 2 4 12 64 752 3261 1.2901873 . . .
28 1 3 21 122 483 2360 5093 1.2895016 . . .
32 1 5 21 86 402 550 1.2907082 . . .

Total 9 69 308 1101 3343 17771 41754 1.2875274 . . .
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10 to 32. Our investigation is not exhaustive. Gaps might even be numerous. But
we think that the probability of having missed interesting polynomials is small.
The results are gathered in Table 2. In each column, we can see the number of
polynomials found of height less than the specified value H. The column Record
shows the best height found for each degree. Note the 9 polynomials of height less
than 1.29, hence smaller than 1.2903349 . . . , which was the previous record (cf.
[F94]). Nevertheless, none of them seems to be the second nontrivial point of the
spectrum. The best height found, 1.2875274 . . . , comes from the polynomial

X16 − 4X15 + 10X14 − 17X13 + 26X12 − 47X11 + 119X10 − 298X9

+ 592X8 − 878X7 + 963X6 − 780X5 + 464X4 − 199X3 + 59X2 − 11X + 1.

We also remark that the spectrum becomes very dense around 1.292. As we shall
see in the next section, there is nothing surprising about this.

4. Search for limit points and proof of Theorem 2

We begin with a lemma which turns to be a very good tool to construct limit
points.

Lemma 2. Let P be a polynomial in two variables y and z, such that degzP > 0.
Let ζn be e

2iπ
n and assume that for all n and all k, P (ζkn , z) is not identically zero.

We then have

M(P (y, z))(1/ degzP ) = lim
n→∞

M

(
n∏
k=1

P (ζkn, z)

)
.

Proof. We write

P (y, z) = a0(y)
degzP∏
j=1

(z − zj(y)) .

We detail the demonstration when a0(y) does not vanish on the torus. In the case
when it does vanish on the torus, we can use a limiting argument. The main idea
of the proof is the use of Riemann sums. On the one hand,

logM(P (y, z)) =
∫ 1

0

log |a0(e2iπt)| dt+
degzP∑
j=1

∫ 1

0

log+ |zj(e2iπt)| dt.(3)

On the other hand, as a0(ζkn) 6= 0 for all k

log M

(
n∏
k=1

P (ζkn , z)

)
=

1
n degzP

logM

(
n∏
k=1

P (ζkn, z)

)
.

As the Mahler measure is multiplicative

logM

(
n∏
k=1

P (ζkn, z)

)
=

n∑
k=1

log |a0(ζkn)|+
degzP∑
j=1

n∑
k=1

log+ |zj(ζkn)|.

One can see Riemann sums which lead to (3) when n tends to infinity.

As an application, one can cite

lim
n→∞

M((z − 1)n − 1) = M(z − 1− y) = expL′(−1, χ−3) = 1.3813545 . . . .
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If (pk)k∈N represents the prime numbers sequence, then

lim
k→∞

M(ζpk)M(1 − ζpk) = expL′(−1, χ−3).

Put V = {H(α) | α ∈ Q}. We already know that expL′(−1, χ−3) is a limit point
of V . Can we obtain other values, possibly lower? We try to answer this question
now.

Let Pm(X) (1 6 m 6 k), Qm(X) (1 6 m 6 ` + 1) be polynomials with integer
coefficients, such that degQ`+1 > 0 and∏k

m=1 P
nm
m

Q`+1

∏`
m=1Q

nk+m
m

6= ±1(4)

for all (n1, . . . , nk+`) ∈ Nk+l. We put χ(s) = e2iπs(1 − e2iπs) and, for the vector
q = (q1, . . . , qk+`) in Rk+`

+ , we define

f(q) =
∫ 1

0

∫ 1

0

log

∣∣∣∣∣
(

k∏
m=1

P qmm

)
(χ(s)) −e2iπt

(
Q`+1

∏̀
m=1

Qqk+m
m

)
(χ(s))

∣∣∣∣∣ dsdt.
If q belongs to Qk+l

+ , one can always write qm = am/b with am and b in N. Besides,
the change of variable t 7→ t+ j/b in the previous integral does not affect the value
of f(q). Summing these integrals for j from 0 to b− 1, we obtain

bf(q) =
∫ 1

0

∫ 1

0

log

∣∣∣∣∣
(

k∏
m=1

P bqmm

)
(χ(s)) − e2iπt

(
Qb`+1

∏̀
m=1

Qbqk+m
m

)
(χ(s))

∣∣∣∣∣ dsdt,
having replaced tb by t. Now, as bqm ∈ N we see that(

k∏
m=1

P bqmm

)
(X)− y

(
Qb`+1

∏̀
m=1

Qbqk+m
m

)
(X)(5)

is a polynomial. Hence bf(q) is its logarithmic Mahler measure. The condition
degQ`+1 > 0 asserts that the degree D in the variable z of (5) is positive. More
precisely,

D = 2bmax

(
k∑

m=1

qm degPm, degQ`+1 +
∑̀
m=1

qk+m degQm

)
.

