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ON SIMPLE DOUBLE ZEROS
AND BADLY CONDITIONED ZEROS

OF ANALYTIC FUNCTIONS OF n VARIABLES

JEAN-PIERRE DEDIEU AND MIKE SHUB

Abstract. We give a numerical criterion for a badly conditioned zero of a
system of analytic equations to be part of a cluster of two zeros.

1. Introduction and main results

Let f : Cn → Cn be analytic. An isolated zero of multiplicity m for f is a point
x ∈ Cn such that
(1) f(x) = 0,
(2) there exists a ball B containing x such that x is the only zero of f in B, and
(3) a generic analytic g sufficiently close to f has m simple zeros x1, . . . , xm in B.

In (3) any analytic g sufficiently close to f such that
(4a) ‖f(y)− g(y)‖ < ‖f(y)‖ for all y ∈ ∂B, where ∂B is the boundary of the ball,
and such that
(4b) 0 is a regular value of g : B → Cn
will do.

In fact, any analytic g satisfying (4a) has a finite number of zeros in B and
the sum of the multiplicities of these zeros is m. This fact is known as Rouché’s
Theorem in the literature, see Berenstein et al. [2], Theorem 2.12.

The number m can be computed from homology theory. It is the degree of the
mapping

f∗ : H2n−1(B, ∂B)→ H2n−1(Cn,Cn \ {0}).(5)

Any map satisfying (4a) induces the same map as f on homology and has the same
degree. For an analytic g such that 0 is a regular value, the degree of

g∗ : H2n−1(B, ∂B)→ H2n−1(Cn,Cn \ {0})
is the sum of the signs of the Jacobian determinants at the zeros x1, . . . , xm of g.
But as g is complex analytic, each of these signs is +1.

The multiplicity m of x may also be computed as the dimension of the local
algebra of f at x, see Arnold et al. [1]. Consider the local algebra C{z}x of all
holomorphic function-germs at x. The germs of the components of f generate an
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ideal If,x in this algebra. The multiplicity of f at x is the dimension of its local
algebra

m = dimC C{z}x/If,x,
which is at least one.

A point x of multiplicity m > 1 must necessarily be a singular point of f , i.e., the
derivative Df(x) has rank less than n. It follows that if g is sufficently close to f ,
then the m zeros of g must be arbitrarily badly conditioned, i.e., ‖Dg(xi)−1‖ → ∞
for all i as g → f .

We would like to be able to proceed in the opposite direction; that is, given a
point x such that ‖g(x)‖ is small (or yet even g(x) = 0), Dg(x) badly conditioned
and some additional information about g, we would like to conclude that x is close
to (or part of) a cluster of m zeros in a disk of radius r and that the pair (g, x) is
close to a pair (g̃, x̃) such that x̃ is a zero of multiplicity m of g̃. For m = 2 we
accomplish this in Theorem 4.

Besides the intrinsic interest of this problem, we are motivated by the algorithms
for finding zeros of complex polynomials in one variable, which have excellent com-
plexity estimates and which exploit zeros of higher derivatives as organizing points
for clusters of zeros. The first of these to come to our attention was due to Renegar
[10]; see Pan [9] for a survey. Both in one variable and in n variables, Newton’s
method has difficulty when zeros are badly conditioned; see Smale [17], Shub-Smale
[12]–[16], Dedieu-Shub [5], [6], and Blum-Cucker-Shub-Smale [4]. Even in n dimen-
sions we may look for a well conditioned zero of high multiplicity for a nearby
system which can serve as an organizing point for a cluster.

In this paper we will be concerned with certain points of multiplicity two, which
we call simple double zeros.

Let f : Cn → Cn be analytic and suppose f(x) = 0. Then x is a simple double
zero of f if

dim kerDf(x) = 1,(A)

kerDf(x) is the space spanned by the vector v ∈ Cn with ‖v‖ = 1 and

D2f(x)(v, v) 6∈ imDf(x).(B)

In the nomenclature of singularity theory (dating from Roger [11], or see Arnold
et al. [1] or Golubitsky-Guillemin [7]), condition A makes x an S1 singularity and
condition B makes x an S1,0 singularity in the Thom-Boardman classification. For
generic f , the S1,0 singularities comprise the highest dimensional component of the
singular set of f , and all zeros of f which are also critical points of f are S1,0

singularities. It follows that a simple double zero has multiplicity 2; see Levine [8],
Arnold et al. [1] or Golubitsky-Guillemin [7].

Given x, v ∈ Cn, v 6= 0, we define the linear operator

A(f, x, v) = Df(x). +
1
2
D2f(x)(v,Πv).

