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NUMERICAL INDEFINITE INTEGRATION
OF FUNCTIONS WITH SINGULARITIES

AEYOUNG PARK JANG AND SEYMOUR HABER

Abstract. We derive an indefinite quadrature formula, based on a theorem
of Ganelius, for Hp functions, for p > 1, over the interval (−1, 1). The main

factor in the error of our indefinite quadrature formula is O(e−π
√
N/q), with

2N nodes and 1
p

+ 1
q

= 1. The convergence rate of our formula is better

than that of the Stenger-type formulas by a factor of
√

2 in the constant of
the exponential. We conjecture that our formula has the best possible value
for that constant. The results of numerical examples show that our indefinite
quadrature formula is better than Haber’s indefinite quadrature formula for
Hp-functions.

1. Introduction

For p > 1, Hp consists of those functions f which are analytic in the unit disc
in the complex plane, and for which

‖f‖p = lim
r→1−

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ
) 1
p

<∞.

Thus Hp contains functions which may have singularities on the boundary of the
unit disc. The Hp spaces are well-known spaces of functions in analytic function
theory and important in dealing with integrals over (−1, 1) of functions that have
singularities at endpoints.

Schwartz [14] suggested the “tanh rule” for numerical definite integration over
(−1, 1). It was studied by Stenger (see [18] and the references therein) for several
classes of analytic functions. Haber [8] studied its convergence for H2 integrands,
for which its convergence rate is exp(−π

√
N/2). Bojanov [3, 4] studied quadrature

formulas for H∞ functions, obtaining formulas with similar convergence rates. Loeb
and Werner [11] developed similar formulas for Hp functions, deriving them from
Newman’s seminal paper [12] on rational approximation of |x|. Newman [13] also
showed that faster convergence than exp(−C

√
N) is not possible for the Hp classes,

and gave upper and lower bounds for the constant C in the exponent. Sikorski,
Stenger and Schwing [15, 16, 17] gave formulas and algorithms for Hp classes of
several complex domains. For the unit disk, Andersson [1] determined the best
possible value of C, for each p.
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There is generally another factor, of the form NC
′
, in these error bounds (see,

e.g., our theorem below). Andersson and Bojanov [2] determined the best possible
values for C′.

Stenger’s approach—part of a wide-ranging development of new methods in nu-
merical analysis using the Whittaker Cardinal Function—yielded formulas for nu-
merical indefinite integration over (−1, 1). Such formulas were given by Stenger
[18], Kearfott [10], and Haber [9]. These also converge at exp(−C

√
N) rates. But

for each Hp class, the constant C for these (“sinc-type”) indefinite-quadrature for-
mulas is lower by a factor of

√
2 than the constant for the definite-quadrature

formula.
It is also by a factor of

√
2 in the exponent, that Andersson’s optimal definite-

quadrature formulas converge faster than the sinc-type definite-quadrature formu-
las. And our present indefinite-quadrature formula improves on the sinc-type
indefinite-quadrature formulas. Our formula is based on the same theorem of
Ganelius [6] that Andersson used (Lemma 1, below) and uses other ideas of Ander-
sson’s. So we conjecture that our formula is optimal, as far as the coefficient C in
the exponent is concerned.

More precisely, we conjecture that for any p in (1,∞) and any increasing infinite
sequence of positive integers M1,M2, . . ., and sequence of indefinite quadrature
formulas

Qi(f, t) =
Mi∑
k=1

ai,k(t)f(bi,k),

the error

sup
|t|≤1

∣∣∣∣∫ t

−1

f(x)dx −Qi(f, t)
∣∣∣∣

is greater than

K(f) exp (−C
√
Mi) for all sufficiently large i,

if C is greater than π/
√

2q. (The last being the constant given by our formula,
noting that M would be 2N .)

In Section 2 we derive the indefinite quadrature formula and its error bound
for Hp functions. In Section 3 we explain the nodes of our formula and compare
the convergence rates of the indefinite quadrature formula derived in this paper
with those of Haber’s indefinite quadrature formula. In the Appendix we prove a
modified form of Ganelius’s theorem which also corrects a small error in Ganelius’s
discussion in [6].

