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CONSTRUCTING FULLY SYMMETRIC
CUBATURE FORMULAE FOR THE SPHERE

SANGWOO HEO AND YUAN XU

Abstract. We construct symmetric cubature formulae of degrees in the 13-
39 range for the surface measure on the unit sphere. We exploit a recently
published correspondence between cubature formulae on the sphere and on
the triangle. Specifically, a fully symmetric cubature formula for the surface
measure on the unit sphere corresponds to a symmetric cubature formula for
the triangle with weight function (u1u2u3)−1/2, where u1, u2, and u3 are
homogeneous coordinates.

1. Introduction

In this paper we construct symmetric cubature formulae on the surface of the
sphere S2 in R3 by using a correspondence between cubature formulae on the sphere
and on the simplex established in [23]. Throughout this paper we denote by Πd

n

the space of polynomials of degree at most n in d variables (d = 2 or 3), and we
denote by T the triangle with vertices at (0, 0), (1, 0) and (0, 1). Let W (y2

1 , y
2
2 , y

2
3)

be a weight function defined on R3, normalized so that
∫
S2 W (y2

1 , y
2
2 , y

2
3)dω = 1.

Associated with W , we define a weight function WT on the triangle T by

WT (u1, u2) = 2W (u1, u2, 1− u1 − u2)/
√
u1u2(1− u1 − u2), (u1, u2) ∈ T.(1.1)

Then the correspondence between cubature formulae on S2 and on T states that

Theorem 1.1. Let W and WT be defined as above. Suppose that there is a cubature
formula of degree M on T given by∫

T

f(u1, u2)WT (u1, u2)du1du2 =
N∑
k=1

λkf(uk,1, uk,2), f ∈ Π2
M ,(1.2)

whose N nodes lie on the triangle T . Then there is a cubature formula of degree
2M + 1 on the unit sphere S2,∫

S2
g(y1, y2, y3)W (y2

1 , y
2
2 , y

2
3)dω(1.3)

=
N∑
k=1

λk
∑
εi=±1

g(ε1vk,1, ε2vk,2, ε3vk,3)/2ak , g ∈ Π3
2M+1,
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where ak is the number of nonzero elements among vk,1,vk,2 and vk,3, and the nodes
(vk,1, vk,2, vk,3) ∈ S2 are defined in terms of (uk,1, uk,2) by

(vk,1, vk,2, vk,3) = (
√
uk,1,

√
uk,2,

√
1− uk,1 − uk,2).(1.4)

On the other hand, if there exists a cubature formula of degree 2M + 1 on S2 in the
form of (1.3), then there is a cubature formula of degree M on the simplex T in the
form of (1.2) whose nodes (uk,1, uk,2) ∈ T are defined by (uk,1, uk,2) = (v2

k,1, v
2
k,2).

The formula (1.3) is invariant under the change of signs, or invariant under the
group Z2 × Z2 × Z2. The theorem establishes the equivalence between (1.2) and
(1.3). In [23] this theorem is proved more generally for formulae on the sphere Sd

and the simplex Σd for all d. For d = 2 we have used the more customary notation
T for the simplex Σ2. When W (y) = 1/4π is the reciprocal of the surface area of
S2, the corresponding weight function on T is the multiple of the weight function
(u1u2(1 − u2 − u3))−1/2, which we will denote by W0; that is,

W0(u1, u2) = (u1u2(1 − u1 − u2))−1/2/2π, (u1, u2) ∈ T.(1.5)

In the following section we adopt a method of Lyness and Jespersen [15] to
construct symmetric cubature formulae on T , which are formulae that are invari-
ant under the symmetric group of the triangle, and use Theorem 1.1 to generate
cubature formulae on the sphere. When the formula (1.2) on T is symmetric, the
corresponding formula (1.3) in Theorem 1.1 is invariant under the octahedral group,
which is the symmetric group of the unit cube {±1,±1,±1} in R3. In this case,
the formula (1.3) is of the form∫

