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WEAK APPROXIMATIONS.
A MALLIAVIN CALCULUS APPROACH

ARTURO KOHATSU-HIGA

Abstract. We introduce a variation of the proof for weak approximations
that is suitable for studying the densities of stochastic processes which are eval-
uations of the flow generated by a stochastic differential equation on a random
variable that may be anticipating. Our main assumption is that the process
and the initial random variable have to be smooth in the Malliavin sense.
Furthermore, if the inverse of the Malliavin covariance matrix associated with
the process under consideration is sufficiently integrable, then approximations
for densities and distributions can also be achieved. We apply these ideas to
the case of stochastic differential equations with boundary conditions and the
composition of two diffusions.

1. Introduction

Starting as early as Milshtein [22], due to its many applications the area of weak
approximations for stochastic differential equations (sde’s) has been growing rapidly
(e.g. see Kloeden and Platen [16]).

To explain what are the issues in this area of study, let’s consider a simple
case first. Define Φt(x) as the solution of the following one dimensional stochastic
differential equation:

Φt(x) = x+
∫ t

0

σ(Φs(x)) ◦ dWs +
∫ t

0

b(Φs(u, x))ds, t ∈ [0, 1].(1)

Here W is a one dimensional Wiener process and b, σ : R → R are smooth with
bounded derivatives. The above stochastic integral is the Stratonovich integral.

The main problem of study in the area of strong and weak approximation theory
is how to approximate Φ and what is the error of approximation. For this we define
the Euler approximation. Let π = {0 = t0 < . . . < tN = 1} be a partition of [0, 1]
such that ‖π‖ := max{tk+1 − tk; k = 0, . . . , N − 1} ≤ δ. Define the shift operator

η(t) = tk if tk < t ≤ tk+1,
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where tk and tk+1 are in π. We set η(0) = 0. Let Φ denote the Euler-Maruyama
scheme, defined by

Φt(x) = x+
∫ t

0

σ(Φη(s)(x))dWs +
∫ t

0

m(Φη(s)(x))ds.(2)

Here m = b + 1
2σ
′σ.

A well known result (see e.g. Theorem 10.2.2 in [16]) establishes that

E( sup
t∈[0,1]

|Φt(x) − Φt(x)|p) ≤ C(x)δp/2.(3)

Here p > 1, and C(x) is a positive function that has polynomial growth in x and is
independent of δ and the partition π.

This type of result measures the path-by-path difference between the solution of
(1) and its Euler-Maruyama approximation (2). For this reason this type of result
is usually called a strong approximation theorem. Its method of proof is based on
Gronwall’s lemma.

A different way of measuring the difference between Φ and Φ is through their
laws. In particular the following result holds (see, e.g. Theorem 14.1.5 in [16]):

|E(f(Φt(x))) − E(f(Φt(x)))| ≤ C(x)δ,(4)

where f ∈ C∞p (R) (that is, f is a real valued, smooth function with polynomial
growth at infinity). This type of result is different from (3). In fact, if f above were
Lipschitz (with Lipschitz constant K), using (3) we could only obtain that

|E(f(Φt(x))) − E(f(Φt(x)))| ≤ KE(|Φt(x)− Φt(x)|) ≤ KC(x)δ1/2,

while (4) establishes that the rate of convergence is of order δ. Results like (4) are
known as weak approximation theorems. The method of proof is centered on the
fact that if we define u(t, x) = E(f(Φt(x))), then u satisfies the following PDE:

∂u

∂s
(s, x) +m(x)

∂u

∂x
(s, x) +

1
2
σ2(x)

∂2u

∂x2
(s, x) = 0,

u(0, x) = f(x).

Having defined u, one rewrites (4) in terms of u and applies Itô’s formula. At some
point during the proof the Markov property of the process Φt(x) is used.

Due to its connections with partial differential equations, the area of weak ap-
proximations has recently been of increasing interest. Also, results of this type
give information about many functionals of the solution process, in particular, the
moments and the law of the process Φt(x). For example, Bally and Talay [3], [4]
widened the class where f belongs to have a result like (4) hold. In particular, one
can obtain approximations for the distribution and density functions of Φ. Other
related results were developed by Hu and Watanabe [14] and Kohatsu-Higa [17].

Another direction of development has been to consider other stochastic differen-
tial equations of a type different from (1). For example, Bossy and Talay [5] and
[6] considered stochastic differential equations related to the Burgers and McKean-
Vlasov equations. These stochastic equations are of a type different from (1). In
particular, the law of the solution process is also part of the coefficients in the
equation.

In all these variants the essential technique used to obtain a result like (4) is
to find an appropiate modification of the basic argument that uses u (which also
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needs to be modified), the adaptedness and the Markov property of the underlying
stochastic process.

Until recently, it was common to believe that anticipating stochastic differential
equations were not amenable to this type of argument for studying the numerical
approximations, due to the lack of adapted properties and the Markov property. In
Ahn and Kohatsu-Higa [2], we defined and analyzed the weak and strong rate of
convergence for an Euler type scheme in the case of Φt(X0), where X0 is a smooth
random variable (in the Malliavin sense) but not necessarily adapted to F0. We
assumed that the joint distribution of the vector (X0,Wt1 , . . . ,WtN ) is known and
therefore can be simulated. These results proved that one could use simulations to
study the path and probabilistic properties of such anticipating processes.

Nevertheless, the proof of weak approximation was complicated and required
stringent conditions on the random variable X0. Here the problem comes from the
fact that although Φt(X0) satisfies a stochastic differential equation of anticipative
type, there is no partial differential equation associated to it. Furthermore, the
Markov property is not satisfied.

In this article we propose to continue this study. We want to concentrate our
efforts on ordinary stochastic differential equations with boundary conditions. As
many high order sde’s with boundary conditions can be reduced to first order
ones, we will start studying the weak approximations for first order stochastic
differential equations with boundary conditions. Later we will handle the second
order equations.

Here, we consider approximations for the density of the solution to a sde with
boundary conditions. These equations arise naturally as extensions of ordinary
differential equations with boundary conditions. The solutions of such equations
can be written as Φt(X0). There are various added complications to the definition
and the analysis of approximations in this case.

First, one has to approximate X0 through a procedure that resembles the clas-
sical shooting method. This method is not well defined in the whole sample space;
therefore we will need a localization procedure. Second, the approximation to X0

does not satisfy the requirements of the weak approximation results in [2]. Third,
we are interested in approximating the density of a process with the possible com-
plication that the approximating process may not have a density in itself, although
the limit may have one.

To solve these problems, we propose a variant of the classical proof of weak rate
of convergence.

In order to give a clear proof of our final goal (see Theorem 4.3), we will gradually
introduce this modification to the classical proof. The final goal is to find rates of
convergence for approximations to the densities of random variables of the type
Φt(X0).

First, we study the case when X0 is a random variable such that the joint law
of (X0,Wt1 , . . . ,WtN ) is known beforehand. Although this is not the case for sde’s
with boundary conditions, this will be an important step towards our final goal. In
the second step, we study the case when X0 also has to be approximated: first, in
the case X0 is generated by another diffusion, and then, in the case of stochastic
differential equations with boundary conditions.

Instead of using the Markov property and u(t, x), we use the integration by
parts of the Malliavin calculus. Therefore the variant we introduce to prove these
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results requires the use of flow properties, techniques of Malliavin calculus and the
smoothness of the processes involved.

With these tools we will prove weak approximation results of the type (4) for
the cases mentioned above. Furthermore, one can also obtain extensions when f
belongs to a wider class that includes the indicator function and the delta function.
This type of results will provide a way to approximate the distribution and density
functions of the processes involved through the use of appropiate Monte Carlo
methods.

The study of approximations for density functions has the added difficulty that
one has to show that the Malliavin covariance matrix of the approximating process
is uniformly bounded with respect to the step size. We prove in the Appendix that
something close to this happens (see Lemma 7.2), which will be enough for our
approximation result.

After some preliminaries we will discuss in Section 3 our method of proof for weak
approximations in the case of diffusions composed with an anticipating random
variable. In this section we suppose that X0 is a smooth random variable in the
Malliavin sense. Then we apply this result to the case when X0 is the final point
of another diffusion. This example provides a first case where the initial random
variable also needs to be approximated.

Then we start to consider our approach in a more difficult anticipative setting
such as in the case of stochastic differential equations with boundary conditions.
This study is carried out in Section 4 and is divided into two parts, first for the
one dimensional case (Section 4.1) and then in the general multidimensional case
(Section 4.2).

In the first, the approximation can be considered as the natural generalization of
the shooting method for ordinary differential equations with boundary conditions.
Here, we have the added complication that a localization technique is needed. We
show that our method of proof also works under the appropiate localization. There-
fore, the main difference with Section 3 is the fact that X0 is only locally smooth
and that it also has to be approximated. Finally we consider the approximation of
densities for the one dimensional case. In this case, besides the localization proce-
dure, we also need to start considering when the density of the solution to the sde
with boundary conditions exists. This involves further calculations related to the
Malliavin covariance matrix, and the added problem of considering a nondegenerate
approximation.

At the beginning of Section 4 we also give a brief introduction to stochastic
differential equations with boundary conditions.

Then in Section 5 we give a short description of a possible real application of
these equations together with a general result of diffusion approximation. We finish
with some conclusions and possible generalizations of our method. At the end of
this article, in Section 7, we have collected a series of auxiliary results that are used
throughout the text.

In this article, C will denote positive constants that may change from one line to
the next. These constants are always assumed independent of δ and the partition
π unless it is explicitly stated otherwise.
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2. Preliminaries

Now we introduce some basic tools from Malliavin calculus that will be used
throughout the text. For further reference see [23]. Let (Ω,F , P ) be the canonical
Wiener space which supports a d-dimensional Wiener process W . Let C∞b (Rdn) be
the set of C∞ functions f : Rnd → R which are bounded and have bounded deriva-
tives of all orders. The class of real random variables of the form f(Wt1 , . . . ,Wtn),
f ∈ C∞b (Rnd), t1, . . . , tn ≥ 0 (the class of infinitely differentiable functions with
bounded derivatives), is denoted by S. D1,p designates the Banach space which is
the completion of S with respect to the norm

‖F‖1,p = {E|F |p}1/p +

 d∑
j=1

E[{
∫ 1

0

|Dj
sF |2 ds}p/2]

1/p

,

where (IA denotes the indicator function of the set A)

Dj
sF =

n∑
i=1

∂f

∂xji
(Wt1 , . . . ,Wtd) : I[0,ti](s).

Dα,p is defined analogously, and its associated norm is denoted by ‖·‖α,p. Also, let
Dα,∞ =

⋂
p≥1Dα,p and D∞ =

⋂
p≥1 ∩α≥1Dα,p. The localization of Dα,p is denoted

by Dα,ploc . That is, Dα,ploc is the set of random variables F such that there exists a
sequence {(Ωε, F ε), 0 < ε < 1} ⊂ F × Dα,p such that

(i) Ωε ↑ Ω, a.s.
(ii) F = F ε a.s. on Ωε.

Then one defines Dj1
s1 · · ·Djk

sk
F = Dj1

s1 · · ·Djk
sk
F ε on Ωε for k ≤ α , j1, . . . , jk ∈

{1, . . . , d}, and we say that (Ωε, F ε) localizes F .
The adjoint of the closed unbounded operatorD : D1,2 → L2([0, 1]×Ω) is usually

denoted by δ and is called the Skorohod integral. Its domain can be characterized
as the set of measurable processes u ∈ L2([0, 1]×Ω) such that there exists a positive
constant C (which may depend on u) such that

|E(
∫ 1

0

DtFutdt)| ≤ C‖F‖2,

for all F ∈ D1,2. Then the Skorohod integral, for u an element of its domain, is the
square integrable random variable determined by the duality relation

E(δ(u)F ) = E(
∫ 1

0

DtFutdt),(5)

for all F ∈ D1,2. The Skorohod integral turns out to be an extension of the classical
Itô integral, and it allows the integration of processes that are not necessarily
adapted.

In order to avoid confusion we will use D for the derivative defined above, and
∇ or the ′ notation for classical derivatives of functions.