Here ΠE denotes Hermitian projection onto the subspace E ⊂ Cn. By abusing no-
tation slightly we have written Πv instead of Π[v], where [v] is the subspace spanned
by v. When x is a simple double zero we simply write A(f, x) and understand that
v is a unit vector in the kernel of Df(x).

The linear operator A(f, x) is not intrinsically defined in the sense of singularity
theory; that is, it is not coordinate independent. Yet A(f, x) and an associated
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quantity γ2 are the focus of our analysis. When x is a simple double zero, it follows
then from A and B that A(f, x) is invertible.

Definition 1. If A(f, x) is invertible, we define

γ2(f, x) = max

(
1, sup

k≥2

∥∥∥∥A(f, x)−1D
kf(x)
k!

∥∥∥∥1/(k−1)
)

and infinity otherwise.

We use the subscript 2 to distinguish γ2(f, x) from Smale’s

γ(f, x) = sup
k≥2

∥∥∥∥Df(x)−1D
kf(x)
k!

∥∥∥∥1/(k−1)

,

which is defined if Df(x) is invertible, and to indicate the dependence of A(f, x)
and hence γ2(f, x) on the second derivative of f . Smale introduced γ(f, x) in [17]
in the study of simple zeros of analytic functions between Banach spaces and the
convergence of Newton’s method towards them. If x is a simple zero of f , then any
point in the ball of radius 5−

√
17

4γ(f,x) around x converges very rapidly (quadratically)
under Newton iteration to x. Thus, in particular, if y is another zero of f , we may
separate y from x by

‖y − x‖ ≥ 5−
√

17
4γ(f, x)

>
0.21922 . . .
γ(f, x)

(see Blum-Cucker-Shub-Smale [3] or Dedieu [4], which gives the even better value
‖y − x‖ ≥ 1

2γ(f,x)).
Here we prove a similar result for separating simple double zeros from the other

zeros of f . In this paper c is a universal constant, c = 0.19830 . . . .

Theorem 1. If x is a simple double zero of f and y is another zero, then

‖y − x‖ ≥ c

γ2(f, x)
.

The proof of Theorem 1 is easily adapted to give an estimate of ‖f(y)‖ for any
y in a neighborhood of x.

Theorem 2. If x is a simple double zero of f and ‖y − x‖ ≤ c
2γ2(f,x)2 , then

‖f(y)‖ ≥ c‖y − x‖2
‖A(f, x)−1‖ .

We now use Theorem 2 to see that analytic g near f have zeros near x such that
the sum of their multiplicities is two.

For R > 0 define

dR(f, g) = max
‖y−x‖≤R

‖f(y)− g(y)‖.

Theorem 3. Let x be a simple double zero of f and

0 < R ≤ c

2γ2(f, x)2
.

If

dR(f, g) <
cR2

‖A(f, x)−1‖ ,

then the sum of the multiplicities of the zeros of g in BR(x) is two.
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Corollary 1. Let x be a simple double zero of f and

R0 =
c

2γ2(f, x)
.

Assume that

dR0(f, g) <
cR2

0

‖A(f, x)−1‖ .

Then g has two zeros y1 and y2 in BR0(x), and for each of these

‖x− yi‖2 ≤
‖A(f, x)−1‖

c
dR0(f, g).

Theorem 3 has a nice application described below. Namely, if ‖f(x)‖ is small
and ‖Df(x)v‖ is also small, then f has two zeros in a neighborhood of x. More
precisely, let x, v ∈ Cn be given with ‖v‖ = 1 and such that

rankDf(x)|v⊥ = n− 1 and D2f(x)(v, v) 6∈ imDf(x)|v⊥ .

Let us define a linear operator L : Cn → Cn by L(v) = Df(x)v and L(w) = 0 for
any w ∈ v⊥. Then the linear operator defined by

B(f, x, v) = Df(x)− L+
1
2
D2f(x)(v,Πv .) = A(f, x, v)− L

is nonsingular. Let us define

γ2(f, x, v) = max

(
1, sup

k≥2

∥∥∥∥B(f, x, v)−1D
kf(x)
k!

∥∥∥∥1/(k−1)
)
.

Theorem 4. If

‖f(x)‖+ ‖Df(x)v‖ c

2γ2(f, x, v)2
<

c3

4‖B(f, x, v)−1‖γ2(f, x, v)4
,

then f has two zeros (counting multiplicities) in the ball of radius
c

2γ2(f, x, v)2

around x.

2. Proofs

Let us now prove these theorems. For two nonzero vectors v, w ∈ Cn we define
their angle by

dP (v, w) = arccos
|〈v, w〉|
‖v‖ ‖w‖ .

This definition is invariant under scaling: dP (λv,w) = dP (v, λw) = dP (v, w) for
any nonzero scalar λ.