S2
g(y1, y2, y3)W (y2

1 , y
2
2 , y

2
3)dω

=
N∑
k=1

µk
∑
σ

∑
εi=±1

g(ε1vk,σ1 , ε2vk,σ2 , ε3vk,σ3 ), g ∈ Π3
2M+1,

(1.6)

where the second sum is taken over all permutations of σ = (σ1, σ2, σ3), and µk =
λk/(bk · 2ak) with bk =

∑
σ 1 for the corresponding point. Formulae of this type

have been constructed by Lebedev [10]–[13]. They are called fully symmetric in [20]
and [7], and have been studied for Sd in [8], which contains another correspondence
between fully symmetric formulae on Sd and cubature formulae on Σd, namely, a
correspondence between the consistent rule structures on these two regions.

Numerical integration on the sphere has attracted a lot of attention; we refer
to [1], [2], [4], [10]–[13], [17]–[20] and the references there. Most formulae have
been constructed by making use of symmetry to reduce the number of moment
equations that have to be solved (see, for example, Sobolev [19] and McLaren [17]).
The fundamental result of Sobolev states that a cubature formula invariant under
a finite group is exact for all polynomials in a subspace P if, and only if, it is
exact for all polynomials in P that are invariant under the same group. The group
that has been employed previously in this context is the octahedral group; Lebedev
constructed in [10]–[13] cubature formulae of degree up to 59, many of which have
the smallest number of nodes among all formulae that are known. Working with
symmetric cubature formulae on T , we are able to find many formulae on S2 of
a structure that Lebedev did not consider (see the following section). There are
also formulae that are invariant under the icosahedral group, which have, however,
no corresponding formulae on the triangle, since they are not symmetric under
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Z2×Z2×Z2 in the first place. We refer to [4], [18], [20] and the references there for
other papers that deal with cubature formulae on the sphere; see also [1], in which
formulae are constructed making use of symmetry and a Taylor expansion formula.

2. Symmetric formulae on T
and fully symmetric formulae on S2

In this section, we consider symmetric formulae with respect to the weight func-
tion W0 on T , which correspond to cubature formulae with octahedral symmetry
on S2. In the first part of the section we present a method of constructing sym-
metric formulae given by Lyness and Jespersen in [15]. Our findings of cubature
formulae are discussed in subsection 2.2, and we discuss the numerical computation
in subsection 2.3.

2.1. Symmetric formulae on the triangle. Instead of T , Lyness and Jespersen
used the equilateral triangle

4 = {(x, y) : x ≤ 1/2,
√

3y − x ≤ 1, −
√

3y − x ≤ 1},

whose symmetric group S3(4) is generated by a rotation through an angle 2π/3
and a reflection about the x-axis. The triangle T can be transformed into 4 by the
affine transformation

ϕ : (x1, y1) ∈ T 7→ (x, y) ∈ 4,
x = 3(x1 + x2)/2− 1, y =

√
3(x2 − x1)/2.

(2.1)

It is easy to see that invariance is preserved under ϕ; in particular, if a function
f defined on 4 is invariant under S3(4), then the function f ◦ ϕ defined on T is
invariant under S3(T ). The weight function W0 on T becomes

W 0
4(x, y) = 3−3/2((1 + x)2 − 3y2)−1/2(1− 2x)−1/2/(2π).

A basis for the class of S3(4)-invariant polynomials of degree at most n can be
written down in terms of the polar coordinates x = r cos θ and y = r sin θ as follows:

r2i(r3 cos 3θ)j , 0 ≤ 2i+ 3j ≤ n.(2.2)

Moreover, working with functions g(r, θ) = f(r cos θ, r sin θ) in polar coordinates, a
basic invariant cubature formula takes the form

Q(r, θ)g =
1
6

3∑
j=1

{
g
(
r, θ +

2πj
3
)