When considering densities of random variables we will use the concept of Malli-
avin covariance matrix. For this, define for F ∈ (D1,1)mloc the Malliavin covariance
matrix of F as ∆ij

F = 〈DF i, DF j〉L2[0,1]. If F ∈ D∞ and det ∆−1
F ∈

⋂
p>1 L

p(Ω),
then F has a smooth density.
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A measurable process u with integrable paths a.s. is said to be Stratonovich
integrable with respect to W j if for any increasing sequence of partitions {Πn =
{0 = tn0 < · · · < tnn = 1}} of [0, T ], such that |Πn| → 0, the sequence

n−1∑
i=0

1
tni+1 − tni

(
∫ tni+1

tni

usds)(W
j
tni+1
−W j

tni
),

converges in probability. In such a case we will denote the limit by
∫ 1

0 ut ◦ dW
j
t . It

is well-known that if u ∈ L1,2
C,loc (for a definition of this space, see [23]), then u is

Stratonovich integrable with respect to W j , for j ∈ {1, . . . , k}.
Now we give some notation related to stochastic differential equations. From

here onwards we reduce our study to one dimensional sde’s for convenience.
Let Φt(s, x) be the stochastic flow (sometimes also denoted by Φ(t, x) or Φt(x)

in the case s = 0), defined as the solution of

Φt(s, x) = x +
∫ t

s

σ(Φu(s, x)) ◦ dWu +
∫ t

s

b(Φu(s, x)) du, s ≤ t ∈ [0, 1],

where b, σ : R→ R are smooth functions with bounded derivatives. Now we define
the Euler approximation for Φ. For this, let π = {0 = t0 < . . . < tN = 1} be a
partition of [0, 1]. As before, we define the shift operator η(t) and we take ‖π‖ ≤ δ.
Let Φ denote the Euler-Maruyama scheme, defined by

Φt(s, x) = x+
∫ t

s

σ(Φη(u)(s, x))dWu +
∫ t

s

m(Φη(u)(s, x))du.(6)

Here m = b+ 1
2σ
′σ. In the particular case that s = 0 we simplify the notation and

use Φt(x) and Φt(x) instead of Φt(0, x) and Φt(0, x).
We will also use some terminology related to the high order Itô-Taylor formula

as stated in [16]. That is, let M = {(j1, . . . , jl); ji ∈ {0, 1}, i ∈ {1, . . . , l}, for l =
1, . . . } ∪ {v} where v denotes the multi-index of length 0. For a multi-index α =
(j1, . . . , jl) define the length of α as l(α) = l, and define n(α) as the number of
zeros in α, −α = (j2, . . . , jl) and α− = (j1, . . . , jl−1). Then for f : [0, T ]× R→ R
we define the following operators:

L1f(s, x) = σ(x)
∂f

∂x
(s, x),

L0f(s, x) =
∂f

∂s
(s, x) +m(x)

∂f

∂x
(s, x) +

1
2
σ2(x)

∂2f

∂x2
(s, x).

For α = (j1, . . . , jl) we define by induction

gα =
{
g, l = 0,
Lj1g−α, l ≥ 1.(7)

When g is not explicitly stated we shall always take it to be the identity function
g(t, x) = x. Also, we define the following Wiener functionals for an adapted process
f :

Iα[f(·)]s,t =
{
f(t), l = 0,∫ t
s
Iα−[f(·)]s,udW jl

u , l ≥ 1.

Here dW 0
u = du and Iα,s,t = Iα[1]s,t. Also let Γβ = {α ∈ M; l(α) ≤ β} and

B(Γβ) = {α ∈M− Γβ ; −α ∈ Γβ}.
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Also, the space of differentiable functions with polynomial growth at infinity is
defined for k = 0, 1, . . . as

Ckp (Rd) ≡ Ckp (Rd;R) = {f ∈ Ck(Rd;R); ∃K ≥ 0, r ∈ N
such that |∂jyf(y)|≤K(1 + |y|r), for any l(j)≤k, y ∈ R}.

Here, j denotes a multi-index from {1, . . . , d}l(j), l(j) denotes its length, and ∂jyf(y)
denotes the high order partial derivative of f with respect to the indices in j. In
the case d = 1 we write Ckp ≡ Ckp (R).

3. Weak approximation for the composition of two diffusions

In this section we will study the weak approximation of Φt(X0) by Φt(X0),
where X0 is an appropiate smooth random variable. Therefore we will be assuming
that one knows how to simulate (X0,Wt1 , . . . ,WtN ). Although we work with one
dimensional sde’s, the results in this section have straightforward generalizations
to the multidimensional case.

We start with a preliminary result on the generalized strong rate of convergence
of the Euler scheme. This is a necessary step in order to prove the weak rate of
convergence.

Proposition 3.1. Assume that, for k ∈ N, X0 ∈ Dk,∞ with sups∈[0,1] E|DsX0|p <
∞ for all p > 1. Then Φt(X0), Φt(X0) ∈ Dk,∞, and furthermore there exists a
positive constant C(k, p), depending on p and k, such that

‖Φt(X0)− Φt(X0)‖k,p ≤ C(k, p)δ
1
2 .

Proof. Φt(X0), Φt(X0) ∈ Dk,∞ are proved using Lemmas 7.3, 7.4 in the Appendix
and the chain rule for the Malliavin calculus.

We assume in the rest of the proof that k = 1; the general case is left for the
reader. In this case, one needs to estimate

‖Φt(X0)− Φt(X0)‖1,p = {E|Φt(X0)− Φt(X0)|p}1/p

+(E[{
∫ 1

0

|Ds(Φt(X0)− Φt(X0))|2 ds}p/2])1/p.

First, due to Lemma 7.3 in the Appendix, there exists a positive constant C(p)
such that

E|Φt(X0)− Φt(X0)|p ≤ C(p)δ
p
2 .

It is not difficult to compute DsΦt(X0) and DsΦt(X0). This gives, for s ≤ t,

Ds(Φt(X0)) = Ds(Φt)(X0) +∇(Φt)(X0)DsX0

= ∇(Φt)(s,Φs(X0))σ(Φs(X0)) +∇(Φt)(X0)DsX0.

Analogously, for s ≤ t

Ds(Φt(X0)) = ∇(Φt)(η1(s),Φη1(s)(X0))σ(Φη(s)(X0)) +∇(Φt)(X0)DsX0.



142 ARTURO KOHATSU-HIGA

Here, η1(s) := min{tk; tk ≥ s} and ∇(Φt)(η1(s), x) = 1 if s ≤ t < η1(s). Now
consider

E(|Ds(Φt(X0)− Φt(X0))|p)
≤ C(p){E(|∇(Φt)(s,Φs(X0))σ(Φs(X0))−∇(Φt)(s,Φs(X0))σ(Φs(X0))|p)

+ E(|∇(Φt)(s,Φs(X0))σ(Φs(X0))−∇(Φt)(s,Φs(X0))σ(Φη(s)(X0))|p)
+ E(|{∇(Φt)(s,Φs(X0))−∇(Φt)(η1(s),Φs(X0))}σ(Φη(s)(X0))|p)
+ E(|{∇(Φt)(η1(s),Φs(X0))−∇(Φt)(η1(s),Φη1(s)(X0))}σ(Φη(s)(X0))|p)
+ E(|∇(Φt)(X0)−∇(Φt)(X0)|p|DsX0|p)}

= e1 + e2 + e3 + e4 + e5.

We have sups∈[0,t](e1 +e2+e4+e5) ≤ C(p)δp/2, due to Lemma 7.4 in the Appendix.
To find the rate of convergence to 0 of e3 it is enough to note that the processes

αt = Φt(s, x) − Φt(η1(s), x) and βt = ∇Φt(s, x) − ∇Φt(η1(s), x) are the solution
of linear stochastic differential equations. For example, αt solves the following
equation:

αt =
∫ η1(s)

s

m(Φη(u)(s, x))du +
∫ η1(s)

s

σ(Φη(u)(s, x))dWu

+
∫ t

η1(s)

∫ 1

0

∇m((1 − v)Φη(u)(η1(s), x) + vΦη(u)(s, x))dvαudu

+
∫ t

η1(s)

∫ 1

0

∇σ((1 − v)Φη(u)(η1(s), x) + vΦη(u)(s, x))dvαudWu.

From here it follows using Gronwall’s Lemma that E(sup0≤t≤1 |αt|p) ≤ C(p)δp/2.
In the same manner one proves that βt satisfies the same property. Then one can
conclude that e3 ≤ C(p)δp/2.

This proof can actually be used to prove even stronger statements than those
proven here (see Lemma 7.4 in the Appendix).

Theorem 3.1. Let π be a partition of size δ, and let Φ be defined as in (6). Suppose
that f ∈ C4

p(R). Also assume that b and σ are smooth functions with bounded
derivatives. Finally, suppose that X0 ∈ D2,∞ and

sup
s
E|DsX0|4 <∞, sup

s,u
E|DsDuX0|2 <∞.

Then for any t ∈ [0, 1], there exists a positive constant C that depends on f such
that

|E[f(Φt(X0)) − f(Φt(X0))]| ≤ Cδ.
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Proof. First assume without loss of generality that t ∈ π. We then have

Ef(Φt(X0))− Ef(Φt(X0))

=
n(t)∑
i=1

E[f(Φt(ti,Φti(X0)))− f(Φt(ti−1,Φti−1(X0)))]

=
n(t)∑
i=1

E

[
f(Φt(ti,Φti(X0)))− f(Φt(ti,Φti−1(X0)))

+ f(Φt(ti,Φti−1(X0))) − f(Φt(ti,Φti(ti−1,Φti−1(X0))))

]

=
n(t)∑
i=1

E

[
∂

∂x
f(Φt(ti, x))

∣∣∣∣∣
x=Φti−1 (X0)

×
{

Φti(X0)− Φti−1(X0)− (Φti(ti−1,Φti−1(X0))− Φti−1(X0))

}

+Ri(Φti(X0))− Ri(Φti(ti−1,Φti−1(X0)))

]
,

(8)

where n(t) = max{j; tj ≤ t} and

Ri(U) =
∫ 1

0

∫ s2

0

∂2

∂x2
f(Φt(ti, ·))(U + s1(U − Φti−1(X0)))(U − Φti−1(X0))2ds1ds2.

(9)

To shorten the proof we will select some terms to show how the proof is done.
For example, in (8) one has to analyze the term (this is a particular form of the

Itô-Taylor formula, see Theorem 5.5.1 in [16])(
Φti(X0)− Φti−1(X0)− (Φti(ti−1,Φti−1(X0))− Φti−1(X0))

)

=
∑

α∈B(Γ1)

Iα,ti−1,ti

(
gα(·,Φ·(ti−1,Φti−1(x)))

)∣∣∣∣∣
x=X0

.

(10)

Here g(x) = x and g(0,1) is defined in (7). Some of these terms will involve stochastic
integrals that have to be plugged into (8). For example, the expectation of one of
these terms will generate, for α = (0, 1),

E

 ∂

∂x
f(Φt(ti, x))

∣∣∣∣∣
x=Φti−1 (X0)

I(0,1),ti−1,ti(g(0,1)(·,Φ·(ti−1,Φti−1(x))))

∣∣∣∣∣
x=X0

 .

Next, this equals

∫ ti

ti−1

E

 ∂

∂x
f(Φt(ti, x))

∣∣∣∣∣
x=Φti−1 (X0)

∫ s

ti−1

G(Φu(ti−1,Φti−1(x)))dWu

∣∣∣∣∣
x=X0

 ds,

(11)
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where G(x) = m(x)σ′(x)+ 1
2σ

2(x)σ′′(x). Then, applying (51) we see that the above
expression becomes

∫ ti

ti−1

∫ s

ti−1

E

 ∂

∂x
f(Φt(ti, x))

∣∣∣∣∣
x=Φti−1 (X0)

DuX0

∂G(Φu(ti−1,Φti−1(·)))
∂x

(X0)

+Du
∂

∂x
f(Φt(ti, x))

∣∣∣∣∣
x=Φti−1 (X0)

G(Φu(ti−1,Φti−1(X0)))

 duds.

(12)

To finish one obtains (using Lemmas 7.3 and 7.4) that the above integrand is smaller
than Cδ2 uniformly in {(s, u) ∈ [ti−1, ti]2; u ≤ s}. Here C is a positive constant
independent of the partition π, δ, s and t. The treatment of the other terms in (10)
is similar.