2. Derivation of the indefinite quadrature formula

For f ∈ Hp, p > 1, we start by defining the integral

I(x) =
1

2πi

∫
|z|=1

1
Bn(z)

· f(z)
z − xdz for − 1 < x < 1,

using the fact that functions in Hp have limiting values almost everywhere on
|z| = 1. See Duren [5, Theorems 1.3, 2.2 and 3.6]. Here

Bn(z) =
N∏′

−N

z − bk
1− bkz

, with n = 2N,
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and

bk =
√

1− ak
1 + ak

, b−k = −bk,

and ak are those defined in Lemma 1 below, using r = (1 − (2N)(−1/2))/q. Here
and below the prime on a product (or sum) indicates that the index value k = 0 is
excluded.

We evaluate the integral by residues. The singularities inside the unit disc are
at z = x with residue f(x)/Bn(x) and at z = bk, k any nonzero integer between
−N and N , with residue

ρk ·
f(bk)
bk − x

,

where

ρk =
N∏′

l=−N
(1− blbk)/

N∏′

l=−N
l 6=k

(bk − bl).

After some algebra we get the equation

f(x) =
N∑′

k=−N
ρk ·

Bn(x)
(x− bk)

· f(bk) +Bn(x)I(x).(1)

Now we know that

Bn(x)
x− bk

=
N∑′

m=−N
ρm ·

1
1− bkbm

· 1
1− bmx

,

so integrating from −1 to t in (1) gives us∫ t

−1

f(x)dx =
N∑′

k=−N
f(bk) ·

ρk N∑′

m=−N

ρm
bm(1− bkbm)

· log
1 + bm
1− bmt

+R(t),

where R(t) =
1

2πi

∫ t

−1

∫
|z|=1

f(z)Bn(x)
(z − x)Bn(z)

dzdx.

Theorem. If f is in Hp with 1 < p <∞ and q = p/(p− 1), then∫ t

−1

f(x)dx =
N∑′

k=−N
f(bk) ·

ρk N∑′

m=−N

ρm
bm(1− bkbm)

· log
1 + bm
1− bmt


+O

(
N

1
2q exp

(
−π
√
N/q

))
,

uniformly in [−1, 1].

We shall prove this with the aid of the following lemmas.

Lemma 1 (Ganelius). For 0 < r < 1 and N a positive integer, the numbers ak
that are defined by

a. No = N − dπ4
√
Nre,

b. ϕ is the function defined by ϕ(x) = exp(π
√
x/r), and
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c.

ak =


ϕ(k − 1)/ϕ(No), for k = 1, 2, 3, . . . , No,
ϕ(k − 3/2)/ϕ(No), for k = No + 1,
1− k−No−1

5(N−No−1) , for No + 2 ≤ k ≤ N,

satisfy the inequality

max
x∈[0,1]

xr
N∏
1

∣∣∣∣x− akx+ ak

∣∣∣∣ ≤ C exp(−π
√
Nr),

where C depends on r but not on N .

We prove this modified form of Ganelius’s theorem in the Appendix. Transform-
ing this result to the unit disk (following Loeb and Werner [11]) by

x =
1− z2

1 + z2
,

we find that

max
z∈[−1,1]

(1− z2)r
N∏′

−N

∣∣∣∣ z − bk1− bkz

∣∣∣∣ ≤ C exp(−π
√
Nr).

Lemma 2. For any positive number q,∫ π

−π

(∫ 1

−1

1
|eiθ − x|dx

)q
dθ <∞.

Proof. ∫ 1

−1

1
|eiθ − x|dx =

∫ 1

−1

1√
1− 2x cos θ + x2

dx

= log
√

2− 2 cos θ + 1− cos θ√
2 + 2 cos θ − 1− cos θ

.

The last expression becomes infinite when θ approaches 0, π, or −π. But it is like
log 1
|θ| as θ → 0, log 1

|π−θ| as θ → π, and log 1
|π+θ| as θ → −π. Thus the singularities

are only logarithmic in size, and it follows that∫ π

−π

(
log
√

2− 2 cos θ + 1− cos θ√
2 + 2 cos θ − 1− cos θ

)q
dθ <∞, for every positive q.

