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ENUMERATING SOLUTIONS TO p(a) + q(b) = r(c) + s(d)

DANIEL J. BERNSTEIN

Abstract. Let p, q, r, s be polynomials with integer coefficients. This paper
presents a fast method, using very little temporary storage, to find all small
integers (a, b, c, d) satisfying p(a)+q(b) = r(c)+s(d). Numerical results include
all small solutions to a4 + b4 +c4 = d4; all small solutions to a4 + b4 = c4 +d4;
and the smallest positive integer that can be written in 5 ways as a sum of
two coprime cubes.

1. Introduction

Let H be a positive integer. How can one find all positive integers a, b, c, d ≤ H
satisfying a3 + 2b3 + 3c3 = 4d3?

The following method is standard. Sort the set {(a3 + 2b3, a, b) : a, b ≤ H} into
increasing order in the first component. Similarly sort {(4d3 − 3c3, c, d) : c, d ≤ H}.
Now merge the sorted lists, looking for collisions. The sorting takes time H2+o(1)

and space H2+o(1).
It does not seem to be widely known that one can save a factor of H in space.

Section 3 explains how to enumerate {(a3 + 2b3, a, b)} and {(4d3 − 3c3, c, d)} in
order, using O(H2) heap operations on two heaps of size H . Heaps are reviewed in
section 2. The remaining sections of this paper give several numerical examples. See
http://pobox.com/~djb/sortedsums.html for a UNIX implementation of most of
the algorithms discussed here.

A standard improvement is to split the range of a3 + 2b3 and 4d3 − 3c3 into
several (0-adic or p-adic) intervals. For example, one can separately consider each
possibility for 4d3 − 3c3 mod 7, and skip pairs (a, b) with a3 + 2b3 mod 7 ∈ {2, 5}.

Notes. Lander and Parkin in [11] enumerated solutions to a4 + b4 = c4 + d4 using
time H3+o(1) and space H1+o(1).

Ekl in [2] pointed out that the time of the Lander-Parkin method could be
reduced to H2+o(1). I made the same observation independently in April 1997,
when Yuri Tschinkel asked me about the example described in section 4 below.
David W. Wilson made the same observation independently in October 1997, for
the example described in section 5 below. The difference between my method,
Ekl’s method, and the Lander-Parkin method is the difference between a heap, a
balanced tree, and an unstructured array.
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The use of heaps to enumerate sums in sorted order actually appeared much
earlier in another context, namely William S. Brown’s algorithm for multiplication
of sparse power series. See [9, exercise 5.2.3–29]; compare [9, exercise 5–18].

2. Heaps

A heap is a sequence x1, x2, . . . , xn satisfying xbk/2c ≤ xk for 2 ≤ k ≤ n: i.e.,
x1 ≤ x2, x1 ≤ x3, x2 ≤ x4, x2 ≤ x5, x3 ≤ x6, x3 ≤ x7, etc.

The smallest element of a heap x1, x2, . . . , xn is x1. Given y, one can permute
y, x2, . . . , xn into a new heap by the following algorithm. First set j ← 1. Then
perform the following steps repeatedly: set k ← 2j; stop if k > n; set k ← k + 1 if
k < n and xk+1 < xk; stop if y ≤ xk; exchange y, which is now in the jth position,
with xk; set j ← k. The total number of operations here is O(log n).

In particular, using O(log n) operations, one can permute xn, x2, . . . , xn−1 into a
new heap. By a similar algorithm, also using O(log n) operations, one can permute
x1, x2, . . . , xn, y into a new heap.

Notes. Heaps were published by Williams in [22]. Floyd in [5] pointed out an
algorithm using O(n) operations to permute any sequence of length n into a new
heap.

For some practical improvements in heap performance see [9, exercise 5.2.3–18]
and [9, exercise 5.2.3–28]. The bottom-up algorithm in [9, exercise 5.2.3–18] is due
to Floyd; the “new” algorithms announced many years later in [1] and [21] are the
same as Floyd’s.

There are many other data structures that support insertion of new elements
and removal of the smallest element. Any such structure is called a priority queue.
Examples include leftist trees, as discussed in [9, section 5.2.3]; loser selection trees,
as discussed in [9, section 5.4.1]; balanced trees, as discussed in [9, section 6.2.3];
and B-trees, as discussed in [9, section 6.2.4]. See also [10, page 152]. The reader
can replace the heap in section 3 with any priority queue. Beware, however, that
some “fast” priority queues are several times bigger and slower than heaps; see, for
example, section 10 below.

3. Enumerating sums

Fix p, q ∈ Z[x]. This section explains how to print {(p(a) + q(b), a, b) : a, b ≤ H}
in increasing order in the first component, using space H1+o(1).

First build a table of {(p(a), a) : a ≤ H}. Sort the table into increasing order in
the first component; say p(a1) ≤ p(a2) ≤ · · · .

Next build a heap containing {(p(a1) + q(b), 1, b) : b ≤ H}. Perform the following
operations repeatedly until the heap is empty:

1. Find and remove the smallest element (y, n, b) in the heap.
2. Print (y, an, b); by induction y = p(an) + q(b) at this point.
3. Insert (p(an+1)− p(an) + y, n+ 1, b) into the heap if an+1 exists.