For example, we will bound in the first term in (12). That is, we will prove that
there exists a positive constant, independent of the partition π and δ, such that

sup
u∈[ti−1,ti]

∣∣∣∣∣∣E
DuX0

∂

∂x
f(Φt(ti, x))

∣∣∣∣∣
x=Φti−1 (X0)

∂G(Φu(ti−1,Φti−1(·)))
∂x

(X0)

∣∣∣∣∣∣ < C.

(13)

In fact, we have DuX0 ∈ Lp(Ω), for any p ≤ 2, uniformly in u by hypothesis.
As f has polynomial growth at infinity, and using flow properties together with
Lemma 7.3, we also have

d

dx
f(Φt(ti, x))

∣∣∣∣∣
x=Φti−1 (X0)

∈ Lp(Ω),

for any p > 1 uniformly in {(ti, ti−1) ∈ [0, t]2; ti−1 < ti}.
Now note that G(x) is smooth with polynomial growth at infinity. Therefore we

have as before that ∂
∂xG(Φu(ti−1,Φti−1(X0))) ∈ Lp(Ω), for any p > 1 uniformly in

ti−1 ∈ [0, t]. Therefore the result follows.

Remark 3.1. 1. When dealing with the residues in (9) it is necessary to repeat
some of the steps shown in the proof above. In fact, for example we will have a
term of the type

(Φti − Φti−1(X0))2 =

(
m(Φti−1(X0))(ti − ti−1) + σ(Φti−1(X0))(Wti −Wti−1)

)2

.

Here one expands the square and again uses (51) whenever increments of the Wiener
process appear.

2. The condition sups,u E|DsDuX0|2 <∞ is used in (13) in the case α = (1, 1).
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3. Note that the conditions on the derivatives of X0 can be relaxed if one uses
the appropiate Hölder inequalities in (13). This weaker condition is of the form:
There exists ε > 0 such that

sup
s∈[0,1]

E|DsX0|2+ε + sup
s,u∈[0,1]

E|DsDuX0|1+ε <∞.

4. Theorem 3.1 is an improvement of Theorem 4.2 in [2]. The method of proof
is different. Theorem 4.2 in [2] is strongly based in some generator of a highly
complex process which in spirit resembles the classical proofs that one can find in
e.g. [16], Chapter 14.

We will now give a first application of this theorem. Consider the weak approx-
imation problem for f(Φt(X0)), where X0 is generated by a diffusion. Up to the
previous theorem it was assumed that the vector (X0,Wt1 , . . . ,WtN ) had a known
joint law that can be simulated. Now we consider the case when X0 also needs to
be approximated through an Euler-Maruyama approximation. For this, let Z be
the diffusion defined by

Zt = Z0 +
∫ t

0

B(Zs)dWs +
∫ t

0

A(Zs)ds.(14)

Here Z0 is any F0-measurable random variable in Lp(Ω) for any p > 1. Analogously
define the Euler approximation scheme Z for Z using a partition π′ := {0 = s0 <
· · · < sM = 1} with |π′| ≤ δ′. Note that the noise that generates Z is the same to
the noise that generates X . Therefore, in general, X and Z are not independent.

Assume that A and B are smooth with bounded derivatives. Then Z1 ∈ D2,∞

and, furthermore,

sup
s1,... ,sk

E[sup
t
|Ds1 . . . Dsk(Zt − Zt)|p] ≤ Ck(δ′)

p
2 ,

for any k ∈ N (this is done using essentially the same proof as in Proposition 3.1).
Therefore by Theorem 3.1 we obtain that if f ∈ C3

p there exists a positive constant
C, that may depend on f and t but it is independent of π, π′, δ and δ′, such that

|Ef(Φt(Z1))− Ef(Φt(Z1))| ≤ Cδ.

A realistic case is to consider that Z1 cannot be simulated exactly, and that we
have to use an Euler approximation of it. The following lemma will give a weak
approximation result for Φt(Z1).

Lemma 3.1. Let f ∈ C4
p(R). Assume that A, B, b and σ are smooth with bounded

derivatives. Then there exists a positive constant C, that may depend on f and t,
such that

|Ef(Φt(Z1))− Ef(Φt(Z1))| ≤ Cδ′.
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Proof. We start as in the proof of Theorem 3.1. Denote by φt(x) the stochastic
flow defined by (14), and assume without loss of generality that sM = 1. We have

Ef(Φt(Z1))− Ef(Φt(Z1))

=
M∑
i=1

E[f(Φt(φ1(si, Zsi)))− f(Φt(φ1(si−1, Zsi−1)))]

=
M∑
i=1

E

[
f(Φt(φ1(si, Zsi)))− f(Φt(φ1(si, Zsi−1)))

+ f(Φt(φ1(si, Zsi−1)))− f(Φt(φ1(si, φsi(si−1, Zsi−1))))

]

=
M∑
i=1

E

[
∂

∂x
f(Φt(φ1(si, x)))

∣∣∣∣∣
x=Zsi−1

× (Zsi − Zsi−1 − (φsi(si−1, Zsi−1)− Zsi−1))

+Ri(Zsi)−Ri(φsi (si−1, Zsi−1))

]
,

where

Ri(U) =
∫ 1

0

∫ θ2

0

∂2

∂x2
f(Φt(φ1(si, x)))(U + θ1(U − Zsi−1))(U − Zsi−1)2dθ1dθ2.

From here we can continue with the argument as in the proof of Theorem 3.1 (in
particular, the argument after (8)). The result follows.

Therefore we see that if one approximates the initial condition with a degree of
accuracy δ, the new approximation Φt(Z1) is also of order at least δ.

Note that in the proof of this theorem it was essential that Z is a diffusion in
order to be able to use the Itô-Taylor formula as in Chapter 14 of [16]. This will
not be the case in the next section.

Summarizing the previous calculations, we have the following result.

Theorem 3.2. Assume that f ∈ C4
p(Rd), A, B, b and σ are smooth with bounded

derivatives. Then there exists a positive constant C that depends on t and f but is
independent of the partitions π and π′ as well as δ and δ′, and

|E[f(Φt(Z1))− f(Φt(Z1))]| ≤ C(δ + δ′).

One can also extend this result to high order weak approximations. A previous
result of this type was quoted in [2], Theorem 4.2. In that result the hypotheses
on X0 were much more restrictive than the ones presented here. In particular,
it was required that some type of trace for DtDtX0 existed. The argument used
approximations for X0 that belonged to S.

4. An Euler type scheme for solutions

of stochastic differential equations with boundary conditions

Stochastic differential equations with boundary conditions arise naturally in the
study of perturbations of ordinary differential equations with boundary conditions
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as well as stochastic models for many physical phenomena. The behaviour and
numerical approximation in the ode case is well understood (see e.g. [7] or [15]).

Stochastic differential equations with boundary conditions have a history that
may have started with Kwakerwnaak [21]. Later they have been studied by Ocone
and Pardoux [27], Nualart and Pardoux [25], Donati and Martin [8], Garnier [13],
among others. These are equations of the type

dXt = σ(Xt) ◦ dWt + b(Xt) dt, 0 ≤ t ≤ 1,(15)

with a boundary condition of the form

h(X0, X1) = h.(16)

Most of the studies on these equations concern existence and uniqueness of so-
lutions and the Markov field property.

These equations are anticipative in nature due to the boundary condition. Their
solutions are evaluations of flows at random variables. That is, the solution to (15)
and (16), when it exists, can be written as Xt = Φt(X0), where {Φt(x) t ∈ [0, 1]}
is the stochastic flow associated with (15) and X0 is the unique solution to (16).

A general type of sde with a given anticipating initial condition was first studied
by Ocone and Pardoux [28]. They proved existence and uniqueness for solutions
by means of an Itô-Ventzell type formula.

Here we are interested in the rate of convergence for a weak approximation to the
solution of (15)-(16). That is, we will define an approximation for the solution of
(15)-(16) and prove that the approximation converges at some rate to the solution.

We will consider two cases. The first is when the boundary condition is linear
and the equation is one dimensional. Existence and uniqueness for this type of
equations was considered by Donati and Martin [8].

As in the previous section, we want to find an approximation for E(f(Φt(X0))).
Theorem 3.1 is applicable in this case, because X0 ∈ D∞, as will be stated later.
The added complication here is the fact that X0 also needs to be approximated.
This approximation is not as smooth as in the case studied in Lemma 3.1. In fact,
it is only locally smooth, as will be proved in Lemma 4.1. This introduces a new
ingredient to this problem, which will be solved through an appropiate localization
procedure. We will carry this argument out to analyze approximations of densities
for Φt(X0) when they exist.

In the second case we consider a multidimensional equation with σ ≡ B, a
constant matrix and a boundary condition of a general type. In this case one can
consider as examples some periodic boundary conditions. Existence and uniqueness
was obtained by Nualart and Pardoux [25].

In all the cases considered here it is known (see [25]) that solutions of (15)-(16)
are seldom Markov processes. Therefore the idea of using the classical method of
analysis (see e.g. Chapter 14 in [16]) through PDE problems cannot be applied
here.

In other articles (see [19], [10]), we have considered the necessary preliminaries
to study this problem—that is, the existence and smoothness of the density and
the strong approximation for the solution of (15)-(16) in the two cases mentioned
above. These results are used throughout the text, and we will recall them when
necessary.

Although here we only consider approximations for the densities, we could also
have considered approximations for the distribution functions. With these results



148 ARTURO KOHATSU-HIGA

in hand one could approximate these type of processes using the appropriate Monte
Carlo methods.

4.1. The one dimensional case. In this section we will study approximations
for densities of solutions to (15) and (16) in the one dimensional case with linear
boundary conditions. Existence and uniqueness of solutions for this case were
studied in [8]. That is, let σ and b be real functions, and let F0, F1, h0 ∈ R.
Consider the equation

dXt = σ(Xt) ◦ dWt + b(Xt) dt, 0 ≤ t ≤ 1,(17)
F0X0 + F1X1 = h0.(18)

Assume from now on that σ and b are smooth functions with bounded derivatives
and F0 F1 > 0. Without loss of generality we will always take F0 > 0 and F1 > 0.
In [8] it is proved that under these assumptions, there exists a unique solution to
(17) belonging to the space IL1,∞

C,loc. Furthermore, this solution can be written as
Φt(X0), where X0 is the unique solution to (18).

Next we consider a theorem that states when a smooth density of (17)-(18) exists.

Theorem 4.1 (Kohatsu-Higa and Sanz-Solé [19]). Define

Σ0 = {σ},

Σj =
{

[σ, V ], [b, V ] +
1
2

[σ, [σ, V ]] ; V ∈ Σj−1

}
, j ≥ 1,

where [·, ·] denotes the Lie bracket. Suppose that there exist j0 ≥ 0 and V ∈ Σj0
with (V (X0))−1 ∈

⋂
p≥1 L

p(Ω). Then, for any t ∈ [0, 1] the law of Xt has a
C∞ density. Furthermore, there exists a finite positive constant Cp(t) such that
‖(∆Φt(X0))−1‖p ≤ Cp(t), where ∆F denotes the Malliavin covariance matrix asso-
ciated with the random variable F .

We will denote the density of Xt at the point y by p(t, y).
Let C := ‖σ′‖∞ + ‖b′‖∞. Choose δ,M > 0 satisfying δ ∨M < 1/4C, and let

W (∆k) denote W (tk+1) −W (tk). With this notation one obtains by a recursive
argument that Φt(x) is differentiable in x and that Φ

′
0(x) = 1,

Φ
′
tk+1

(x) =
k∏
i=0

(
1 + σ′

(
Φti(x)

)
W (∆i) + b′

(
Φti(x)

)
(ti+1 − ti)

)
.

Then, on the set LM =
{

sup
0≤k≤N−1

|W (∆k)| < M

}
, one has

|σ′
(
Φti(x)

)
W (∆i) + b′

(
Φti(x)

)
(ti+1 − ti)| ≤ 1/2,

and therefore Φ
′
1(x) is strictly positive. Consequently, if ω ∈ LM , the function

G(x, ω) given by
G(x, ω) = F0x + F1Φ1(x)(ω)

is monotone. We denote by X̃0(ω) the unique solution to G(x, ω) = h0, ω ∈ LM .
Obviously the probabilty of the set LM is small (the bar denotes the complement
of the set LM ). That is, for q ≥ 2,

P (LM ) ≤
CNq δ

q
2

M q
,(19)
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CNq = E( sup
0≤k≤N−1

|W (∆k)|√
δ

)
q
2

=
2
π

∫ ∞
0

vqN(
∫ v

−v
exp(−u

2

2
)du)N−1 exp(−v

2

2
)dv.