Lemma 3. For q > 1

I(r, q) =
∫ π

−π

(∫ 1

−1

dx

(1− x2)r
√

1− 2x cos θ + x2

)q
dθ <

C
1− qr ,

for 1
10q < r < 1

q ; C depends on q alone.

Proof. Since the integrand is even in θ, we can limit our attention to the upper half
of the integration region. Introducing the numbers ε and δ in (0, 1) and setting

h(x, θ) =
1

(1− x2)r
√

1− 2x cos θ + x2
,
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we write

1
2
I(r, q) =

∫ π

0

(∫ 1

−1

dx

(1− x2)r
√

1− 2x cos θ + x2

)q
dθ

=
∫ ε

0

(∫ 1

−1

h(x, θ)dx
)q

dθ +
∫ π−ε

ε

(∫ 1

−1

h(x, θ)dx
)q

dθ

+
∫ π

π−ε

(∫ 1

−1

h(x, θ)dx
)q

dθ.

Then noting that h(−x, π − θ) = h(x, θ), we write

1
2
I(r, q) =

∫ ε

0

(∫ 1−δ

−1

h(x, θ)dx +
∫ 1

1−δ
h(x, θ)dx

)q
dθ(2)

+ 2
∫ π−ε

ε

(∫ 1

−1

h(x, θ)dx
)q

dθ.

In the first integral of (2), noting that x ≤ 1− δ and so
√

1− 2x cos θ + x2 ≥ δ, we
have ∫ 1−δ

−1

h(x, θ)dx ≤
∫ 1−δ

−1

dx

δ(1− x2)r
≤ 2
δ(1− r) .

Letting x = 1− y in the first integral of (2), we write∫ 1

1−δ
h(x, θ)dx =

∫ δ

0

dy

(2 − y)ryr
√
y2 + 2(1− y)(1− cos θ)

.

Observing that y2+2(1−y)(1−cosθ) ≥ y2+2(1−δ)(1−cosθ) ≥ y2+
(√

2(1−δ)
3

)2

θ2,

and letting B =
√

2(1−δ)
3 and t = y

Bθ , we get∫ 1

1−δ
h(x, θ)dx ≤

∫ δ

0

dy

yr
√
y2 +B2θ2

≤ 1
Brθr

∫ δ
Bθ

0

dt

tr
√
t2 + 1

≤ 1
Brθr

∫ ∞
0

dt

tr
√
t2 + 1

≤ 1
(Bθ)r

·
(

1
r

+
1

1− r

)
.

So in the first integral of (2), we get∫ ε

0

(∫ 1

−1

h(x, θ)dx
)q

dθ ≤
∫ ε

0

[
2

δ(1 − r) +
1

(Bθ)r
·
(

1
r

+
1

1− r

)]q
dθ

≤
∫ ε

0

[
2

δ(1 − r) +
1
Br
·
(

1
r

+
1

1− r

)]q
·
(

1
θr

)q
dθ

≤
[

2
δ(1 − r) +

(
3

2(1− δ)

) r
2

·
(

1
r

+
1

1− r

)]q
· 1

1− rq .
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In the last integral of (2), observing that
√

1− 2x cos θ + x2 ≥ sin θ ≥ 2
π ε for

x ∈ [−1, 1] and θ ∈ [ε, π − ε], we see that

∫ π−ε

ε

(∫ 1

−1

h(x, θ)dx
)q

dθ ≤
∫ π−ε

ε

(
π

2ε

∫ 1

−1

dx

(1− x2)r

)q
dθ

≤
∫ π−ε

ε

(
π

ε(1− r)

)q
dθ ≤ π

(
π

ε(1− r)

)q
.

Combining the two estimates, we see that

I(r, q) ≤ C ·
(

1
r

+
1

1− r

)q
· 1

1− rq ,

for some C(q) independent of r. With r between 1/(10q) and 1/q, the quantity
1/r + 1/(1− r) is further bounded by 10q + q/(q − 1). The proof of the lemma is
complete.