Step 1 and step 3 can be combined into a single heap operation.
This algorithm takes time H1+o(1) for initializations, plus Ho(1) for each of the

H2 outputs, for a total of H2+o(1). There are at most H elements in the heap at
any moment.
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Refinements. One can easily save half the heap operations if p = q: start with
{(p(an) + p(an), n, an)}; print (y, b, an) along with (y, an, b) if an 6= b.

One can speed up the manipulation of y, and in some cases save space, by storing
p(a2)− p(a1), p(a3)− p(a2), . . . instead of p(a2), p(a3), . . . .

One need not bother building tables of n 7→ an and n 7→ p(an) if p is a sufficiently
dull function.

Generalizations. Given functions p, q, r, s from finite sets A,B,C,D to an ordered
group, one can enumerate {(a, b, c, d) ∈ A×B × C ×D : p(a) + q(b) = r(c) + s(d)}
by the same algorithm. For example, one can enumerate small solutions (a, b, c, d)
to a3 +2b3 = 3c3 +4d3 with a, b, c, d ∈ Z[w]/(w2 +w+1), using lexicographic order
on Z[w]/(w2 + w + 1). See section 10 for another example.

One can restrict attention to a subset of A×B, simply by skipping to the next
suitable a for each b. See sections 9 and 10 for examples.

There are many functions that are not of the form a, b 7→ p(a) + q(b) but that
are nevertheless amenable to sorted enumeration. For example, one can apply the
method here to any function f such that a 7→ f(a, b) is monotone for each b. See
section 6 for an example.

4. Example: a3 + b3 = c3 + d3

There are 12137664 solutions (a, b, c, d) to a3 + b3 = c3 + d3 > 0 with a 6= c,
a 6= d, −105 ≤ a, b, c, d ≤ 105, and aZ + bZ + cZ + dZ = Z. In other words, there
are 12137664 rational points of height at most 105 on the surface x3 + y3 + z3 = 1
away from the lines on the surface.

This computation took 1.4 · 1013 cycles on a Pentium II-350. It takes roughly
twice as long to do a similar computation for pa3 + qb3 = pc3 + qd3; roughly
three times as long for pa3 + pb3 = rc3 + sd3; and roughly four times as long for
pa3 + qb3 = rc3 + sd3.

Notes. Peyre and Tschinkel have checked some of my numerical results and some
of their theoretical computations against the best available conjecture. See [16].
Heath-Brown in [8] had previously enumerated solutions to a3 + b3 = c3 + 2d3 and
a3 + b3 = c3 + 3d3 with −103 ≤ a, b, c ≤ 103 by a cubic-time method.

In some cases one can save time by using [8, Theorem 1].

5. Example: many equal sums of two positive cubes

The smallest integer that can be written in k ways as a sum of two cubes of
positive integers is 1729 for k = 2; 87539319 for k = 3; 6963472309248 for k = 4; and
48988659276962496 for k = 5. There are no 6-way integers below 1018. (There are
two other 5-way integers below 1018: 391909274215699968 = 8 ·48988659276962496
and 490593422681271000.)

This computation took 7.9 · 1014 cycles on an UltraSPARC II-296.

Notes. The answer for k = 3 was found by Leech in [14]. The answer for k = 4
was found by Rosenstiel, Dardis, and Rosenstiel in [17]. The answer for k = 5 was
found by David W. Wilson in 1997 and independently by me in 1998. There is an
answer for every k; see [19] for the best known bounds.
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6. Example: many equal sums of two cubes

The smallest positive integer that can be written in k ways as a sum of two cubes
is 91 for k = 2; 728 for k = 3; 2741256 for k = 4; 6017193 for k = 5; 1412774811 for
k = 6; 11302198488 for k = 7; and 137513849003496 for k = 8. There are no 9-way
integers below 2.5 · 1017. (There are 37 other 8-way integers below 2.5 · 1017.)

This computation took 9.2 · 1014 cycles on an UltraSPARC II-296. To keep the
heap small, I enumerated pairs (a, b) with a ≥ b/2 and 1 ≤ a3 +(b−a)3 ≤ 2.5 ·1017,
in order of a3 + (b− a)3; these conditions imply 1 ≤ b ≤ 106.

Notes. The answers for k ∈ {5, 6, 7} were found by Randall Rathbun, according
to [7, page 141]. The answer for k = 8 appears to be new.

7. Example: many equal sums of two coprime cubes

The smallest positive integer that can be written in k ways as a sum of two
cubes of coprime integers is 91 for k = 2; 3367 for k = 3; 16776487 for k = 4;
and 506433677359393 for k = 5. Each of these integers is squarefree. There are
no 6-way integers below 2.5 · 1017. (There is one other 5-way integer, namely
137904678696613339.)

I found these results during the computation described in section 6. A sepa-
rate computation, skipping pairs (a, b) with a common factor, would have been
somewhat faster.