Furthermore, supδ∈(0,1] δC
N
q <∞.

Remark 4.1. The following procedure provides approximations for X̃0(ω). As-
sume F0F1 > 0. To simplify the notation we skip the dependence on ω. Fix
X̃2,0

0 ≤ X̃1,0
0 be such that G(X̃2,0

0 ) ≤ h0, G(X̃1,0
0 ) ≥ h0. We proceed inductively

as follows. Let X̃2,i
0 ≤ X̃1,i

0 be such that G(X̃2,i
0 ) ≤ h0, G(X̃1,i

0 ) ≥ h0, i ≥ 0.

Consider
X̃2,i

0 + X̃1,i
0

2
. Then,

if G

(
X̃2,i

0 + X̃1,i
0

2

)
< h0 , set X̃2,i+1

0 =
X̃2,i

0 + X̃1,i
0

2
, X̃1,i+1

0 = X̃1,i
0 ,

if G

(
X̃2,i

0 + X̃1,i
0

2

)
> h0 , set X̃2,i+1

0 = X̃2,i
0 , X̃1,i+1

0 =
X̃2,i

0 + X̃1,i
0

2
,

if G

(
X̃2,i

0 + X̃1,i
0

2

)
= h0 , set X̃0 =

X̃2,i
0 + X̃1,i

0

2
.

Notice that ∣∣∣X̃2,i
0 − X̃

1,i
0

∣∣∣ ≤
∣∣∣X̃2,0

0 − X̃1,0
0

∣∣∣
2i−1

, i ≥ 1.

Let X0 = X̃0 1LM . The integer M plays the role of a stability index. When the
increments of the Brownian motion are too big, then a solution to G(x, ω) = h0

may not exist.
Therefore X0 is an approximation of X0, defined through (15)-(16) using an

Euler approximation (with step size δ) instead the flow Φ in X = Φ(X0). In
deterministic settings this is known as the shooting method to approximate ordinary
differential equations with boundary conditions.

Now we study some stochastic differentiability properties of X0 and X0. For this,
let ξ be a random variable such that Φ1(X0) − Φ1(X0) = Φ

′
1(ξ)(X0 −X0). Then,

for ω ∈ LM , define Z(ξ) = F0 +F1Φ
′
1(ξ) =

∫ 1

0
(F0 +F1Φ

′
1(X0 +u(X0−X0))du 6= 0.

This gives

X0 −X0 = −(Z(ξ))−1F1(Φ1(X0)− Φ1(X0)),(20)

if ω ∈ LM . For ω /∈ LM we define Z(ξ) = 1. We will need the following stochastic
differentiability properties of X0 and X0.

Lemma 4.1. We have that X0 ∈ D∞, X0 ∈ D∞loc, (Z(ξ))−1 ∈ D∞loc. Also, for all
p > 1, k = 0, 1, . . . ,

sup
δ

sup
(t1,... ,tk)∈[0,1]k

‖Dt1 . . . DtkX0‖p + sup
δ

sup
(t1,... ,tk)∈[0,1]k

‖Dt1 . . . DtkX0‖p

+ sup
δ

sup
(t1,... ,tk)∈[0,1]k

‖Dt1 . . .Dtk(Z(ξ))−1‖p <∞.
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Proof. In Kohatsu-Higa and Sanz-Solé [19] it is proven that X0 ∈ D∞ and that

DtX0 = − F1DtΦ1(X0)
F0 + F1Φ′1(X0)

.(21)

Given that F0F1 > 0, we have |DtX0| ≤ C|DtΦ1(X0)|. Therefore we obtain
supt‖DtX0‖p < ∞ by applying Lemma 7.3. The proof of supu,t‖DuDtX0‖p < ∞
is similar.

Now we will prove the properties about X0 and (Z(ξ))−1 for k = 1.
We use the following localizing sequence: The sets

LεM := { max
0≤k≤N−1

|ω(∆k)| < M − 2ε or max
0≤k≤N−1

|ω(∆k)| > M + ε} ↑ Ω as ε→ 0,
(22)

and let hM,ε : RN → [0, 1] be a bounded smooth function with bounded derivatives
such that

hM,ε(x1, . . . , xN ) =

{
1, if max{|x1|, . . . , |xN |} ≤M − 2ε,
0, if max{|x1|, . . . , |xN |} ≥M − ε.

(23)

Then the localizing random variable is defined by

X0
ε

= X0hM,ε(ω(∆0), . . . , ω(∆N−1))

and

(Z(ξ)−1)ε=(Z(ξ))−1hM,ε(ω(∆0), . . ., ω(∆N−1)) + (1−hM,ε(ω(∆0), . . ., ω(∆N−1))).

Now, in order to prove the differentiability of X0
ε

and (Z(ξ)−1)ε, consider ωn =
ω+n−1

∫ ·
0
gsds for g ∈ L2([0, 1]), n ∈ N. To simplify notation we will write hM,ε(ω)

for hM,ε(ω(∆0), . . . , ω(∆N−1)). Then consider

n(X0
ε
(ωn)−X0

ε
(ω))−DgX0(ω)hM,ε(ω)−X0(ω)DghM,ε(ω)

= n(X0(ωn)−X0(ω)− n−1DgX0(ω))hM,ε(ωn)

+DgX0(ω)(hM,ε(ωn)− hM,ε(ω))

+ n(hM,ε(ωn)− hM,ε(ω)− n−1DghM,ε(ω))X0(ω).

(24)

Here,

DgX0(ω) = − F1(DgΦ1)(X0)(ω)

F0 + F1Φ1
′
(X0)(ω)

ILM (ω),(25)

DghM,ε(ω) =
N∑
j=1

∂hM,ε

∂xj
(ω(∆0), . . . , ω(∆N−1))

∫ tj

tj−1

g(s)ds.

If we take n big enough so that
√
δ‖g‖2/n < ε/4 and suppose that hM,ε(ωn) 6= 0,

then, using the definition of hM,ε, we have

max
0≤k≤N−1

|ω(∆k)| ≤ max
0≤k≤N−1

|ωn(∆k)|+
√
δ‖g‖2
n

≤M − 3ε
4
.

Therefore we only consider the case ω, ωn ∈ LM . In such a case, both X0(ω) and
X0(ωn) satisfy the boundary condition. Subtracting these boundary conditions, we
obtain

n(X0(ωn)−X0(ω)) = −F1n
(Φ1(ωn, X0(ω))− Φ1(ω,X0(ω))

F0 + F1Φ
′
1(ωn, ξn(ω))

)
,
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where ξn(ω) is a random point between X0(ω) and X0(ωn). Therefore, due to
the stochastic differentiability of Φ1 and the fact that ξn(ω) converges to X0(ω) in
Lp(Ω) for any p > 1 as n→∞, and using Lemma 7.3, it follows that

E

∣∣∣∣∣
(
F1n

(Φ1(ωn, X0(ω))− Φ1(ω,X0(ω))

F0 + F1Φ
′
1(ωn, ξn(ω))

)
− F1(DgΦ1)(X0)

F0 + F1Φ1
′
(X0)

)
hM,ε(ωn)

∣∣∣∣∣
p

→ 0.

The other terms in (24) are dealt in a similar fashion. The property that
supt,δ‖DtX0‖p < ∞ is obtained through (25) using Lemma 7.3 and properties
of the flow defined by DtΦs(x).

The proof of the stochastic differentiability of (Z(ξ)−1)ε uses the same tech-
niques. In fact, consider
n((Z(ξ)−1)(ωn)− (Z(ξ)−1)(ω))hM,ε(ω

n) = hM,ε(ω
n)F1

×
∫ 1
0

(Φ
′
1(ωn, [X0 + u(X0 −X0)](ωn)) − Φ

′
1(ω, [X0 + u(X0 −X0)](ω))du

(F0+F1
∫ 1
0

(Φ
′
1(ωn, [X0+u(X0 −X0)](ωn))du)(F0 +F1

∫ 1
0

(Φ
′
1(ω, [X0+u(X0 −X0)](ω))du)

.

Here, again X0(ωn) and X0(ω) satisfy the boundary condition if hM,ε(ωn) 6=
0. Therefore the differentiability of (Z(ξ)−1)ε follows from the differentiability
properties of X0

ε
and Φ

′
1.

Lemma 4.2. For t ∈ [0, 1] fixed, k, p ∈ N and for every ε ∈ (0, 1) there exists a
positive constant C(ε, k, p) such that

‖X0 −X0
ε‖k,p ≤ C(ε, k, p)δ1/2.

Proof. We have

X0 −X0
ε

= (X0 −X0)hM,ε +X0(1− hM,ε)

= (−Z(ξ))−1F1(Φ1(X0)− Φ1(X0))hM,ε +X0(1 − hM,ε).

Lemma 4.1 and Proposition 3.1 give

‖(−Z(ξ))−1F1(Φ1(X0)− Φ1(X0)))hM,ε‖k,p ≤ C(ε, k, p)δ1/2.

The second estimate ‖X0(1− hM,ε)‖k,p ≤ C(ε, k, p)δ1/2 follows from (19).

Now we give the result that shows that the weak rate of convergence for our
approximation method is δ. Its proof will give us some important steps for the
consideration of later approximations for the density of the solution process.

Theorem 4.2. Let f ∈ C4
p(R). Then we have that for any t ∈ [0, 1] there is a

positive constant C, depending on f but independent of π, t and δ, such that

|Ef(Φt(X0))− Ef(Φt(X0))| ≤ Cδ.

The method of proof shown here has the advantage that it allows extension to
the consideration of nonsmooth functions in cases where one has some estimations
of the Malliavin covariance matrix of the process involved. In order to avoid a long
proof with long expressions, we will sketch the proof of the above theorem using
analogies with some of the steps taken in the proof of Theorem 3.1.

Sketch of the proof of Theorem 4.2. First, Theorem 3.1 is applicable due to Lemma
4.1, and therefore

|E(f(Φt(X0))− f(Φt(X0)))| ≤ Cδ
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Now we consider the term

|E(f(Φt(X0))− f(Φt(X0)))| ≤ |E(f(Φt(X0))− f(Φt(X0));LM )|
+ |E(f(Φt(X0))− f(Φt(X0));LM )|.

The second term on the right is smaller than Cδ due to (19), Cauchy-Schwarz
and the fact that supδ∈(0,1]E|f(Φt(X0))− f(Φt(X0))|p <∞ for any p.

To deal with the first term, note that for ω ∈ LM , we have, using the mean value
theorem and (20),

f(Φt(X0)− y)− f(Φt(X0)− y)

=
∫ 1

0

d

dx
f(Φt(· − y))(X0 + u(X0 −X0))du(X0 −X0)

=
∫ 1

0

d

dx
f(Φt(· − y))(X0 + u(X0 −X0))du(−Z(ξ))−1F1(Φ1(X0)− Φ1(X0))).

(26)

Therefore,

E(f(Φt(X0))− f(Φt(X0));LM )

=
N∑
i=1

E

[∫ 1

0

d

dx
f(Φt(X0 + u(X0 −X0))− y))du(−Z(ξ))−1F1

·
(
∂

∂x
Φt(ti, x)

∣∣∣∣∣
x=Φti−1 (X0)

×
{

Φti(X0)− Φti−1(X0)− (Φti(ti−1,Φti−1(X0))− Φti−1(X0))

}

+Ri(Φti(X0))−Ri(Φti(ti−1,Φti−1(X0)))

)
;LM

]
This is the analogue to formula (8). The residues Ri are defined considering

f(x) = x in (9). As in Theorem 3.1, we arrive at the consideration of terms that
are similar. For example, the analog to (11) is∫ ti

ti−1

∫ 1

0

E

 d

dx
f(Φt(X0+v(X0−X0))−y)(−Z(ξ))−1F1

∂

∂x
Φt(ti, x)

∣∣∣∣∣
x=Φti−1 (X0)

×
∫ s

ti−1

G(Φu(ti−1,Φti−1(x)))dWu

∣∣∣∣∣
x=X0

;LM

)
dvds.