Proof of theorem. The error term of the indefinite quadrature formula is

|R(t)| =
∣∣∣∣∣ 1
2πi

∫ t

−1

∫
|z|=1

f(z)Bn(x)
(z − x)Bn(z)

dzdx

∣∣∣∣∣ .
For any p > 1, we write

∫
|z|=1

∫ 1

−1

∣∣∣∣ f(z)Bn(x)
(z − x)Bn(z)

∣∣∣∣ dx|dz| = ∫
|z|=1

∫ 1

−1

∣∣∣∣f(z)Bn(x)
(z − x)

∣∣∣∣ dx|dz|
=
∫ π

−π

∫ 1

−1

∣∣∣∣Bn(x)f(eiθ)
eiθ − x

∣∣∣∣ dxdθ
≤
(∫ π

−π
|f(eiθ)|pdθ

)
1
p

(∫ π

−π

(∫ 1

−1

dx

|eiθ − x|

)q
dθ

) 1
q

≤ C
(∫ π

−π

(∫ 1

−1

dx

|eiθ − x|

)q
dθ

) 1
q

.

Applying Lemma 2,

∫
|z|=1

∫ t

−1

∣∣∣∣ f(z)Bn(x)
(z − x)Bn(z)

∣∣∣∣ dx|dz| <∞.
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Therefore, by Fubini’s theorem we can exchange the order of integration in R(t)
for p > 1. We have

|R(t)| =
∣∣∣∣∣ 1
2πi

∫
|z|=1

(∫ t

−1

Bn(x)
(z − x)

· f(z)
Bn(z)

dx

)
dz

∣∣∣∣∣
≤ 1

2π

(∫
|z|=1

∣∣∣∣ f(z)
Bn(z)

∣∣∣∣p |dz|
) 1
p

·
(∫
|z|=1

∣∣∣∣∫ t

−1

Bn(x)
(z − x)

dx

∣∣∣∣q |dz|
) 1
q

≤ 1
2π

(∫
|z|=1

|f(z)|p|dz|
) 1
p

·
(∫
|z|=1

∣∣∣∣∫ t

−1

Bn(x)
(z − x)

dx

∣∣∣∣q |dz|
) 1
q

≤ C · ‖f‖p

(∫
|z|=1

∣∣∣∣∫ t

−1

(1− x2)rBn(x) · dx

(z − x)(1 − x2)r

∣∣∣∣q |dz|
) 1
q

≤ C · ‖f‖p max
x∈[−1,1]

(1− x2)rBn(x) ·
(∫
|z|=1

(∫ t

−1

dx

|z − x|(1− x2)r

)q
|dz|

) 1
q

.

Using Lemma 1 (Ganelius) and Lemma 3 with r = (1− (2N)(−1/2))/q, we obtain

|R(t)| ≤ Cn 1
2q exp

(
−π
√

n

2q

)
.

That is, we conclude

|R(t)| ≤ CN 1
2q exp

(
−π
√
N

q

)
.

For f ∈ H∞ the above reasoning requires one modification: the upper bound
C/(1 − qr) in Lemma 3 is replaced by C/(1 − r)2. The result is a statement just
like the theorem except that the factor N1/2q in the error bound is replaced by
N1/q = N .

3. The nodes of the indefinite quadrature formula

and computational examples

The theorem in Section 2 gives us the indefinite quadrature formula with 2N
nodes:∫ t

−1

f(x)dx ≈
N∑′

k=−N
f(bk) ·

ρk N∑′

m=−N
ρm ·

1
bm(1− bkbm)

· log
1 + bm
1− bmt

 ,
with ρk =

N∏′
l=−N

(1− blbk)/
N∏′

l=−N
l 6=k

(bk − bl), r = (1− (2N)(−1/2))/q and q =
p

p− 1
.