+ g
(
r,−θ +

2πj
3
)}
,

which is just a sum over the S3(4)-orbit of the point (r, θ). Because of the invariance
of Q(r, θ), we assume that r can take negative values and 0 ≤ θ < π/3. Three
distinct types of orbits occur according to whether r = 0 (center of triangle); r 6= 0,
cos 3θ = 1 (median of triangle); or r 6= 0, cos 3θ 6= 1. These three types are denoted
as holistic type 0, holistic type 1 and holistic type 2, whose corresponding Q(r, θ)g
requires 1, 3, or 6 function evaluations, respectively. Let ni denote the number of
orbits of type i in a symmetric cubature formula. The general symmetric cubature
formula takes the form

Q(g) = n0λ0g(0, 0) +
n1∑
i=1

λiQ(ri, 0)g +
n1+n2∑
i=n1+1

λiQ(ri, θi)g.(2.3)
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The number of nodes of this formula, denoted by µ(Q), is µ(Q) = n0 + 3n1 + 6n2.
It is shown in [15] that the cubature formula Q(g) is of degree M if its nodes and
weights satisfy the following system of equations:

λ0 +
n1∑
i=1

λi +
n1+n2∑
i=n1+1

λi = v0,0,

n1∑
i=1

λir
j
i +

n1+n2∑
i=n1+1

λir
j
i cos 3kθi = vj,3k, 2 ≤ j ≤M, k = k0,(2.4)

n1+n2∑
2i=n1+1

λir
j
i (cos 3k0θi − cos 3kθi) = vj,3k, j = 6, or 8 ≤ j ≤M,

6 ≤ 3k ≤ j, j + k even,

where k0 = 0 if j is even and k0 = 1 if j is odd, and the numbers vj,3k are defined
by

vj,3k =
∫
4
rj+1 cos 3kθW 0

4(r cos θ, r sin θ)drdθ,(2.5)

where the integral is over the region defined by (r cos θ, r sin θ) ∈ 4. For each M ,
the system contains

E(M) = [(M2 + 6M + 12)/12]

equations, where [x] denote the greatest integer less than or equal to x.
It is often useful to construct cubature formulae that have some nodes on the

edges or at the vertices of the triangle. To describe such a formula, we use the
cytolic types (orbits) introduced in [15]. The holistic type 1 (r 6= 0, cos 3θ = 1)
orbits may be sub-partitioned into cytolic type 1: r = −1 (vertices), cytolic type 2:
r = 1/2 (mid point of edges), and cytolic type 3: −1 < r < 1/2. The holistic type 2
(r 6= 0, cos 3θ 6= 0) orbits may be sub-partitioned into cytolic type 4: r cos θ = 1/2
(nodes on the edges but not at mid point of the edges nor at vertices), and cytolic
type 5: r cos θ 6= 1/2 (interior points). From here on we treat only cytolic rules. The
structure of a cytolic rule is denoted by [m0;m1,m2,m3;m4,m5], where mj denotes
the number of components of cytolic type j contained in the rule. In particular, we
have n0 = m0, n1 = m1 +m2 +m3, and n2 = m4 +m5. We note that m0, m1 and
m2 can take only values either 0 or 1.

According to Theorem 1.1, a cytolic cubature formula of structure [m0;m1,m2,
m3;m4,m5] leads to a cubature formula on S2 whose number of nodes is equal to

N(S2) = 8m0 + 6m1 + 12m2 + 24m3 + 24m4 + 48m5.(2.6)

The nonlinear system of equations (2.4) remains in the same form for the cytolic
type formulae; we only need to assign proper values of certain ri and θi according
to the given type. To form the nonlinear system of equations (2.4), we choose m0

and mi so that the number of parameters matches the number of equations. For
the structure [m0;m1,m2,m3;m4,m5], this means

m0 +m1 +m2 + 2m3 + 2m4 + 3m5 = [(M2 + 6M + 12)/12],(2.7)

where M , as before, is the degree of the cubature formula. For each fixed M there
may be a number of integer solutions to the above equation, leading to different
types of cubature formulae. In this regard, the consistency conditions are very



SYMMETRIC CUBATURE FORMULAE FOR THE SPHERE 273

useful. Following the argument in [15] for the holistic type, the conditions for the
cytolic type are

2m4 + 3m5 ≥ E(M − 6),

m1 +m2 + 2(m3 +m4) + 3m5 ≥ E(M)− 1,(2.8)

m0 +m1 +m2 + 2(m3 +m4) + 3m5 ≥ E(M).