Denote the expression inside the above expectation by Ξ. Then, for a fixed ε > 0,

E(Ξ;LM ) = E(ΞhM,2ε) + E(Ξ(ILM − hM,2ε))

≤ E(ΞεhM,2ε) + C(ε)(E(Ξ2))1/2P (M − 4ε ≤ sup
0≤k≤N−1

|W (∆k)| < M)1/2,

where C(ε) is a positive constant that depends only on ε. Ξε is the localization of Ξ
to the set LεM . That is, we put X0 = X0

ε
and Z(ξ)−1 = (Z(ξ)−1)ε in the formula

for Ξ.
Due to (19), we have that P (M−4ε ≤ sup0≤k≤N−1 |W (∆k)| < M) ≤ C(q)δ

q
2−1.
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For E(ΞεhM,2ε) one can apply integration by parts. That is,

E(ΞεhM,2ε)

= E

(
d

dx
f(Φt(X

ε

0 + v(X0 −X
ε

0))− y)((−Z(ξ))−1)εF1
∂

∂x
Φt(ti, x)

∣∣∣∣∣
x=Φti−1 (X0)

×
∫ s

ti−1

G(Φu(ti−1,Φti−1(x)))dWu

∣∣∣∣∣
x=X0

hM,2ε

)
.

Now we can proceed, applying Lemma 7.5, to obtain that is enough to find a
bound for a series of terms, one of which is

sup
u∈[ti−1,ti]

|
∫ 1

0

E

(
DuX0f(Φt(X0 + v(X0 −X0))− y))

× (−Z(ξ))−1F1
∂

∂x
Φt(ti, x)

∣∣∣∣∣
x=Φti−1 (X0)

×
∂G(Φu(ti−1,Φti−1(·)))

∂x
(X0)hM,2ε

)
.

(27)

Given the bounds for all the processes involved, one has that the above expression
is bounded by a constant that depends on ε. For example, |((−Z(ξ))−1)ε| ≤ F−1

0

and f(Φt(X
ε

0 + u(X0 − X
ε

0)) − y)) ∈ Lp(Ω) for any p > 1, ε > 0, uniformly in
u ∈ [0, 1], δ ∈ (0, 1] and in the partition π.

Therefore the result follows.

Now we give the main result of this subsection:

Theorem 4.3. Suppose that σ and b are smooth functions with bounded deriva-
tives, F0F1 > 0, and there exist j0 ≥ 0 and V ∈ Σj0 with (V (X0))−1 ∈

⋂
p≥1 L

p(Ω).
Then

sup
y
|p(t, y)− Eφ

δ
1
2

(Φt(X0)− y)| ≤ Cδ.

Here φr denotes the density of a Gaussian random variable with mean 0 and stan-
dard deviation r, and C is a positive constant independent of δ and the partition π.

Sketch of the proof of Theorem 4.3. First, one considers

p(t, y)− Eφ
δ

1
2
(Φt(X0)− y) = p(t, y)− Eφ

δ
1
2

(Φt(X0)− y)

+Eφ
δ

1
2

(Φt(X0)− y)− Eφ
δ

1
2
(Φt(X0)− y)

:= A+B.

Now we prove that

sup
y
|A| ≤ Cδ.(28)

Note that if Z is a random variable with continuous density q(z), then

q(z) = lim
n→∞

E[φn−a(Z − z)].
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Therefore,

A = p(t, y)− Eφ
δ

1
2
(Φt(X0)− y)

= lim
n→∞

E[φn−a(Φt(X0)− y)− φn−a(Φt(X0) + δ
1
2W 1 − y)],

where n ∈ N and a > 0 is fixed. W is a Wiener process independent of W and
E still denotes the expectation on the extended Wiener space supporting (W,W ).
Here we apply a Taylor expansion argument

E[φn−a(Φt(X0)− y)− φn−a(Φt(X0) + δ
1
2W 1 − y)] = E[φ′′n−a(Φt(X0)− y)]

δ

2

+
∫ 1

0

E[φ′′′n−a (Φt(X0)− y + uδ
1
2W 1)W

3

1]du
δ

3
2

3!
.

(29)

The proof of (28) is done if we prove that each of the expectations on the right
hand side of (29) is bounded. Using Lemma 7.1, we have that for some universal
constants a, b, e, k and w

|E[φ′′n−a(Φt(X0)− y)]| = |E[Ψn−a(Φt(X0)− y)H3(Φt(X0), 1)]|
≤ ‖H3(Φt(X0), 1)‖1 ≤ C‖∆−1

Φt(X0)‖
k
a‖Φt(X0)‖we,b.

Ψr denotes the distribution function of a N(0, r) random variable. The right
hand side of the above equation is bounded due to Theorem 4.1 and Proposition
3.1. Analogously we obtain

sup
n

sup
u∈[0,1]

sup
δ∈(0,1]

E[φ′′′n−a(Φt(X0)− y + uδ
1
2W 1)W

3

1] <∞.

This finishes the proof of (28).
Now we proceed to prove that supy |B| ≤ Cδ. Assume without loss of generality

that t ∈ π, and let n(t) denote the integer j such that tj = t. Consider

B := E[φ
δ

1
2

(Φt(X0)− y)− φ
δ

1
2

(Φt(X0)− y)]

= E[φ
δ

1
2

(Φt(X0)− y)− φ
δ

1
2

(Φt(X0)− y)]

+E[φ
δ

1
2
(Φt(X0)− y)− φ

δ
1
2
(Φt(X0)− y)]

=: B1 +B2.

Let’s start with B1. Define ϕδ(x) = φ
δ

1
2 /
√

2
(x) and Z = δ

1
2√
2
W 1 First, apply (8) for

f = ϕδ to obtain

Eφ
δ

1
2
(Φt(X0)− y)− Eφ

δ
1
2
(Φt(X0)− y)

= E
(
ϕδ(Φt(X0) + Z − y)− ϕδ(Φt(X0) + Z − y)

)
= −

n(t)∑
i=1

E

[
d

dy
ϕδ(Φt(ti, x) + Z − y)

d

dx
Φt(ti, x)

∣∣∣∣∣
x=Φti−1 (X0)

×
{

Φti(X0)−Φti−1(X0)− (Φti(ti−1,Φti−1(X0))− Φti−1(X0))

}

+Ri(Φti(X0))− Ri(Φti(ti−1,Φti−1(X0)))

]
,
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where

Ri(U) =
∫ 1

0

∫ s2

0

d2

dx2
ϕδ(Φt(ti, ·) + Z − y)

× (U + s1(U − Φti−1(X0)))(U − Φti−1(X0))2ds1ds2.

Here the analysis goes as in the proof of Theorem 3.1. That is, one finds the
expansion of Φti(X0) − Φti−1(X0) − (Φti(ti−1,Φti−1(X0)) − Φti−1(X0)) using the
Itô-Taylor formula.

Now we proceed to find uniform bounds for the expectations of the integrands
as in (13). The additional problem that appears in this case is that the derivatives
of ϕδ start to appear. Here we apply the integration by parts formula enough times
so that we recover the function Ψ, which is bounded by 1.

That is, consider for example the term analogous to the one obtained in (13). In
such a case we have to prove that there exists a positive constant C, independent
of the partition π and δ, such that

Γ = sup
u∈[ti−1,ti]

∣∣∣∣∣E
(
DuX0

∂G(Φu(ti−1,Φti−1(·)))
∂x

(X0)
d

dy
ϕδ(Φt(ti,Φti−1(X0))

+ Z − y)
d

dx
Φt(ti, x)

∣∣∣∣∣
x=Φti−1 (X0)

)∣∣∣∣∣
≤ C.

(30)

To prove the above inequality we will use Proposition 7.1, which, applied to Γ, gives
that there exists appropiate constants such that

Γ = sup
u∈[ti−1,ti]

∣∣∣∣∣E
(

Ψδ1/2/
√

2(Φt(ti,Φti−1(X0)) + Z − y)H2

×
(

Φt(ti,Φti−1(X0)) + Z,DuX0
∂G(Φu(ti−1,Φti−1(·)))

∂x

× (X0)
d

dx
Φt(ti, x)

∣∣∣∣∣
x=Φti−1 (X0)

))∣∣∣∣∣
≤ sup

u∈[ti−1,ti]

∥∥∥∥∥H2

(
Φt(ti,Φti−1(X0)) + Z,

×DuX0
∂G(Φu(ti−1,Φti−1(·)))

∂x
(X0)

d

dx
Φt(ti, x)

∣∣∣∣∣
x=Φti−1 (X0)

)∥∥∥∥∥
1

≤ C sup
u∈[ti−1,ti]

{
‖∆−1

Φt(ti,Φti−1 (X0))+Z
‖ak‖Φt(ti,Φti−1(X0)) + Z‖we,b

×
∥∥∥∥∥DuX0

∂G(Φu(ti−1,Φti−1(·)))
∂x

(X0)
d

dx
Φt(ti, x)

∣∣∣∣∣
x=Φti−1 (X0)

∥∥∥∥∥
e′,b′

}
.

(31)

The proof of (30) is finished if we prove the following assertions:
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(i) sup
ti−1<ti≤t

‖Φt(ti,Φti−1(X0)) + Z‖d,b <∞, for any d, b ∈ N.

(ii) sup
ti−1<ti≤t

‖(∆Φt(ti,Φti−1 (X0))+Z)−1‖p <∞, for all p > 1.

(iii) For all d, b ∈ N,

sup
u∈[0,t];ti−1<u<ti≤t

∥∥∥∥∥∥
DuX0

∂

∂x
G(Φu(ti−1,Φti−1(X0)))

d

dx
Φt(ti, x)

∣∣∣∣∣
x=Φti−1 (X0)

∥∥∥∥∥∥
d,b

<∞.

(i) and (iii) follow from flow properties, (21), Lemma 7.3 and Lemma 4.1. (ii)
follows from Lemma 7.2 in the Appendix.

Now consider B2, the other term in B. We have

B2 = E[(ϕδ(Φt(X0) + Z − y)− ϕδ(Φt(X0) + Z − y))(1LM + 1LM )] = B21 +B22

In the case of B22, using (19), one has for fixed q ≥ 5

B22 = E[ϕδ(Φt(X0) + Z − y)− ϕδ(Φt(X0) + Z − y);LM ]

≤ Cδ−1/2P (LM ) ≤ Cδ−1/2 δ
q
2−1

M q
≤ Cδ,

(32)

where C is a positive constant that depends only on q and M . Now consider B21.
For ω ∈ LM , we have using (26)

ϕδ(Φt(X0) + Z − y)− ϕδ(Φt(X0) + Z − y)

=
∫ 1

0

d

dx
ϕδ(Φt(X0 + u(X0 −X0)) + Z − y)du

× (−Z(ξ))−1F1(Φ1(X0)− Φ1(X0)).

(33)

Therefore the problem of considering the rate of convergence of B21 goes through
applying (8) localized on the set LM for Φ1(X0) − Φ1(X0). That is, f(x) = x and
t = 1 in (8). Then one continues in the proof of Theorem 4.2. For example, instead
of (27) we will have, for ε ∈ (0, 1) fixed,

sup
u∈[ti−1,ti]

∣∣∣∣∫ 1

0

E

(
DuX0

d

dx
ϕδ(Φt(X

ε

0 + v(X0 −X
ε

0)) + Z − y))((−Z(ξ))−1)εF1

× ∂

∂x
Φt(ti, x)

∣∣∣∣∣
x=Φti−1 (X0)

∂G(Φu(ti−1,Φti−1(·)))
∂x

(X0)hM,2ε)dv

∣∣∣∣∣∣ < C(ε).

Here one can apply integration by parts and obtain the necessary properties as we
have done in (31) (in particular, Lemma 7.2). Therefore the result follows.

As in the proof of Theorem 3.1, one has to deal with the residues Ri(U) using
the integration by parts formula (5).