We observe the following in the proof of Ganelius’s lemma. Choosing No as

No = N − dπ
4

√
Nre,
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the nodes of our indefinite quadrature formula are

bk =
√

1− ak
1 + ak

, for k = 1 to N ,

bk = −b−k, for k = −1 to −N ,

with ϕ(x) = exp (π
√
x/r) and ak =


ϕ(k − 1)/ϕ(No), for k = 1, 2, 3, . . . , No,
ϕ(k − 3/2)/ϕ(No), for k = No + 1,
1− k−No−1

5(N−No−1) , for No + 2 ≤ k ≤ N.
Now, we shall look at the results of applying our indefinite quadrature formula
to the following four integrands and compare these with the results of applying
Haber’s indefinite quadrature formula (A) from [9] to the same integrands, namely

f1(x) =
1

π
√

1− x2
, f2(x) =

1
4 log 2

log
(

1 + x

1− x

)
,

f3(x) =
√

1 + x2

√
2 + log (1 +

√
2)
, f4(x) =

2x
π
√

1− x4
.

All the functions have singularities at x = ±1 or x = ±i. f1 is “almost in H2”
(in the sense that if its singularities on the unit circle are weakened slightly—for
example, by multiplying f1 by (1− x2)ε with ε any positive number—the resulting
function is in H2). Similarly, f2 is “almost in H∞”, f3 is in H∞, and f4 is “almost
in H2”. So we use q = 2 for f1 and f4, and q = 1 for f2 and f3 to set the value of
r in applying our indefinite quadrature formula.

In order to make the convergence rate evident, we apply our indefinite quadrature
formula for N = 4, 9, 16, 25, . . . . Our error bound suggests that the “convergence
ratio”—the ratio of the maximal absolute error for −1 ≤ t ≤ 1 for a given N to
that for the next higher N—might then be exp ( π√

q ) for p > 1 and q = p
p−1 .

In each table there is a “max err” that presents the maximum of the absolute
value of the error of applying the indefinite quadrature formula for each N . These
were determined as follows. By drawing a graph of the error curve using 201
equally spaced t values over the interval [−1, 1], we determined a small interval
about the value of t for which the error is greatest in absolute value. We then draw
a graph of the error curve over that small interval to locate the maximum point
more exactly. Then we iterate this step until we are satisfied that we have the
actual “max err” to 3 decimal places at least. The “ratio” in the tables shows the
ratio of max err for the previous value of N to max err for the current value. The
“max err1” and “ratio1” present the results of applying our indefinite quadrature
formula, and the “max err2” and “ratio2” present the results of applying Haber’s
indefinite quadrature formula (A) from [9].

For these four functions the convergence ratios suggested by our error bound are
exp(π/

√
2), exp(π), exp(π) and exp(π/

√
2) (≈ 9.2, 23.1, 23.1 and 9.2), respectively.

The convergence ratios suggested by the upper bound for Haber’s formula (A)
from [9] are exp(π/

√
2), exp(π), exp(π/

√
2) and exp(π/2) (≈ 9.2, 23.1, 9.2 and

4.8), respectively (those for f1 and f2 are so high because the bound in Haber [9]
makes use of the analyticity of the integrands in domains extending beyond the
unit disk). The computational results are consistent with these suggested ratios
for the higher values N , which suggests that the error bounds here and in Haber
[9] are sharp, giving the actual convergence behaviors of the two formulas for the
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“worst” functions in the specified function spaces. The faster convergence of the
new formula is evident in Tables 3 and 4.

Figures 1 and 2 show the error curve—the true indefinite integral minus the
approximation—for the integrands f1 and f2, respectively, using 201 equally spaced
t values over the interval [−1, 1] for our formula with N = 25. In the case of the
integrand f1, we have the maximum of the absolute value of the error of applying
our indefinite quadrature formula at t = 1.0. The maximum of error is 9.50E − 6,
which is out of range in Figure 1. We draw the error curve only for y ∈ [4.7512E−
6, 4.7528E − 6], in order to show movements in the errors more clearly. Figure 2
suggests that the maximum error is near t = 0.96. But this is misleading. The
maximum absolute error for f2 is 9.87E − 8, not 8.94E − 8 as appears from Figure
2; and the maximum occurs at t = 0.9999947, not at 0.96. Figures 2-1 through 2-4
show how we determined that. Figure 2-1 shows the error curve over the interval
[0.95, 1]. It shows clearly that there is considerable oscillation beyond t = 0.96,
and makes it clear that the maximum occurs somewhere past t = 0.995. A plot
over [0.995, 1] (not shown) confirmed that and showed that one must look beyond
t = 0.9999. Figure 2-2, over the interval [0.9999, 1] shows that the maximum occurs
for t > 0.99999. Figure 2-3 over [0.99999, 1] confirms that the best local maximum
seen is just a bit less than 10−7 and it occurs at about t = 0.999995. There is still
some worry about possible oscillations nearer to t = 1, but a plot over [0.999999, 1]
(not shown), and Figure 2-4 show that the last oscillation is a small one (and
incidentally that the maximum is definitely not at t = 1). Similar study of all the
error curves yields the numbers in Tables 1 through 4.