They are also included in the conditions found in [7] for the d-dimensional sim-
plex. These conditions ensure that, within any subsystem of (2.4), the number of
unknown parameters cannot be less than the number of equations. Another useful
restriction is as follows.

Theorem 2.1. A formula of degree M is of structure [m0;m1,m2,m3;m4,m5]
only if

m5 >


(M − 9)/4, if m4 6= 0 and M ≥ 9,
(M − 6)/4, if m4 = 0 and M ≥ 6,
(M − 3)/4, if m3 = 0 and M ≥ 3.

(2.9)

Proof. Let `i, i = 1, 2, 3, be the linear polynomials such that `i = 0 give the
equations of the sides, and we choose the sign so that the `i are nonnegative on 4.
Let hi, i = 1, 2, 3, be the linear polynomials such that hi = 0 give the equations
of the medians of 4. Furthermore, let xi = (ri cos θi, ri sin θi) be points of type 3,
and let gi, i = 1, 2, . . . ,m5, be the quadratic polynomials so that gi = 0 gives the
equation of the circle that has center at origin and radius ri. If m4 6= 0, then the
polynomial

`1`2`3h
2
1h

2
2h

2
3g

2
1 . . . g

2
m5

will vanish on all nodes of the formula. Since the polynomial is positive on 4, its
degree has to be bigger than the degree of the cubature formula, which leads to
the desired inequality. If m4 = 0, then the factors `1`2`3 can be dropped from the
polynomial, leading to the desired inequality in this case. If m3 = 0, then h2

1h
2
2h

2
3

can be dropped from the polynomial.

This theorem and its proof are extensions of the result in [15, p. 26], which deals
with the cases of M = 5, 6, 9. There are other conditions that can be derived this
way; for example, if both m3 and m4 are zero, then m5 > M/4. For fixed M , it
is possible to identify all possible integer solutions of (2.7) which also satisfy the
restrictions (2.8) and (2.9); the number of the solutions, however, is still large even
for moderate M . For more general conditions of this type, we refer to [7] and [16].

Particular choices of structure lead to a system (2.4) that may be split into sub-
systems, each having fewer independent variables: the smaller size of the subsystem
makes them easier to solve. Such a split is possible since the third group of the
equations in (2.4) does not contain ri and λi for i = 1, 2, . . . , n1; and it occurs
whenever m4 and m5 satisfy the equation

2m4 + 3m5 = E(M − 6) = [(M2 − 6M + 12)/12],(2.10)

because the third group of equations contain E(M −6) independent parameters. It
is not hard to check that the integer solutions of the above equation exist for every
M ≥ 7, exceptM = 10; hence, the splitting occurs for eachM 6= 10. One important
class of formulae that admits the splitting corresponds to the cubature formulae
constructed by Lebedev in [10]–[13] on S2 with octahedral symmetry. Apart from
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a few lower degree cases, Lebedev considers the formulae on S2 that correspond to
the structures

[1; 1, 0, 3m;m,m(m− 1)] and [1; 1, 1, 3m+ 1;m,m2],(2.11)

which are of degree 6m+2 and 6m+5, respectively; and he has constructed formulae
for m = 1, 2, 3, 4.