With the same techniques as in this proof one can obtain results for approxima-
tions of distribution functions.
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4.2. Weak approximation for general boundary conditions in the multidi-
mensional case. We will now briefly indicate how to obtain a weak approximation
result for the multidimensional sde with boundary condition considered in [25]. In
this section we will consider the stochastic differential equation

dXt + F (Xt) dt = B dWt, t ∈ [0, 1],(34)

with boundary condition

h(X0, X1) = h,(35)

for h : R2d → Rd. Here {Xt, t ∈ [0, 1]} is an Rd-valued continuous stochastic
process and {Wt, t ∈ [0, 1]} is a Rk-valued Brownian motion with k ≥ d; F : Rd →
Rd takes the form

F (x) = Ax + Bf̃(x),

where A is a d × d matrix, f̃ : Rd → Rk is measurable and locally bounded, and
B is a d× k matrix. In [25] a theorem on existence and uniqueness of solution for
this kind of equation was established. More explicitly, let C0

(
[0, 1];Rk

)
be the set

of continuous, Rd-valued functions vanishing at 0; set

Λ =
{∫ 1

0

eAtB dϕ(t) ; ϕ ∈ C
(
[0, 1];Rk

)}
,

where the integrals are defined using integration by parts. Assume

(H1): For any z ∈ Λ the equation h
(
y, e−A(y + z)

)
= h has a unique solution

y = g(z).

In order to find the solution of (34), (35) we consider the linear equation

dYt + AYt dt = B dWt, t ∈ [0, 1],

with boundary condition (35). This equation has a unique solution, given by

Yt = e−At
[
g

(∫ 1

0

eAsB dWs

)
+
∫ t

0

eAsB dWs

]
.

Let

Σ =
{
ξ ∈ C

(
[0, 1];Rk

)
, ξt − ξ0 +

∫ t

0

Aξs ds ∈ ImB, 0 ≤ t ≤ 1, h(ξ0, ξ1) = h
}
.

Then there exists a bijection ψ : C0
(
[0, 1];Rk

)
→ Σ such that Yt = (ψ(W ))t.

Finally we define the mapping T : C0
(
[0, 1];Rk

)
→ C0

(
[0, 1];Rk

)
by

T (θ) = θ +
∫ ·

0

f̃((ψ(θ))s) ds.

Theorem 4.4 (Nualart and Pardoux, [25]). Assume T is a bijection and (H1)
holds. Then equation (34) with boundary condition (35) possesses a unique so-
lution in C([0, T ];Rd) given by

X = ψ
(
T−1(W )

)
.
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Momentarily assume that T is a bijection; then one can give a different way of
expressing the solution to (34), (35). For this let θ = T−1(W ), ξt =

∫ t
0 eAuB dWu

and ϕt =
∫ t

0

eAuB dθu. Then,

Xt = e−At
[
g

(∫ 1

0

eAuB dθu

)
+
∫ t

0

eAuB dθu

]
= e−At [g (ϕ1) + ϕt] .

In [10], it was proved that ϕt = ξt + ut, where

ut = −
∫ t

0

eAsBf̃
(
e−As [g (ξ1 + u1) + (ξs + us)]

)
ds.

Fix y ∈ R, and assume that

ut(y) = −
∫ t

0

eAsBf̃
(
e−As [g (ξ1 + y) + ξs + us(y)]

)
ds(36)

has a unique solution. Moreover, suppose that the mapping y 7→ u1(y) has a unique
fixed point Y . Then, clearly

ϕt = ξt + ut(Y ).

Let |M | denote the norm of a matrix M , that is, |M | = sup
|x|=1

|Mx|. We need the

following assumption:

(H2): g, f̃ ∈ C1(Rd,Rd) and

K
(
Lf̃ , Lg

)
= Lg

[
exp

[(
e2|A| − 1

) |B|
2|A| Lf̃

]
− 1
]
< 1,(37)

where f̃ and g are Lipschitz functions with Lipschitz constants Lf̃ and Lg,
respectively.

Under (H2) T is a bijection, and therefore there is a unique solution to (34) and
(35).

Here we will work with the same approximation scheme as introduced in [10].
That is, define ξt, ut(y) by

ξt =
∫ t

0

eAη(s) B dWs,

ut(y) = −
∫ t

0

eAη(s)Bf̃
(
e−Aη(s)

[
g
(
ξ1 + y

)
+ ξη(s) + uη(s)(y)

])
ds.

In Section 3 of [10] it is proven that under (H2) y 7→ u1(y) has a unique fixed point,
say Y . Let ϕt = ξt + ut(Y ) and

Xt = e−At [g (ϕ1) + ϕt] .(38)

Now we introduce some preliminary lemmas.

Lemma 4.3. Assume (H2). Then I − u′1(y) and I − u′1(y) are invertible matrices
for all y ∈ Rd a.s.
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Proof. We will sketch the proof for I − u′1(y).
It is enough to prove that the maximum eigenvalue of u′1(y) is strictly smaller

than 1.
For this is enough to prove that |u1(y1)−u1(y2)| ≤ K(Lf̃ , Lg)|y1−y2| < |y1−y2|.

This is exactly (3.16) in [10].

The following result is an extension of Lemma 3.2 in [19]. The proof is obtained
through standard methods of calculation for stochastic derivatives.

Lemma 4.4. Assume (H2). Then

(i) ut(y), ut(y) ∈ D1,∞, for all y ∈ Rd and t ∈ [0, 1].
(ii) Y, Y ∈ D1,∞ with

DsY = (I − u′1(Y ))−1(Dsut)(Y ) DsY = (I − u′1(Y ))−1(Dsut)(Y ).

(iii) ut(Y ), ut(Y ) ∈ D1,∞, and the chain rule is satisfied for both processes for all
t ∈ [0, 1].

(iv) sup
s
E[sup

t
|Ds(ut(Y ))|p] <∞ and sup

s
E[sup

t
|Ds(ut(Y ))|p] <∞ for all p > 1.

The following result gives the rate of convergence for the weak approximation.
Strong approximations where studied in [10].

Theorem 4.5. Assume (H1), (H2), and that f , f̃ and g are in C2
p . Then there

exists a positive constant C, independent of δ and π, such that

|E(f(Xt)− f(Xt))| ≤ Cδ.

Proof. First, note that

f(Xt)− f(Xt) = Υ1
t [Υ

2
t (ϕ1 − ϕ1) + ϕt − ϕt],

where

Υ1
t =

∫ 1

0

f ′(Xt + α(Xt −Xt))dαe−At,

Υ2
t =

∫ 1

0

g′(ϕ1 + α(ϕ1 − ϕ1))dα.

Due to Lemma 4.4, we have that Υ1, Υ2 ∈ D1,∞.
Therefore we consider ϕt−ϕt = ξt− ξt + (ut(Y )− ut(Y )). The difference ξt− ξt

can obviously be written as an expression of order δ. That is,

ξt − ξt =
∫ t

0

( eAs − eAη(s)) B dWs,

where |eAs − eAη(s)| ≤ e2|A|δ, and therefore supt∈[0,1] ‖ξt − ξt‖p ≤ C(p)δ for a
positive constant C(p) independent of δ and π but depending on p > 1.

To simplify the notation, define

k(x1, . . . , x5) = −eAx1Bf̃
(
e−Ax1 [g (x2 + x3) + x4 + x5]

)
.(39)
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Now consider

ut(Y )− ut(Y )

=
∫ t

0

k(s, ξ1, Y, ξs, us(Y ))− k(η(s), ξ1, Y, ξη(s), us(Y )) ds

+
∫ t

0

k(η(s), ξ1, Y, ξη(s), us(Y ))− k(η(s), ξ1, Y , ξη(s), us(Y ))ds

+
∫ t

0

k(η(s), ξ1, Y , ξη(s), us(Y ))− k(η(s), ξ1, Y , ξη(s), us(Y ))ds

+
∫ t

0

k(η(s), ξ1, Y , ξη(s), us(Y ))− k(η(s), ξ1, Y , ξη(s), uη(s)(Y ))ds

= I1(t) + I2(t) + I3(t) + I4(t).

(40)

Let’s start with I4. Consider

|I4(t)| ≤
∫ t

0

e2|A|η(s)BLf̃ |us(Y )− uη(s)(Y )|ds

≤ δBLf̃

∫ t

0

e2|A|η(s)|k(η(s), ξ1, Y , ξη(s), uη(s)(Y ))|ds.

Therefore it follows from Lemma 7.6 in the Appendix that ‖ sups∈[0,t] |I4(s)|‖p ≤
C(p)δ for a positive constant C(p) independent of δ and π but depending on p > 1.
Now consider I1. We will divide it into 4 terms:

I1(t) =
∫ t

0

k(s, ξ1, Y, ξs, us(Y ))− k(η(s), ξ1, Y, ξs, us(Y ))ds

+
∫ t

0

k(η(s), ξ1, Y, ξs, us(Y ))− k(η(s), ξ1, Y, ξs, us(Y ))ds

+
∫ t

0

k(η(s), ξ1, Y, ξs, us(Y ))− k(η(s), ξ1, Y, ξs, us(Y ))ds

+
∫ t

0

k(η(s), ξ1, Y, ξs, us(Y ))− k(η(s), ξ1, Y, ξη(s), us(Y )) ds

= I11(t) + I12(t) + I13(t) + I14(t).

As in the case of I4 and using the hypotheses on f̃ and g, one obtains

‖ sup
s∈[0,t]

|I1i(s)|‖p ≤ C(p)δ,

for i = 1, 2, 3. I14 can be written as (using the mean value theorem)

I14(t) = Υ3
s(Ws −Wη(s)).(41)

where

Υ3
s = eAη(s) B

∫ 1

0

f̃ ′(e−Aη(s)[g(ξ1 + Y )

+ ξη(s) + α(ξs − ξη(s)) + us(Y )]) dαeAη(s)

Note that due to Lemma 4.4, one has that Υ3 ∈ D1,∞
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Now we analyze the term I3. We have, by the mean value theorem,

I3(t) = −
∫ t

0

γs(us(Y )− us(Y ))ds,

where

γs = eAη(s)B

∫ 1

0

f̃ ′(e−Aη(s)[g(ξ1 + Y ) + ξη(s)

+ us(Y ) + θ(us(Y )− us(Y ))])e−Aη(s)dθ.

Similar calculations are applied to I2 to obtain

I2(t) = −
∫ t

0

βs(Y − Y )ds

where

βs = eAη(s)B

∫ 1

0

f̃ ′(e−Aη(s)[g(ξ1 + Y + θ(Y − Y )) + ξη(s) + us(Y )])

× e−Aη(s)g′(ξ1 + Y + θ(Y − Y ))dθ.

Summarizing these calculations, we find that we can write (40) as

ut(Y )− ut(Y ) =
∫ t

0

αsds+
∫ t

0

βs(Y − Y )ds+
∫ t

0

γs(us(Y )− us(Y ))ds.

(42)

This is a linear equation in ut(Y )− ut(Y ), where α is defined so that∫ t

0

αsds = (I1 + I4)(t).

Using classical results (see Dunford and Schwartz [9], vol II, page 1282), we solve
(42):

ut(Y )− ut(Y ) =
∞∑
j=0

ΨjG(t),(43)

where

G(t) =
∫ t

0

αsds+
∫ t

0

βsds(Y − Y ) and (ΨZ)(t) =
∫ t

0

γsZ(s)ds.

Here sups∈[0,1] |γs| <∞ a.e. (see the proof of Lemma 7.7 in the Appendix), and
therefore the series above converge uniformly for t in compact sets.

In order to solve for Y −Y in (43) for t = 1 one proves by induction (see Lemma
7.7 in the Appendix) that for j = 1, 2, . . .

|Ψj−1B(1)| ≤ (e2|A| − 1)j

j!2j |A|j |B|
jLj

f̃
Lg.(44)

Therefore by (37) one has that |
∑∞

j=0 ΨjB(1)| < 1, and so the inverse of
I −

∑∞
j=0 ΨjB(1) (45) exists.

Replacing t = 1 in (43), we have, using (37),

Y − Y = (I −
∞∑
j=0

ΨjB(1))−1
∞∑
j=0

ΨjA(1),(45)
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where A(t) =
∫ t

0
αsds+ I1(t) + I4(t) and B(t) =

∫ t
0
βsds.

Using (45) in (43), we also have

ut(Y )− ut(Y ) =
∞∑
j=0

ΨjA(t) +
∞∑
j=0

ΨjB(t)(I −
∞∑
j=0

ΨjB(1))−1
∞∑
j=0

ΨjA(1).