Theorems 1 and 2 are the consequences of two inequalities. In the first one we
suppose that dP (y − x, v) is “big” while in the second one we consider the case
of “small” angles. For this reason we introduce a priori a certain angle θ ∈]0, π2 [
separating the two cases. The value of θ will be made precise later.

In the following x is a simple double root of f and we consider a vector y ∈ Cn,
y 6= x. Let us denote w = y − x.
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Lemma 1. If γ2(f, x)‖w‖ ≤ 1
2 and dP (v, w) ≥ θ, then

‖A(f, x)−1f(y)‖ ≥ ‖w‖ sin θ − 2‖w‖2γ2(f, x).

Proof. By Taylor’s formula

f(y) = f(x) +Df(x)w +
∑
k≥2

Dkf(x)wk

k!

= Df(x)w +
1
2
D2f(x)(v,Πvw) − 1

2
D2f(x)(v,Πvw) +

∑
k≥2

Dkf(x)wk

k!
.

Since A = A(f, x) = Df(x).+ 1
2D

2f(x)(v,Πv.) is nonsingular and ‖v‖ = 1, we get

A−1 1
2
D2f(x)(v,Πvw) = A−1 1

2
D2f(x)(v, 〈w, v〉v) = 〈w, v〉A−1Av = 〈w, v〉v,

so that

A−1f(y) = w − 〈w, v〉v +
∑
k≥2

A−1D
kf(x)wk

k!

or

Πv⊥w = A−1f(y)−
∑
k≥2

A−1D
kf(x)wk

k!
.

By the triangle inequality we get

‖w‖ sin θ ≤ ‖w‖ sindP (v, w) = ‖Πv⊥w‖

≤ ‖A−1f(y)‖+
∑
k≥2

γ2(f, x)k−1‖w‖k

≤ ‖A−1f(y)‖+ γ2(f, x)‖w‖2
∑
k≥0

(
1
2

)k
,

because γ2(f, x)‖w‖ ≤ 1/2, and we are done.

Lemma 2. Let us define

Aα(z) = Df(x)z + αD2f(x)(v,Πvz),

where α is a nonzero scalar. Then, this operator is nonsingular, and

‖A−1
α Aβ‖ = max

(
1,
∣∣∣∣βα
∣∣∣∣) .

Proof. A−1
α Aβ(w) = α−1βw when w ∈ [v], and = w when w ∈ [v]⊥.

Lemma 3. Let us define ω = dP (v, w). If γ2(f, x)‖w‖ ≤ 1
2 , then

‖A(f, x)−1f(y)‖
≥ ‖w‖2

(
cosω − 2γ2(f, x) cosω sinω − γ2(f, x) sin2 ω − 2γ2(f, x)2‖w‖

)
.
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Proof. Let us write y−x = w = αv+w1 = 〈w, v〉v+w1 with w1 ∈ v⊥. By Taylor’s
formula we get

f(y) = Df(x)w +
1
2
D2f(x)(αv, αv) − 1

2
D2f(x)(αv, αv) +

∑
k≥2

Dkf(x)wk

k!

= Aα
2
w + αD2f(x)(v, w1) +

1
2
D2f(x)(w1, w1) +

∑
k≥3

Dkf(x)wk

k!

so that

A−1
α
2
A 1

2
A−1

1
2
f(y) = w + αA−1

α
2
A 1

2
A−1

1
2
D2f(x)(v, w1)

+
1
2
A−1
α
2
A 1

2
A−1

1
2
D2f(x)(w1, w1)

+
∑
k≥3

A−1
α
2
A 1

2
A−1

1
2

Dkf(x)wk

k!
.

Notice that |α| = |〈w, v〉| ≤ ‖w‖ ≤ ‖w‖γ2(f, x) ≤ 1/2 because γ2(f, x) ≥ 1. Thus
by Lemma 2 we obtain

‖A−1
α
2
A 1

2
‖ =

1
|α| .

We also notice that A 1
2

= A. By the triangle inequality we get

‖w‖ ≤ 1
|α| ‖A

−1f(y)‖+ ‖A−1D2f(x)‖‖w1‖

+
1

2|α| ‖A
−1D2f(x)‖‖w1‖2 +

1
|α|
∑
k≥3

‖A−1D
kf(x)
k!

‖‖w‖k.

Using the definition of γ2(f, x) and the equalities |α| = ‖w‖ cosω, ‖w1‖ = ‖w‖ sinω,
we obtain

‖w‖2 cosω ≤ ‖A−1f(y)‖+ 2γ2(f, x)‖w‖2 cosω sinω

+ γ2(f, x)‖w‖2 sin2 ω +
∑
k≥3

γ2(f, x)k−1‖w‖k.

This last sum is ≤ 2γ2(f, x)2‖w‖3 because γ2(f, x)‖w‖ ≤ 1/2, and we are done.