2.2. Fully symmetric cubature formulae on S2. We have attempted to find
symmetric cubature formulae of degree up to 20 on the triangle. Our strategy for
choosing the structure [m0;m1,m2,m3;m4,m5] is as follows. We search for types
whose corresponding formulae on S2 have fewer nodes. This means finding m0 and
mi, which satisfy (2.7), (2.8) and (2.9), so that N in (2.6) is minimal or close to
minimal. To this end, we choose m0, m1 and m2 with value one whenever possible,
and then m5 as small as possible. As a starting point, we choose m4 and m5 to
satisfy (2.10), so that the system (2.4) is split into subsystems. There are some
nonlinear systems for which we found no solution. For each M ≤ 20, however, we
found at least one cubature formula that has all of its nodes inside 4 and contains
no negative weights; these correspond to cubature formulae on S2 of degree up to
41. Note that, when such a formula for 4 has a node outside 4, Theorem 1.1
cannot be exploited to find a cubature formulae on S2.

We report our findings as fully symmetric cubature formulae on S2 and list the re-
sults in Table 2.1 below. Each formula is identified by its structure [m0;m1,m2,m3;
m4,m5], and we give its number of nodes. If a formula has all positive weight, we
write P in the last column, otherwise, we write N .

The structures marked by [S] correspond to formulae in Stroud’s book [20],
structures marked by [L] correspond to formulae on S2 found by Lebedev. The
structures [0;1,0,2;1,0] of degree 13 and [1;1,0,2;2,0] of degree 17 have been con-
structed by Keast in [7], but the numerical values of the nodes and weights are not
given there. All other formulae in the table appear to be new; in particular, these
include formulae of degrees 21, 31, 33, 37 and 39, where no formulae of the same
degree have been published previously, and formulae of degrees 25 and 27 of quality
P. Three formulae, of degree 47, 53 and 59, may be found in [12] and [13]. Because
the system of equations (2.4) is nonlinear, its solution need not be unique. In the
cases of [0; 0, 0, 3; 1, 2] of degree 21 and [0; 0, 0, 4; 1, 10] of degree 39, we found two
solutions in each case, and we mark these cases by (2) in the table.

Numerical computation that leads to symmetric cubature formulae for the unit
weight function is carried out in [15] for M ≤ 11 and in [3] for M ≤ 20. The
equations (2.4) in the cases of the unit weight function and the weight function W0

are of the same form, except that the moments are different, which only changes
the right hand sides of the equations. Since the equations are nonlinear, formulae
of the same type may possess different quality for different weight functions. For
example, for the structure [1; 0, 0, 6; 1, 2] of degree 13, we found a formula for W0

with some negative weights, while the formula for the unit weight function has
all positive weights. The most interesting case, however, is perhaps the structure
[1; 0, 0, 8; 1, 7] of degree 19, in which we found no solution for the weight function
W0, while a solution exists for the unit weight function ([3]). This demonstrates
once more the well-known phenomenon that the solutions of nonlinear systems may
be sensitive to any changes in the value of any incidental constant.
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.

Table 2.1. Fully symmetric cubature formula on S2

Degrees Structure # of Nodes Quality
3 0;1,0,0;0,0 6 P [S]

1;0,0,0;0,0 8 P [S]
5 1;1,0,0;0,0 14 P [S]
7 1;1,1,0;0,0 26 P [S]

1;0,0,1;0,0 32 N [S]
9 1;1,0,0;1,0 38 P [L]
11 1;1,1,1;0,0 50 P [S]
13 1;1,1,1;1,0 74 N [L]

0;1,0,2;1,0 78 P
15 1;1,0,2;1,0 86 P [L]

0;1,1,2;1,0 90 P
17 1;1,0,3;1,0 110 P [L]

1;1,0,2;2,0 110 N
19 1;1,1,3;0,1 146 P [L]