(46)

Note that ‖ supt∈[0,1] |A(t) − I14(t)|‖p ≤ Cδ. Now if we put all these estimates
together, we have:

E[f(Xt)− f(Xt)] = E[Υ1
t [Υ

2
t (ξ1 − ξ1) + ξt − ξt]]

+E[Υ1
tΥ

2
t (Y − Y )] +E[Υ1

t (ut(Y )− ut(Y ))]
= A1 +A2 +A3.

First, it is easy to see that |A1| ≤ Cδ, given that supt∈[0,1] ‖ξt− ξt‖p ≤ Cδ and Υ1,
Υ2 ∈ D1,∞.

Next, as A2 and A3 are of the same nature we only consider A3, leaving A2 to
the reader. Using (46) one has

A3 = E

Υ1
t


∞∑
j=0

Ψj(A− I14)(t)

+
∞∑
j=0

ΨjB(t)(I −
∞∑
j=0

ΨjB(1))−1
∞∑
j=0

Ψj(A− I14)(1)




+ E

Υ1
t


∞∑
j=0

ΨjI14(t)

+
∞∑
j=0

ΨjB(t)(I −
∞∑
j=0

ΨjB(1))−1
∞∑
j=0

ΨjI14(1)




= A31 +A32

In Lemma 7.8 in the Appendix it is proven that |A31| ≤ Cδ. To prove |A32| ≤ Cδ
one needs to apply the integration by parts formula (5) because the rate is being
carried by (Ws −Wη(s)) in the definition of I14 in (41). This is done in Lemma 7.9
in the Appendix. This finishes the proof.

Further refining this proof, one could consider the approximations for densities
or distribution functions of solutions to (34). The hypothesis will require further
smoothness of f̃ and g. The study of existence and smoothness of densities for mul-
timensional stochastic differential equations with boundary conditions was carried
out in [19]. The statement in the case of density approximations is

Theorem 4.6. Assume (H1) and (H2). Also assume that g and f̃ are elements of
C∞p and that g′(x) (respectively I+g′(x)) has an inverse for all x ∈ Rd and that its
inverse has at most polynomial growth at infinity. Then, if detBBT 6= 0 one has

sup
x
|p(t, x) − Eφδ1/2(Xt − x)| ≤ Cδ,

for a positive constant C independent of δ and the partition π and for t ∈ [0, 1)
(respectively t ∈ (0, 1]).
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5. An example

In this section we will discuss informally an example of a stochastic equation with
boundary conditions. There are various examples where the methods introduced
here can be applied. These include the smoothing problem (see [30]), the problem
of estimating a maximum a posteriori for trajectories of diffusions processes (see
[32] and [33]), and the study of some classes of reciprocal processes (see [20]). These
equations also appear in the asymptotic study of waves in random media (see [11]
and [29]) and in the study of second order stochastic differential equations (see
[26]). In general, most of the control systems where differential equations with
boundary conditions appear will have an associated stochastic differential equation
with boundary conditions when noise is introduced into it. Usually the boundary
conditions appear from using a space variable instead of a time variable. We will
briefly discuss one of the possible applications where this is exactly the case. A
more detailed account will be given in a future publication.

As a simple example we will give a description of the equation considered in
[29]. In that article they considered a transmission-reflection problem for a one
dimensional equation in a random slab. The coefficients are assumed to randomly
fluctuate in a small scale, therefore producing a limit equation which will be a
linear stochastic differential equation with linear boundary conditions. This limit
equation is obtained using techniques of diffusion approximation. To describe the
situation, let L > 0 be fixed. The one dimensional acoustic wave equation in the
interval [0, L] is

ρ(x)
∂u

∂t
+
∂p

∂x
= 0,

1
K(x)

∂p

∂t
+
∂u

∂x
= 0,

with some boundary conditions which will be described later. Here u(x, t) is the
velocity, p(x, t) is the pressure, ρ(x) is the density and K(x) is the bulk modulus.
Then one considers that ρ(x) = 1 + β(Zεx) for some smooth function taking values
in [−c, c] for c < 1 and Zεx a Markov processes with certain properties. One also
assumes that K ≡ 1, which corresponds to the homogeneous case. Then one defines
A = u + p and B = u − p, called the right and left going wave respectively. Then
boundary conditions are set. In general they are of the type

H0

(
A
B

)
(0, t) +H1

(
A
B

)
(L, t) = V0

for appropiate matricesH0, H1 and V0. These conditions can correspond to entering
pulses at x = 0 and at x = L. A combination of pulses in x = 0 and x = L
can also be considered. As described in [29], the general problem is, given these
boundary conditions, what can we say about the medium if we have small-scale
inhomogeneities present? (these being represented by Zεx).

In order to transform the above problem into a stochastic differential equation
with boundary conditions, one considers the Fourier transforms of A and B, which
are random and will depend in general on ε. Under certain conditions the limit
equation for the Fourier transforms is given by

d

dx

(
Ãε

B̃ε

)
=
iw

2ε
β(Zεx)

(
1 e−2iwx/ε

−e−2iwx/ε −1

)(
Ãε

B̃ε

)
,
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where Ãε(x,w) = Aε(x,w)eiwx/ε and B̃ε(x,w) = Bε(x,w)eiwx/ε, Aε and Bε being
the Fourier transforms of A and B. Some of the physical quantities of interest
are R = B̃ε/Ãε, the reflection coefficient, and T = 1/ ¯̃Aε, the transmission coeffi-
cient. These quantities define one dimensional stochastic differential equations with
boundary conditions.

The problems just described fall into a general category of diffusion approxima-
tion theorem from [13] which we quote here. In our case we will have f = 0, L = 1
and ηk(t/ε2) = β(Zεt ).

Theorem 5.1. Let Xε be the smallest solution of the system

dXε
t

dt
= f(t,Xε

t ) + σk(t,Xε
t )

1
ε
ηk(

t

ε2
),

H0X
ε
0 +H1X

ε
1 = V0.

Here ηk(t) are independent Markov processes with a unique invariant probability
measure under which they are ergodic and fulfill Doeblin’s condition. Denote αk =∫∞

0 E[ηk(0)ηk(t)]dt ∈ (0,∞). Let X be the solution of

dXt = f(t,Xt)dt+ αkσk(t,Xt) ◦ dW k
t ,(47)

H0X0 +H1X1 = V0.(48)

Then under conditions (H1) and (H2) (see [13]) there exists a unique solution X

in L1,8
C,loc, and furthermore Xε converges weakly to X in the uniform topology.

Therefore, depending on the properties of the process η, one will find a whole
array of processes X which satisfy equations (47) and (48), which according to
our results can be approximated. As in the example considered, it is common that
stochastic differential equations with boundary conditions appear when the variable
t represents a space variable rather than a time variable.

The conditions we have required in Theorem 4.3 are sufficient to obtain that
(H1) and (H2) are satisfied. In the multidimensional case there are cases that we
have considered here were (H2) is not satisfied.

6. Conclusions

We have considered an alternative method of proof for weak approximations
of solutions of stochastic differential equations. This method should be useful in
many cases, in particular, when nonadapted processes are considered or when we
are interested in approximating the distribution or the density function of a locally
smooth process.

Many variations of this argument can be implemented. For example, one can
obtain with some further work an expansion of the error in terms of powers of
the step size. One possible disadvantage of this method is that the calculation of
the constants in this expansion is quite cumbersome. It does not seem to have a
nice expression like in the case of diffusions (see e.g. [31]). Another problem of
interest is to consider the generalization of Theorem 4.3 to many dimensions using
the technique of stochastic invariant imbedding introduced in [13]. This extension
covers a whole array of different applications in the area of second order stochastic
differential equations. The techniques to cover this case should be similar to the
one dimensional case expounded here. The added problem is that the results in
[13] are local. In that case it is not straighforward to find a way to control the
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localization as has been done here through the set LM . This topic, as well as some
of the applications, will be covered in a future publication.

Another argument to approach the analysis of numerical schemes in nonlinear
problems has been used to study the McKean-Vlasov equation (see [18]), and the
author is currently considering applying a combination of both techniques to the
case of the Burgers equation.

Further extensions of this method can be investigated in order to obtain weak
approximation results for higher order schemes and to develop the error in powers
of the step size of the approximation, which should help the design of interpolation
schemes.

Also these ideas should shed some light on the behaviour of weak approximations
to higher order sde’s with boundary conditions, and also on stochastic partial dif-
ferential equations with boundary conditions. These problems need to be studied
further.

7. Appendix

In this section we will prove auxiliary results used in other sections.
The following proposition is the basic result to obtain properties of the densities

of smooth random variables.

Proposition 7.1. Let F = (F 1, . . . , F d) ∈ (D∞)d be such that

(det ∆F )−1 ∈
⋂
p≥2

Lp(Ω).

Let G ∈ D∞ and g ∈ C∞p (Rd). Then (det ∆F )−1 ∈ D∞, and for any multi-index
α ∈ {1, . . . , d}k, k ≥ 1, there exists an element Hα(F,G) ∈ D∞ such that

E[(∂αg)(F )G] = E[g(F )Hα(F,G)].

Furthermore for any multi-index α and any integers p and q there exist constants
C(p, q, α), e, b, e′, b′, a, k and w such that

‖Hα(F,G)‖p,q ≤ C(p, q, α)‖∆−1
F ‖ak‖F‖we,b‖G‖e′,b′ .

Proof. The proof of this proposition can be obtained by performing some aditional
calculations in the usual proof (see for example, Proposition 3.2.2 in Nualart [24]).

For example, let α = (1). Then it follows that

H(1)(F,G) =
d∑
j=1

δ(G(∆−1
F )1jDF j).

Now, using the continuity of the adjoint operator δ and some standard properties
of the norms ‖ · ‖p,q, we have

‖
d∑
j=1

δ(G(∆−1
F )1jDF j)‖p,q ≤ ‖

d∑
j=1

G(∆−1
F )1jDF j‖p+1,q

≤ C‖∆−1
F ‖p+1,b, ‖F‖p+2,b′‖G‖p+1,b′′
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for some integers b, b′, b′′. To finish the proof is enough to note that

D[(∆−1
F )ij ] = −

d∑
k,l=1

(∆−1
F )ik(∆−1

F )jlD[∆kl
F ].

In the one dimensional case (d = 1) we writeH(F,G) = H(1)(F,G). By induction
we also define Hj(F,G) = Hj−1(F,H(F,G)).

Now we give some results on the estimation of Malliavin covariance matrices. In
the following Fuδ and Fu denote measurable random fields.

Lemma 7.1. Let Fuδ , Fu ∈ (D1,∞)m and suppose that the following conditons hold:
(i) There exists γ > 0 such that sup

u
‖Fuδ − Fu‖1,p = O(δγ), for all p > 1.

(ii) supu‖(det ∆Fu)−1‖p <∞, for all p > 1.
(iii) For all p, there exists ν(p) > 0 such that supu‖(det ∆Fuδ

)−1‖p = O(δ−ν(p)).
Then

sup
δ

sup
u
‖(det ∆Fuδ

)−1‖p <∞ for all p > 1.

Proof. Consider A = [| det ∆Fuδ
− det ∆Fu | ≤ 1

2 | det ∆Fu |]. Then,

E(|(det ∆Fuδ
)−1|p;A) ≤ 2pE(|(det ∆Fu)−1|p) <∞,

E(|(det ∆Fuδ
)−1|p;Ac) ≤ E(|(det ∆Fuδ

)−1|2p)1/2P (Ac)1/2.(49)

We finish the proof by noting that

P (Ac) ≤ 2kE(|(det ∆Fu)−1|k| det ∆Fuδ
− det ∆Fu |k) = O(δγk),

for any k. Taking k big enough, we obtain that (49) is bounded.

As an application of this lemma we consider:

Lemma 7.2. Let X0 and X
ε

0 be as defined in Section 4.1. Also let Z = δ
1
2√
2
W 1,

where W is a Wiener process independent of W . Then, for fixed t > 0,
(I) sup

ti−1<ti≤t
‖(∆Φt(ti,Φti−1 (X0))+Z)−1‖p <∞, for all p > 1, and

(II) sup
u∈[0,1]

‖(∆Φt(X
ε
0+u(X0−Xε0))+Z)−1‖p <∞, for all p > 1.