The computations were done on an IBM-type PC in high precision, using UBA-
SIC 8.74.

We wish to thank Professor Yuji Kida and his associates for making the very
useful language UBASIC freely available to the mathematical community.
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Figure 1.

Figure 2.
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Figure 2-1.

Figure 2-2.
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Figure 2-3.

Figure 2-4.
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Table 1. f1(x) = (π
√

1− x2)−1

N max err1 ratio1 max err2 ratio2

4 1.52E-2 5.80E-3
9 1.14E-3 13.3 6.67E-4 8.7

16 1.17E-4 9.7 7.58E-5 8.8
25 9.50E-6 12.3 8.45E-6 9.0
36 1.06E-6 9.0 9.34E-7 9.0
49 9.85E-8 10.8 1.03E-7 9.1
64 1.11E-8 8.9 1.13E-8 9.1
81 1.08E-9 10.3

100 1.22E-10 8.9

Table 2. f2(x) = 1
4 log 2 log (1+x

1−x )

N max err1 ratio1 max err2 ratio2

4 4.59E-3 1.06E-3
9 1.25E-4 36.7 6.01E-4 17.6

16 2.43E-6 51.4 3.35E-5 17.9
25 9.87E-8 24.6 1.77E-6 19.0
36 4.09E-9 24.1 9.10E-8 19.4
49 1.72E-10 23.8 4.55E-9 20.0
64 5.85E-12 29.4 2.24E-10 20.3
81 2.55E-13 22.9 1.08E-11 20.6

100 1.02E-14 25.0 5.20E-13 20.9

Table 3. f3(x) =
(√

2 + log (1 +
√

2)
)−1√

1 + x2

N max err1 ratio1 max err2 ratio2

4 3.62E-3 1.50E-2
9 2.75E-5 131.6 1.49E-3 10.1

16 2.44E-7 112.7 1.29E-4 11.5
25 8.33E-9 29.3 1.48E-5 8.8
36 2.18E-10 38.2 1.66E-6 8.9
49 6.81E-12 32.0 1.85E-7 9.0
64 2.05E-13 33.2 2.05E-8 9.0
81 7.16E-15 28.6 2.26E-9 9.1

100 2.54E-16 28.2 2.48E-10 9.1

Table 4. f4(x) = 2x
π

(√
1− x4

)−1

N max err1 ratio1 max err2 ratio2

4 9.60E-3 3.53E-2
9 9.39E-4 10.2 7.08E-3 5.0

16 9.48E-5 9.9 1.49E-3 4.7
25 7.66E-6 12.4 3.14E-4 4.8
36 8.51E-7 9.0 6.63E-5 4.7
49 7.86E-8 10.8 1.39E-6 4.8
64 8.84E-9 8.9 2.92E-6 4.8
81 8.62E-10 10.3 6.10E-7 4.8

100 9.68E-11 8.9 1.28E-7 4.8
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Appendix. Proof of Lemma 1 (Ganelius)

We shall give the proof due to Ganelius. Ganelius’s exposition of the proof is
very concise, as the lemma is not central to his paper. Also, in the original version
several of the ak are equal to 1. For our purposes we must have the ak distinct
and all unequal to 1; otherwise some of the bk used for the indefinite quadrature
formula would be multiple, which would introduce derivatives of the integrand into
the formula. Making the ak distinct and unequal to 1 involves changes at the
beginning and at the end of the proof. There is also a small error in Ganelius’s
exposition, which we correct.