1;1,1,2;1,1 146 P
1;0,0,4;0,1 152 P

21 1;1,1,3;1,1 170 N
1;1,1,2;2,1 170 N
1;0,0,3;2,1 176 N
0;0,0,3;1,2 192 P (2)
1;0,0,2;0,3 200 P

23 1;1,1,4;1,1 194 P [L]
0;1,0,4;2,1 198 P
1;0,0,5;1,1 200 P
1;0,0,4;2,1 200 N

25 1;1,0,5;2,1 230 N [L]
1;0,0,5;1,2 248 P
0;0,0,5;0,3 264 P

27 1;1,1,5;1,2 266 N [L]
1;0,0,6;1,2 272 N
1;1,0,5;0,3 278 N
0;0,0,5;1,3 288 P

29 1;1,0,6;2,2 302 P [L]
0;0,0,6;0,4 336 P

31 1;0,0,4;3,4 368 P
33 1;0,0,6;1,5 416 P
35 1;1,1,7;2,4 434 P [L]

1;0,0,8;2,4 440 P
37 1;0,0,5;1,8 536 P
39 0;0,0,4;1,10 600 P (2)
41 1;1,0,9;3,6 590 P [L]
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2.3. Remarks on numerical computation. The numerical computation was
carried out on a DEC Alphastation 500 in double precision, using the DUNLSF
Fortran subroutine in the IMSL Math/Library (Visual Numerics, Inc., 1994); how-
ever, moments vj,3k in (2.5) were computed exactly using Maple. The subroutine
DUNLSF employs iterative techniques which require an initial estimate of the so-
lution. For solving the nonlinear system (2.4), this means that we need to provide
initial values for the weights λi and for the parameters ri and θi that determine
nodes. To determine the initial values, we have followed the strategy in [3] for
solving the systems for the unit weight function. The node locations of the formu-
lae for the weight function W0 appear to be similar to those for the unit weight
function: nodes are located closer to the edge of the triangle than the centroid,
and are located closer to the median θ = π/3 than θ = 0. Our computation shows
that whenever a formula of a given type has a solution, then even a rough initial
estimate leads to the solution in reasonable computing time. For example, finding
a formula of degree 19 needs less than 30 minutes.

For each formula of degree M , we compute the relative error and the absolute
error of I(f) − In(f) for all invariant polynomials f of degree ≤ M , where I(f)
stands for the integral of f with respect to W0 on the triangle and In(f) stands
for the numerical approximation (in principle but not in practice exact) to this
quantity calculated using the cubature formula. We found that

sup{|I(f)− IM (f)|/I(f) : f ∈ ΠG
M} ≤ 0.5× 10−13

for formulae of degree up to 19, but it was ten times larger for the degree 20. The
numerical values of the parameters are given to 12 digits. The DUNLSF subroutine
solves the nonlinear equations in the least square sense; that is, it finds the minimal
solution of

∑
f2
i (x), where fi = 0 are nonlinear equations. In our computation,

equations in (2.4) involve high powers of polynomials which, however, seem not
to be sensitive to perturbations; for example, for M = 20, a perturbation in the
5-th decimal place of our solution did not change the order of the relative error
10−12. For M large, the accuracy of the solution found by the DUNLSF subroutine
is limited by the machine accuracy. Because the computer we used has limited
precision of 15 digits, we stopped at M = 21.

3. Final comments

We comment on some perspectives that are not covered in the present paper.

Remark 3.1. Theorem 1.1 establishes the connection between cubature formulae on
Σd and Z2× · · · ×Z2 symmetric cubature formulae on Sd. In [22] we also establish
a connection between cubature formulae on the ball Bd and on Sd, and that con-
nection has been used to construct cubature formulae on S2 in [5]. Together, these
results yield a correspondence between cubature formulae on Σd and Z2 × · · · ×Z2

symmetric formulae on Bd. In particular, a cubature formula for the weight func-
tion W0 on T corresponds to a formula for the weight function 1/