Notes. The answer for k = 4 was found by Rathbun, according to [7, page 141].
The answer for k = 5 appears to be new.

Silverman proved in [18] that the number of pairs of integers (a, b) satisfying
a3 + b3 = n is bounded by a particular function of the rank over Q of the elliptic
curve x3 + y3 = n, if n is cubefree. It is not known how tight Silverman’s bound is.

Paul Vojta found that 15170835645 can be written in 3 ways as a sum of two
cubes of coprime positive integers.

8. Example: a4 + b4 = c4 + d4

There are 516 solutions (a, b, c, d) to a4 + b4 = c4 + d4 with 0 < b ≤ a, 0 < d ≤ c,
c < a ≤ 106, and aZ + bZ + cZ + dZ = Z. This computation took roughly 1015

cycles on an UltraSPARC II-296.
The fourth power of 106 does not fit into a 64-bit integer. I actually enumerated

values of (a4 mod m) + (b4 mod m) + (0 or m) greater than or equal to m, where
m = 260 − 93. Then I checked each collision a4 + b4 ≡ c4 + d4 (mod m) to see
whether a4 + b4 = c4 + d4.

Notes. 218 of the 516 solutions were already known: Lander and Parkin in [11]
exhaustively found all solutions with a4 + b4 < 7.885 · 1015; Lander, Parkin, and
Selfridge in [13] exhaustively found all solutions with a4 + b4 ≤ 5.3 · 1016; Zajta in
[23] found many solutions with a ≤ 106 by various ad-hoc techniques.
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9. Example: a4 + b4 + c4 = d4

The only positive solutions (a, b, c, d) to a4 + b4 + c4 = d4 with d ≤ 2.1 · 107 and
aZ + bZ + cZ + dZ = Z are permutations of the solutions

(95800, 414560, 217519, 422481),
(1390400, 2767624, 673865, 2813001),
(5507880, 8332208, 1705575, 8707481),

(5870000, 11289040, 8282543, 12197457),
(12552200, 14173720, 4479031, 16003017),
(3642840, 7028600, 16281009, 16430513),
(2682440, 18796760, 15365639, 20615673).

This computation took 4.5 · 1015 cycles on a Pentium II-350.
I used several p-adic restrictions here. One can permute a, b, c so that a ∈ 2Z

and b ∈ 10Z. Then a ∈ 8Z, b ∈ 40Z, d − 1 ∈ 8Z, and c ≡ ±d (mod 1024) by
[20, Theorem 1]; also d /∈ 5Z. There are roughly H2/320 possibilities for (a, b) and
H2/10240 possibilities for (c, d) if d ≤ H . I enumerated sums modulo 260 − 93 as
in section 8.

Notes. Euler conjectured that a4 + b4 + c4 = d4 had no positive integer solutions.
Ward in [20] proved that there are no solutions with d ≤ 104. Lander, Parkin, and
Selfridge in [13] proved that there are no solutions with d ≤ 2.2 · 105. Elkies in
[4] proved that there are infinitely many solutions with aZ + bZ + cZ + dZ =
Z, and exhibited two examples. Elkies commented that the smaller example,
with d = 20615673, “seems beyond the range of reasonable exhaustive computer
search.” Frye in [6] subsequently found the solutions with d = 422481, and proved
that there are no other solutions with d ≤ 2 · 106. Allan MacLeod subsequently
found the solutions with d = 2813001 by Elkies’s method. The solutions with
d ∈ {8707481, 12197457, 16003017, 16430513} appear to be new.

For each (c, d) satisfying various p-adic restrictions, Ward factored d4 − c4 into
primes and then found all representations of d4 − c4 as a sum of squares; the total
time of Ward’s algorithm is H2+o(1) with modern factoring methods, but the o(1) is
fairly large. Lander, Parkin, Selfridge, and Frye instead enumerated possibilities for
b, and checked for each b whether d4 − c4 − b4 was a fourth power; Frye estimated
that his program used about H3/490000 fourth-power tests to find all solutions
with d ≤ H .

10. Example: a7 + b7 + c7 + d7 = e7 + f7 + g7 + h7

The five smallest integers that can be written in 2 ways as sums of four positive
seventh powers are 2056364173794800, 12191487610289536, 263214614245734400,
696885239160606459, and 1560510414117060608. There are no other examples be-
low 4207.

I began this computation by generating a sorted table of {a7 + b7 : a ≥ b}. Then
I enumerated sums (a7 + b7) + (c7 +d7) in order, skipping inputs ((a, b), (c, d)) with
b < c. Searching up to 1557, to verify the smallest example, took 1.4 · 1010 cycles
(and roughly 340 kilobytes of memory) on an UltraSPARC I-167. Searching up to
4207 took 1.4 · 1012 cycles.
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Notes. All the examples here were found by Ekl in [2] and [3]. However, Ekl needed
1.6 · 1011 cycles on an HP PRISM-50 (and roughly 8900 kilobytes of memory) to
find the first example. Presumably the main reason is that the priority queue in [2]
and [3] was a balanced tree, whereas the priority queue here is a heap.
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