We begin by rewriting the inequality in Lemma 1 as

N∑
k=1

log
∣∣∣∣x+ ak
x− ak

∣∣∣∣ ≥ π√Nr + r log x− C(1)

and observing that the sum may be written as∫ 1

0

log
∣∣∣∣x+ y

x− y

∣∣∣∣dν(y),

where dν is a discrete measure with unit masses at the points ak. In order to
determine ak that will give us (1), we introduce the continuous measure

dµ̃(y) =

{
0, if 0 ≤ y ≤ 1/ϕ(No);
2
π2 log (yϕ(No))ry−1dy if 1/ϕ(No) < y < 1.

We shall show that∫ 1

0

log
∣∣∣∣x+ y

x− y

∣∣∣∣dµ̃(y) ≥ π
√
Nor + r log x− πx

2

√
Nor − C.(2)

We then introduce the discrete measure dµ(y) that has unit masses at the No + 1
points

yk = ϕ(k − 1)/ϕ(No), for k = 1, 2, . . . , No, and yNo+1 = ϕ(No − 1/2)/ϕ(No),

and show that ∫ 1

0

log
∣∣∣∣x+ y

x− y

∣∣∣∣dµ(y)−
∫ 1

0

log
∣∣∣∣x+ y

x− y

∣∣∣∣dµ̃(y) ≥ −C,(3)

where the generic constant C in (2) and (3) is independent of x in [0,1] and of N.
Finally, we shall use the additional points yk, for k = No + 2, No + 3, . . . , N, to
remove the πx

2

√
Nor term from (2). This will establish (1), with the ak being the

yk.

Proof of (2). We first note that in proving (2) we need not consider x ≤ 1/ϕ(No)
because then the left hand side of (2) is positive while the right hand side is negative.
We have∫ 1

0

log
∣∣∣∣x+ y

x− y

∣∣∣∣dµ̃(y) =
2
π2

∫ 1

1/ϕ(No)

log
∣∣∣∣x+ y

x− y

∣∣∣∣ log (yϕ(No))ry−1dy.
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By setting ξ = xϕ(No) and u = y/x the last expression takes the form

2r
π2

∫ 1
x

1
ξ

log
∣∣∣∣1 + u

1− u

∣∣∣∣ log ξ · 1
u
du+

2r
π2

∫ 1
x

1
ξ

log
∣∣∣∣1 + u

1− u

∣∣∣∣ log u · 1
u
du

=
2r
π2

∫ 1
x

1
ξ

log
∣∣∣∣1 + u

1− u

∣∣∣∣ log u · 1
u
du+

2r
π2

∫ ∞
0

log
∣∣∣∣1 + u

1− u

∣∣∣∣ log ξ · 1
u
du(4)

− 2r
π2

∫ 1
ξ

0

log
∣∣∣∣1 + u

1− u

∣∣∣∣ log ξ · 1
u
du− 2r

π2

∫ ∞
1
x

log
∣∣∣∣1 + u

1− u

∣∣∣∣ log ξ · 1
u
du.

The first term of (4) is bounded below because 1/ξ ≤ 1 so that the term is bounded
below by

2r
π2

∫ 1

0

log
∣∣∣∣1 + u

1− u

∣∣∣∣ log u · 1
u
du,

which is finite. The second term of (4) is log ξr that is π
√
Nor + r log x, and for

ξ ≥ 1, i.e., for x ≥ 1/ϕ(No) the integral in the third term of (4) is an increasing
function of u on (0, 1) so that the third term is bounded by

2r
π2ξ

∫ 1

0

log
∣∣∣∣1 + u

1− u

∣∣∣∣ log ξ · 1
u
.

Finally, by letting u = 1/t ∫ x

0

log
∣∣∣∣1 + t

1− t

∣∣∣∣1t dt ≤ π2x

4
,

so that the last term of (4) becomes

2r
π2

∫ x

0

log
∣∣∣∣1 + t

1− t

∣∣∣∣ log ξ · 1
t
dt ≤ πx

2

√
Nor,

which completes the proof of (2).