Lemma 4. Let

d =
1
6

(8 + 6
√

78)1/3 − 7
3

(8 + 6
√

78)−1/3 +
1
3

= 0.39660 . . .

be the positive root of the equation√
1− d2 − d

√
1− d2 − d− d2 = 0.

Let us define θ by

sin θ =
d

γ2(f, x)
.
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Then, for any y ∈ Cn, with w = y − x and such that ‖w‖γ2(f, x) ≤ 1/2, either
dP (v, w) ≥ θ and

‖A(f, x)−1f(y)‖ ≥ 2γ2(f, x)‖w‖
(

sin θ
2γ2(f, x)

− ‖w‖
)
,

or dP (v, w) ≤ θ and

‖A(f, x)−1f(y)‖ ≥ 2γ2(f, x)2‖w‖2
(

sin θ
2γ2(f, x)

− ‖w‖
)
.

Proof. Let us consider the estimate given by Lemma 1:

‖A(f, x)−1f(y)‖ ≥ 2γ2(f, x)‖w‖
(

sin θ
2γ2(f, x)

− ‖w‖
)
,

valid for any y with dP (v, w) ≥ θ, and the estimate given by Lemma 3:

‖A(f, x)−1f(y)‖

≥ 2γ2(f, x)2‖w‖2
(

cosω − 2γ2(f, x) cosω sinω − γ2(f, x) sin2 ω

2γ2(f, x)2
− ‖w‖

)
,

which is valid for any y. The function

cosω − 2γ2(f, x) cosω sinω − γ2(f, x) sin2 ω

is decreasing for ω ∈ [0, π/4]. So, for θ ∈ [0, π/4], we have

‖A(f, x)−1f(y)‖

≥ 2γ2(f, x)2‖w‖2
(

cos θ − 2γ2(f, x) cos θ sin θ − γ2(f, x) sin2 θ

2γ2(f, x)2
− ‖w‖

)
for any y with dP (v, w) ≤ θ. If we choose θ ∈ [0, π/4] such that

sin θ
2γ2(f, x)

≤ cos θ − 2γ2(f, x) cos θ sin θ − γ2(f, x) sin2 θ

2γ2(f, x)2
,

then the conclusion of Lemma 4 holds. This is achieved with sin θ = d
γ2(f,x) : when

we substitute this value of θ in this inequality we obtain√
1− d2

γ2
− 2d

√
1− d2

γ2
− d2

γ
− d ≥ 0

for any γ ≥ 1. Since this last function of γ ≥ 1 is increasing for any d ≤ 1/2, it is
sufficient to check this inequality for γ = 1, i.e.,√

1− d2 − 2d
√

1− d2 − d2 − d ≥ 0.

The best possible value for d is given by the equality to 0, and we are done.

Proof of Theorem 1. When f(y) = 0, then, by Lemma 4, when ‖w‖γ2(f, x) ≤ 1/2,
we have ‖w‖ ≥ sin θ

2γ2(f,x) with sin θ = d
γ2(f,x) . Thus

‖x− y‖ = ‖w‖ ≥ d

2γ2(f, x)2
=

c

γ2(f, x)2
.

When ‖w‖γ2(f, x) ≥ 1/2 the same conclusion holds because γ2(f, x) ≥ 1.
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Proof of Theorem 2. It is a consequence of Lemma 4. When

‖w‖ ≤ c

2γ2(f, x)2
=

d

4γ2(f, x)2
=

sin θ
4γ2(f, x)

,

then, by Lemma 4, we have the following:

‖A−1f(y)‖ ≥ 2γ2(f, x)2‖w‖2 sin θ
4γ2(f, x)

= 2γ2(f, x)2‖w‖2 c

2γ2(f, x)2
= c‖w‖2.

Proof of Theorem 3. Since ‖f(y)−g(y)‖ < ‖f(y)‖ for any y such that ‖x−y‖ = R,
f and g induce the same map on homology on H2n−1(B, ∂B) and by Rouché’s
Theorem have the same number of zeros inside BR(x), counting multiplicities. By
Theorem 1, when R < c

2γ2(f,x) , the only root of f in BR(x) is x. The number of
zeros inside that ball is two.

Proof of Theorem 4. Let us define

g(y) = f(y)− f(x)− L(y − x).

We have Dg(x) = Df(x) − L and Dkg(x) = Dkf(x) for any k ≥ 2. Moreover,
kerDg(x) = [v] and imDg(x) = imDf(x)|v⊥ , so that

D2g(x)(v, v) 6∈ imDg(x).

We also notice that

Dg(x).+
1
2
D2g(x)(v,Πv .) = B(f, x, v)

and that γ2(g, x) = γ2(f, x, v). Theorem 4 is a consequence of Theorem 3 applied
to g and f .
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