Proof. In both cases we only need to check that the conditions in Lemma 7.1 are
satisfied. For (i) we have, due to Proposition 3.1 and Lemma 4.2,

‖Φt(ti,Φti−1(X0)) + Z − Φt(X0)‖1,p ≤ Cδ1/2,

‖ sup
u∈[0,1]

Φt(X
ε

0 + u(X0 −X
ε

0)) + Z − Φt(X0)‖1,p ≤ Cδ1/2,

where C is a positive constant that does not depend on δ or the partition π. (ii)
follows from Theorem 4.1. (iii) is similar in both cases, so we will only do the first:

∆Φt(ti,Φti−1 (X0))+Z =
∫ 1

0

|DsΦt(ti,Φti−1(X0))|2 + |DsZ|2ds ≥
∫ 1

0

|DsZ|2ds

≥ δ

2
.

From here the proof follows.
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Lemma 7.3. Let {Ft(x), t ∈ [0, 1]}, x ∈ Rk, be a family of stochastic processes
such that there exists α ≥ 1 with

sup
t∈[0,1]

E( sup
|x|≤1

|Ft(·, nx)|p) ≤ K(p)nαp,(50)

for any p ≥ 1, where K is a constant depending on p and α. Let Y : Ω→ Rk be a
random vector belonging to ∩p≥1L

p(Ω). Then

sup
t∈[0,1]

E(|Ft(Y )|p) ≤ 2K(pr)1/r(1 + E|Y |(αp+1)s)
1
s ,

for any p ≥ 1 and
1
r

+
1
s

= 1 r, s > 1.

This result is Lemma 2.1 in [19]. The above bound can be obtained from the
proof. As an application one has the following result.

Lemma 7.4. Suppose that σ and m have bounded derivatives up to order k. Also
let Y : Ω→ R be a random variable belonging to

⋂
p≥1 L

p(Ω). Then, for each p ≥ 2,
there exists a constant Ck,p such that

sup
s≤1

E sup
t∈[s,1]

‖ 5k Φt(s, Y )‖p ≤ Ck,p,

sup
s≤1

E sup
t∈[s,1]

‖ 5k Φt(s, Y )‖p ≤ Ck,p,

sup
s≤1

E sup
t∈[s,1]

‖ 5k (Φt(s, Y )− Φt(s, Y ))‖p ≤ Ck,pδp/2.

The proofs of the above statements are obtained as in the proof of Proposition
3.1. That is, one applies Lemma 7.3 after checking that the condition (50) is
satisfied. This is done for every k using the Faà di Bruno formula (see [12]).

In the next lemma we obtain a formula to evaluate the expectations of products
of random variables with stochastic integrals. The main ingredient of the proof is
the integration by parts formula of Proposition 7.1.

Lemma 7.5. Let Y be a random variable such that Y ∈
⋂
p≥2 L

p(Ω) and Y ∈ D1,4.
Also let {ut(x), t ∈ [0, 1]}, x ∈ R, be a family of measurable adapted random fields
such that ut(x) and ∂jut/∂xj satisfy (50) for j = 1, 2.

Then for a, b ∈ [0, 1] and X0 ∈ D1,∞, the following formula holds:

E

(∫ b

a

ut(x)dWt

∣∣∣∣∣
x=X0

Y

)
= E

(∫ b

a

Y DtX0
∂ut
∂x

(X0) +DtY ut(X0)dt

)
.

(51)

Sketch of the proof. Let φr(x) denote the density of a normal random variable with
standard deviation r. The proof is obtained through the justification of the following
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steps:

E

(∫ b

a

ut(x)dWt

∣∣∣∣∣
x=X0

Y

)
= lim

r→0
E

(∫
R

∫ b

a

ut(x)dWtφr(x−X0)Y dx

)(52)

= lim
r→0

∫
R
E

(∫ b

a

ut(x)dWtφr(x−X0)Y

)
dx

(53)

= lim
r→0

∫
R
E

(∫ b

a

(−φ′r(x−X0)DtX0Y + φr(x −X0)DtY )ut(x)dt

)
dx

(54)

= lim
r→0

E

(∫ b

a

∫
R
φr(x−X0)(DtX0Y u

′
t(x) +DtY ut(x))dxdt

)

= E

(∫ b

a

Y DtX0
∂ut
∂x

(X0) +DtY ut(X0)dt

)
.

First the term on the left hand side of (51) is well defined due to the hypothesis
and the application of Lemma 3.2.2 in [23] and Lemma 7.3. (52) follows because∫
R
∫ b
a
ut(x)dWtφr(x−X0)Y dx converges pointwise to

∫ b
a
ut(x)dWt|x=X0Y , and this

sequence is uniformly integrable. That is, one uses the hypothesis and Lemma 7.3
to prove that

sup
r
E

(∫
R

∫ b

a

ut(x)dWtφr(x−X0)Y dx

)2

<∞.

To prove the above one follows the following steps:

E

(∫
R

∫ b

a

ut(x)dWtφr(x−X0)Y dx

)2

=
∞∑
n=0

E

(
I(n ≤ |X0| < n+ 1)Y 2

(∫
R

∫ b

a

ut(x)dWtφr(x−X0)dx

)2)

≤
∞∑
n=0

E(I(n ≤ |X0| < n+ 1)Y 2

×
(∫
{|x−X0|≤ |x|2 }

sup
|x|≤2(n+1)

∣∣∣∣∣
∫ b

a

ut(x)dWt

∣∣∣∣∣φr(x−X0)dx

+
∫
{|x−X0|> |x|2 }

∣∣∣∣∣
∫ b

a

ut(x)dWt

∣∣∣∣∣φr(x2 )dx)2

)

≤ C
(

(EY 4)1/2(E|X0|k)1/4

( ∞∑
n=0

1
nk/4

(
E sup
|x|≤2(n+1)

∣∣∣∣∣
∫ b

a

ut(x)dWt

∣∣∣∣∣
8)1/4)

+
∞∑
n=0

1
nk/4

(∫
R
E

∣∣∣∣∣
∫ b

a

ut(x)dWt

∣∣∣∣∣
8

φr(
x

2
)dx

)1/4)
,
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for any k > 0. From here, using the Sobolev embedding theorem and the hypothesis,
one finds bounds for the above expectations. These bounds are polynomials in n.
Therefore, taking k big enough, the uniform integrability follows.

(53) follows by Fubini’s theorem. (54) is a consequence of the integration by
parts formula. The last two steps in the proof are a repetition of the arguments
used for (52) and (53).

Lemma 7.6. Let k : [0, 1]2× (Rd)4 → Rd×d be defined by (39). Then the following
properties are verified:

(i) The function k belongs to C2
p ([0, 1]2 × (Rd)4) and furthermore the following

inequalities are satisfied
|k(x, x2, . . . , x5)− k(y, x2, . . . , x5)|

≤ e2|A|B|x− y|{|f̃
(
e−Ax [g (x2 + x3) + x4 + x5]

)
|

+ Lf̃ |g (x2 + x3) + x4 + x5|}.

|k(x1, x, x3, . . . , x5)− k(x1, y, x3, . . . , x5)| ≤ e2|A|BLf̃Lg|x− y|.

|k(x1, . . . , x, x5)− k(x1, . . . , y, x5)| ≤ e2|A|BLf̃ |x− y|.
(ii)

E sup
s∈[0,t]

|k(η(s), ξ1, Y , ξη(s), uη(s)(Y ))|p ≤ C(p),

E sup
s∈[0,t]

|k(s, ξ1, Y, ξs, us(Y ))|p ≤ C(p),

for a positive constant C(p) independent of δ and π

Lemma 7.7. Under the conditions of Theorem 4.5 we have, for j = 1, 2, . . . ,

|Ψj−1B(t)| ≤ (e2|A|t − 1)j

j!2j|A|j |B|jLj
f̃
Lg.

Proof. Note that

|γs| ≤ e2|A|η(s)BLf̃ ,

|βs| ≤ e2|A|η(s)BLf̃Lg.

Therefore for j = 1 we have

|B(t)| ≤
∫ t

0

|βs|ds ≤
(e2|A|t − 1)BLf̃Lg

2|A| .

Now assume that the assertion is true for j. Then

|ΨjB(t)| ≤
∫ t

0

|Ψj−1B(s)||γs|ds

≤ |B|jLj
f̃
Lg

∫ t

0

(e2|A|s − 1)j

j!2j|A|j e2|A|η(s)BLf̃ds

≤
(|B|Lf̃ )j+1Lg

j!2j |A|j
∫ t

0

(e2|A|s − 1)je2|A|sds

≤
(|B|Lf̃ )j+1Lg

j + 1!2j+1|A|j+1
.
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Lemma 7.8. For A(t) = I1(t) + I4(t), we have

|E[Υ1
t

∞∑
j=0

Ψj(A− I14)(t) +
∞∑
j=0

ΨjB(t)(I −
∞∑
j=0

ΨjB(1))−1
∞∑
j=0

Ψj(A− I14)(1)]| ≤ Cδ

for some positive constant C independent of δ and the partition π.

Proof. Given that Υ1
t ∈ Lp(Ω) for any p > 1, and |

∑∞
j=0 ΨjB(t)| < 1, it is enough

to prove that

E(
∞∑
j=0

|Ψj(A− I14)(t)|)p ≤ C(p)δp,

E|(I −
∞∑
j=0

ΨjB(1))−1
∞∑
j=0

Ψj(A− I14)(1)|p ≤ C(p)δp.(55)

To prove the first inequality one proves by induction that

|Ψj(A− I14)(t)| ≤ sup
s∈[0,t]

|(A− I14)(s)| (e
2|A| − 1)j

j!2j|A|j |B|
jLj

f̃
,

for j = 0, 1, . . . . From here the inequality follows because

E( sup
s∈[0,t]

|(A− I14)(s)|p) = E( sup
s∈[0,t]

|I11(t) + I12(t) + I13(t) + I4(t)|p) ≤ C(p)δp.

The second inequality in (55) is analogous except one also needs

I − ∞∑
j=0

ΨjB(1)

−1

∈ Lp(Ω) for any p > 1.

This follows from (44), as

|(I −
∞∑
j=0

ΨjB(1))−1| ≤ 1

1−K
(
Lf̃ , Lg

) .

Lemma 7.9.∣∣∣∣∣∣∣E
Υ1

t

∞∑
j=0

ΨjI14(t) +
∞∑
j=0

ΨjB(t)

I − ∞∑
j=0

ΨjB(1)

−1
∞∑
j=0

ΨjI14(1)


∣∣∣∣∣∣∣ ≤ Cδ,

where C is a positive constant that does not depend on δ or the partition π.
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Proof. Consider first, for j ≥ 1, the term

E[Υ1
tΨ

jI14(t)]

=
∫ t

0

∫ sj−1

0

· · ·
∫ s2

0

E

[
j−1∏
l=1

γslΥ
1
tΥ

3
s1(Ws1 −Wη(s1))

]
ds1 · · ·dsj−1

=
∫ t

0

∫ sj−1

0

· · ·
∫ s2

0

∫ s1

η(s1)

× E

Du(Υ1
tΥ

3
s1)

j−1∏
l=1

γsl +
j−1∑
k=1

Du(γsk)
j−1∏

l=1,l 6=k
γslΥ

1
tΥ

3
s1

 duds1 · · ·dsj−1

≤ C(1 + C1(j − 1))δ
(e2|A| − 1)j−1

j − 1!2j−1|A|j−1
|B|j−1Lj−1

f̃
.

(56)

The above calculation follows from (5) and previous estimates on Υ1, Υ3 and γ.
Also note that a calculation gives

sup
u≤s
‖Duγs‖p ≤ C(p)e2|A|η(s)B.

A calculation for the other terms is done noting that we have to prove some
differentiability properties of

∑∞
j=0 ΨjB(t)(I −

∑∞
j=0 ΨjB(1))−1. Given that βs ∈

D1,∞ uniformly in s ∈ [0, 1], one can obtain the same property for
∑∞
j=0 ΨjB(t), as

we have shown in (56). Similarly for (I−
∑∞
j=0 ΨjB(1))−1, if one uses the inversion

formula (I −M)−1 =
∑∞
j=0 M

j for a matrix M with norm smaller than 1.
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