√
1− x2

1 − x2
2 on

B2. Thus, the results in Sections 2 and 3 also lead to Z2 × Z2 × Z2 symmetric
formulae on B2. On the other hand, those formulae constructed in [5] that are
Z2×Z2×Z2 symmetric lead to formulae on T . However, not all formulae on B2 in
[5] are fully symmetric. In fact, the correspondence between formulae on Bd and
on Sd is not restricted to Z2 × Z2 × Z2 symmetric formulae.
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Remark 3.2. The connection between cubature formulae on Sd, Σd and Bd may be
exploited to treat a large class of weight functions. In particular, cubature formulae
for the unit weight function on T correspond to Z2×Z2×Z2 symmetric formulae for
|x1x2x3|dω on S2 and for a weight function |x1x2| onB2; and Z2×Z2×Z2 symmetric
cubature formulae for the unit weight function on B2 correspond to formulae for
(1/
√
x1x2) on T . For examples of formulae for the unit weight function on these

domains, see the references in [18], [20].

Remark 3.3. The connection between formulae on the three domains may also be
applied in higher dimensions. Although a number of formulae of lower degrees
have been constructed for the unit weight function in the literature (see [2], [4],
[18], [20]), it may be of interest to construct formulae for the weight function
(u1 · · ·ud(1 − u1 − . . . − ud))−1/2 on Σd and use them to generate cubature for-
mulae on Sd. To our knowledge, the calculation of symmetric cubature formulae
for this weight function on Σd for d > 2 has not been undertaken previously, al-
though the consistency conditions are available in [7] and [16]. For the unit weight
function, some symmetric formulae of lower degrees on Σd have been constructed;
see [2], [7], [18], [20] and the references given there.
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Appendix

We give the weights and nodes for the cubature formulae described in Section 2.
The cubature formulae on S2 are of the form (1.6) with W (x) = 1/4π. Because of
the symmetry, for each weight µk we need to specify only one node (vk,1, vk,2, vk,3).
For a formula of structure [m0;m1,m2,m3;m4,m5], the nodes corresponding to
m0, m1 and m2 are

(
√

1/3,
√

1/3,
√

1/3), (1, 0, 0), (
√

1/2,
√

1/2, 0),

involving eight, six, and twelve function values, respectively; the weights corre-
sponding to these are denoted by µ0, µ1, and µ2, respectively. Note that some or
all of µ0, µ1, µ2 could be zero, which means that the corresponding node does not
appear in the formula.

For each formula we specify the value of nonzero µi, i = 0, 1, 2 first; those that
are not given are understood as zero. We then list in tabular form the other nodes
(vi,1, vi,2, vi,3) and the corresponding weights µi starting with i = 3 and following
the ordering implied in the specified structure. That is, the weights corresponding
to all nodes of type 3 are listed first, then all of those of type 4 followed by all those
of type 5. Here are the first three tables.

.

Degree 13: [0;1,0,2;1,0]; N = 78 µ1 = 0.013866592105

i xi yi zi µi
3 0.286640146767 0.914152532416 0.286640146767 0.013050931863
4 0.659905001656 0.659905001656 0.359236381200 0.013206423223
5 0.539490098706 0.841991943785 0.0 0.011942663555
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.

Degree 15: [0;1,1,2;1,0]; N = 90
µ1 = 0.013191522874, µ2 = 0.011024070845

i xi yi zi µi
3 0.337785899794 0.878522265967 0.337785899794 0.010538971114
4 0.658511676782 0.658511676782 0.364314072036 0.011656960715
5 0.399194381765 0.916866318264 0.0 0.010660818696

.

Degree 17: [1;1,0,2;2,0]; N = 110
µ0 = 0.009103396603, µ1 = −0.002664002664

i xi yi zi µi
3 0.357406744337 0.862856209461 0.357406744337 0.010777836655
4 0.678598344546 0.678598344546 0.281084637715 0.009161945784
5 0.542521185161 0.840042120165 0.0 0.009798544912
6 0.222866509741 0.974848972321 0.0 0.009559874447

Numerical values of the weights and abscissas of these and all other rules whose
structures are given in Table 2.1 are listed in [6]. A machine-readable version of
this technical memorandum is available on request from the authors.
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