Therefore, by (4) we can apply Lemma 2 and we obtain

M

((
k∏

m=1

P bqmm

)
(X)− y

(
Qb`+1

∏̀
m=1

Qbqk+m
m

)
(X)

)1/D

= lim
n→∞

M

((
k∏

m=1

P bqmm

)n
(X)−

(
Qb`+1

∏̀
m=1

Qbqk+m
m

)n
(X)

)
.

Thus, writing

h(q) = exp

(
2bf(q)

2bmax(
∑k

m=1 qm degPm, degQ`+1 +
∑`

m=1 qk+m degQm)

)
,
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we point out that h(q) is the limit when n tends to infinity of the sequence

H

((
k∏

m=1

P bqmm

)n
(X)−

(
Qb`+1

∏̀
m=1

Qbqk+m
m

)n
(X)

)
.

One can also build such a sequence when the qm’s are irrational, because h does
not depend on b and is obviously continuous.

Thanks to this result, we found, after many attempts, a limit point less than
1.2916674. With the above notation, the polynomials are

P1(X)=X, P2(X)=1−X, P3(X)=X4−2X3+4X2−3X+1,

P4(X)=X12−3X11+8X10−18X9+36X8−62X7+97X6−123X5+114X4−73X3+31X2−8X+1,

P5(X)=X12−3X11+7X10−14X9+30X8−58X7+96X6−123X5+114X4−73X3+31X2−8X+1.

As for Q1(X), it is equal to the product of the following two polynomials of degree
24.

Qα(X)=X24−6X23+24X22−77X21+217X20−546X19+1252X18−2647X17+5195X16

−9457X15+15898X14−24521X13+34402X12−43345X11+48207X10−46413X9

+37963X8−25934X7+14558X6−6596X5+2357X4−642X3+126X2−16X+1,

Qβ(X)=X24−5X23+16X22−39X21+85X20−180X19+385X18−796X17+1551X16

−2907X15+5421X14−10003X13+17368X12−26734X11+34951X10−37880X9

+33603X8−24203X7+14041X6−6486X5+2342X4−641X3+126X2−16X+1.

In particular degQ1 > 0. The respective heights of these polynomials are

H(P1) = H(P2) = 1, H(P3) = 1,272019650 . . . ,

H(P4) = 1,288842118 . . . , H(P5) = 1,289442542 . . . ,

H(Qα) = 1,290471208 . . . , H(Qβ) = 1,290478982 . . . .

We checked that condition (4) was fulfilled and we calculated the integral on [0, 1]×
[0, 1] of

log |
(
P q11 P q22 P q33 P q44 P q55

)
(χ(s))− e2iπtQ1(χ(s))|.

The following qm’s were found by successive attempts. The value

h(17.9, 12.2, 0.9, 0.35, 0.29) = 1.2916673 . . .(6)

was computed to great precision by a Riemann sum, with PARI, from the formula

f(q1, . . . , q5) = logM (Q1(X)) +
∫ 1

0

log+

∣∣∣∣∣∣
(∏5

m=1 P
qm
m

)
(χ(s))

Q1(χ(s))

∣∣∣∣∣∣ ds.
However, this result concerns polynomials, not algebraic numbers. Fortunately, the
following three lemmas enable us to deduce a corresponding result for algebraic
numbers, i.e., Theorem 2.

Lemma 3. Let W be a polynomial with integer coefficients. Let us assume W (X) =∏r
i=1 Wi(X) and H(W ) 6 H. Then, there exists i such that H(Wi) 6 H.

Proof. If not, H(Wi) would be greater than H for all i. If di represents degXWi,
we would have H(W ) =

∏r
i=1M(Wi(X))1/

∑r
i=1 di > H , which is absurd.
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Lemma 4. Let A and B be two relatively prime polynomials. Then

gcd(Am −Bm, An −Bn) = Agcd(m,n) −Bgcd(m,n).

Proof. See, for example, Exercise 4.38 of [GKP94], pointing out that the proof is
the same for integers or for polynomials.

Lemma 5. Let c, d be positive integers, V and W two relatively prime polynomials
such that neither X nor 1−X divide W . If Un(X) = Xcn(1−X)dnV (X)n−W (X)n

and if H(Un) tends to r as n tends to infinity, then there exists a sequence (Tk)k∈N
of distinct and irreducible polynomials whose heights are nontrivial and such that
lim sup
k→∞

H(Tk) 6 r.

Proof. Recall that (pk)k∈N is the prime numbers sequence. As X and 1 − X are
the only polynomials of trivial height, each factor of Upk has a height strictly larger
than 1. Lemma 3, when applied to

Upk
Xc(1−X)dV (X)−W (X)

for each k, provides an irreducible factor Tk, whose height is at most

H

(
Upk

Xc(1−X)dV (X)−W (X)

)
·

The assumption

H(Un) −→
n→∞

r

implies that

H

(
Un

Xc(1−X)dV (X)−W (X)

)
−→
n→∞

r.