Proof of (3). Letting

g(x, y) = log
∣∣∣∣x+ y

x− y

∣∣∣∣,
we write the left hand side of (3) as

1
2
g(ξ, ϕ(0)) +

No−2∑
k=0

[
1
2
g(ξ, ϕ(k)) +

1
2
g(ξ, ϕ(k + 1))−

∫ k+1

k

g(ξ, ϕ(u))du

](5)

+
1
2
g(ξ, ϕ(No − 1)) +

[
g(ξ, ϕ(No − 1/2))−

∫ No

No−1

g(ξ, ϕ(u))du

]
,

where ξ = xϕ(No) and u = y/x as before. The first and third terms are non-
negative and so may be ignored. Each term in the sum is the error of a trapezoidal
approximation to an integral, which is nonnegative if the integrand is convex on
the closed integration interval. Let ko be the particular k for which ξ lies in the
interval (ϕ(ko), ϕ(ko + 1)), Ganelius states that for k 6= ko, g(ξ, ϕ(u)) is convex on



220 AEYOUNG PARK JANG AND SEYMOUR HABER

[k, k+1]. But that is not so for k = 0. So (5) consists entirely of positive quantities,
plus the quantity[

1
2
g(ξ, ϕ(0)) +

1
2
g(ξ, ϕ(1))−

∫ 1

0

g(ξ, ϕ(u))du
]

(6)

+

[
1
2
g(ξ, ϕ(ko)) +

1
2
g(ξ, ϕ(ko + 1))−

∫ ko+1

ko

g(ξ, ϕ(u))du

]

+

[
g(ξ, ϕ(No − 1/2))−

∫ No

No−1

g(ξ, ϕ(u))du

]
,

which we must prove is bounded from below.
The boundedness of the first term in (6) follows from its continuity as a function

of ξ and the fact that it approaches 0 as ξ approaches infinity. The same reasoning
would apply to the last two terms if No and ko were bounded; thus we are concerned
only with large (approaching infinity) No and ko in the last two terms in (6).

For large ko, the second term in (6) is bounded because

1
2
g(ξ, ϕ(ko)),

1
2
g(ξ, ϕ(ko + 1)) ≥ 1

4
log ko +O(1),

and ∫ ko+1

ko

g(ξ, ϕ(u))du ≤ 1
2

log ko +O(1).

For ξ ≤ ϕ(No− 2), there is no singularity in the integral of the last term so that
the last term is equal to

g(ξ, ϕ(No − 1/2))− g(ξ, β)(7)

for some β in [ϕ(No − 1), ϕ(No)]. For any fixed ξ,

g(ξ, ϕ(No)) ≤ g(ξ, x) ≤ g(ξ, ϕ(No − 1))

for all x in that interval, so (7) is bounded in absolute value by

g(ξ, ϕ(No − 1))− g(ξ, ϕ(No)),

which is less than equal to

g(ϕ(No − 2), ϕ(No − 1))− g(ϕ(No − 2), ϕ(No)).

As No grows, each of the last two terms above is equal to

1
2

logNo +O(1),

so that the last term of (6) is bounded below for ξ ≤ ϕ(No − 2).
For ϕ(No − 2) < ξ < ϕ(No), it follows that

g(ξ, ϕ(No − 1/2)) ≥ 1
2

logNo +O(1)

and ∫ No

No−1

g(ξ, ϕ(u))du ≤ 1
2

logNo +O(1)

so that the last term in (6) is bounded below. Hence (3) is established.
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Our last step in proving Lemma 1 is the elimination of the (πx/2)
√
Nor term in

(2). For that we use the fact that

log
∣∣∣∣x+ y

x− y

∣∣∣∣ ≥ 2x for 0 ≤ x ≤ 1

as long as

y ≥ e2 − 1
e2 + 1

= 0.76 · · · ,
because each of the yk is greater than equal to 0.8 for k ≥ No + 2. So we have

N∑
k=No+2

g(x, yk) ≥ πx

2

√
Nor.

The fact that
π
√
Nor ≥ π

√
Nr − C,

where C dependent on r but independent of N , completes the proof of Lemma 1,
with the ak being the yk.
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