Thus lim sup
k→∞

H(Tk) 6 r as claimed. Finally, Lemma 4 ensures that

gcd
(

Upk1

Xc(1 −X)dV (X)−W (X)
, Upk2

Xc(1−X)dV (X)−W (X)

)
= 1.

In particular the Tk’s are distinct. This completes the proof.

Proof of Theorem 2. For this, we use the previous computations, especially (6). We
put

c = 1790, d = 1220, V = P 90
3 P 35

4 P 29
5 and W = Q100

1 .

Then we verify that the conditions of Lemma 5 are fulfilled in order to obtain
a sequence of distinct algebraic numbers whose height tends to the value of h
at (17.9, 12.2, 0.9, 0.35, 0.29). Thus there exists a limit point of V smaller than
1.2916674. This result, combined with Theorem 1, enables us to conclude that the
smallest limit point of V belongs to [1.28177702, 1.2916674].
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5. Conclusion

Some signs lead us to believe that 1 and 1.2720196 . . . are the only isolated points
of V . Indeed, the first points of the spectrum of M(α)M (1/(1− α)) M (1− 1/α)
have low degree (cf. [D98]) and there exist relationships between them. In fact,
the first point is trivial and is the measure of D1(X) = 1 −X , the second point is
given by D2(X) = D1(X)3 −X2, the third by D3(X) = D2(X)2 −X2D1(X)3 and
the fourth by D3(X)2 − X2D1(X)3D2(X)2. No such connections were found for
H(α). Moreover, the exhaustive search of V. Flammang (cf. [F94]) shows, with our
investigation, that no polynomial of degree less than 10 can give rise to the third
point of V , if any. Finally, lots of polynomials can be used in the auxiliary function
to improve on the Zhang-Zagier inequality. We kept only the best ones, and it is
quite strange that among these six new polynomials, none of them appears to be
the second nontrivial point of V .

If this speculation was right, the smallest limit point of V would be less than
1.2875274. Anyway, it seems that it is less than 1.29, according to our search (see
Section 3).

We also conjecture that every real greater than 1.2916674 is a limit point of V .
To support this, first note that h is a continuous function of the qm’s. We then point
out that h(1, 0, 0, 0, 0) = 1.367978 . . . , so there exist real numbers q1, q2, q3, q4, q5

such that h(q1, q2, q3, q4, q5) = r, for every r ∈ [1.2916674, 1.367978]. For another
choice of polynomials, namely, P1(X) = 2 and Q1(X) = X2 − X + 1, one can
reach infinity from 1.3641, with the result that [1.2916674,+∞[ is entirely covered.
Obviously, given r > 1.2916674 there exist real numbers qm,r such that the sequence
of polynomials

Un(X) =

(
k∏

m=1

P bnqm,rcm

)
(X)−Qn1 (X)

satisfies

H(Un) −→
n→∞

r.

To prove our conjecture, we need only show the existence of factors U ′n of Un
with lim supn→∞

degU ′n
degUn

= 1. Although the Un’s are experimentally nearly always
irreducible, we were however not able to say anything interesting about their fac-
torization.

To conclude, let us say a few words about a search for polynomials of small
Mahler measure. Thanks to Smyth’s theorem (cf. [Sm71]), we only needed to
consider reciprocal polynomials. It is clear that every reciprocal polynomial of
degree 2d divided by zd can be written as a polynomial of degree d in T = z+ 1/z.
So we only investigated polynomials in this new variable T .

The main idea was again to build P from its remainders modulo some Pi, slightly
modifying the algorithm described in Section 3. If n

m is not a power of a prime, it
is known that Res(Φn,Φm) = 1. In the same way, Silverman pointed out in [Si95]
that Res(Φn, P ) = 1, for P with a small Mahler measure and for some appropriate
n. Hence, the Pi’s were chosen among cyclotomic polynomials which were then
expressed in terms of T . Unfortunately, the polynomials obtained are totally real.
So they have numerous fundamental units, approximately twice as many as for
those obtained from the Zhang-Zagier height computations. That is the reason
why we were not able to find polynomials in T with degree larger than 19. Because
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of Boyd’s exhaustive computations (cf. [B80], [B89]), we started at degree 11.
Our search for degrees ranging from 11 to 19 allowed us to find again the best
Mahler measures for these degrees (cf. [M95]), but did not provide any new Mahler
measure.
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147 (1998), 167–179. MR 99e:14031

[Za93] D. Zagier, Algebraic numbers close both to 0 and 1, Math. Comp. 61 (1993), 485–491.
MR 94c:11104

[Zh92] S. Zhang, Positive line bundles on arithmetic surfaces, Ann. of Math. 136 (1992),
569–587. MR 93j:14024

Laboratoire d’Algorithmique Arithmétique, Université Bordeaux I, 351 cours de la
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