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FAST CONVERGENCE OF QUASI-MONTE CARLO
FOR A CLASS OF ISOTROPIC INTEGRALS

A. PAPAGEORGIOU

Abstract. We consider the approximation of d-dimensional weighted inte-
grals of certain isotropic functions. We are mainly interested in cases where
d is large. We show that the convergence rate of quasi-Monte Carlo for the
approximation of these integrals is O(

√
logn/n). Since this is a worst case

result, compared to the expected convergence rate O(n−1/2) of Monte Carlo,
it shows the superiority of quasi-Monte Carlo for this type of integral. This
is much faster than the worst case convergence, O(logd n/n), of quasi-Monte
Carlo.

1. Introduction

The Monte Carlo method (MC) is frequently used for multidimensional integra-
tion. The expected error of MC, using n integrand evaluations, is of order n−1/2

independent of the dimension. However, this convergence is not fast, and a large
number of evaluations may be necessary.

Quasi-Monte Carlo (QMC) methods evaluate the integrand at deterministic
points in contrast to MC methods, which use random points. The deterministic
points are, roughly speaking, uniformly spread because they belong to low discrep-
ancy sequences. The Koksma-Hlawka inequality states that the worst case QMC
error for multivariate integration is of order logd n/n, where n is the number of inte-
grand evaluations and d is the dimension. A similar bound for the average error of
multidimensional integration is shown by Woźniakowski [18]. Niederreiter [6], and
Drmota and Tichy [3] are authoritative references on low discrepancy sequences,
their properties, and their applications to numerical integration.

The concern about the QMC error is that logd n/n becomes huge when n is fixed
and d is large as sometimes happens in practice. This has contributed to the belief
that QMC methods should not be used for high-dimensional problems [1]. However,
tests by Paskov and Traub [12] and Paskov [13] showed that QMC methods can be
very effective for high-dimensional integrals arising in computational finance. They
used QMC methods to approximate 360-dimensional integrals required for pricing
a collateralized mortgage obligation. Other papers reporting the success of QMC
methods for problems in finance include [4, 7, 10]. A survey of the state of the art
may be found in Chapter 4 of the monograph by Traub and Werschulz [17].
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One of the hypotheses advanced to explain the success of QMC methods is that
the financial problems are nonisotropic since some dimensions can be far more im-
portant than others. In a recent paper, Sloan and Woźniakowski [14] used this fact
to obtain a possible theoretical explanation for the surprisingly good performance
of QMC methods for problems in finance.

Papageorgiou and Traub [11] used QMC-GF, a QMC method using points from
the generalized Faure1 sequence [15], for a model isotropic problem suggested by
a physicist B. Keister [5]. Their tests on high dimensional instances of this prob-
lem (d ranging from 25 to 100) showed the superiority of QMC-GF over MC and
over Keister’s proposed quadrature rules. Tests on the same problem by Novak et
al. [9] showed that QMC-GF performs extremely well compared to NEW [8], an
interpolatory algorithm for multidimensional integration of smooth functions.

In this paper we prove that the worst case speed of convergence of QMC for
a class of isotropic functions (which includes the ones tested in [11]) is of order√

logn/n. Thus, QMC has two advantages over MC for this class of integrals:
• QMC converges as

√
logn/n while MC converges as n−1/2.

• The worst case error of QMC is O(
√

logn/n) while only the expected error
of MC is O(n−1/2).

We summarize the remainder of this paper. For the reader’s benefit we briefly list
certain properties of low discrepancy sequences in the second section. The problem
is formulated in the third section, and fast convergence is proven in the last section.

2. Low discrepancy sequences

Discrepancy is a measure of deviation from uniformity of a sequence of points.
In particular, the discrepancy of n points x1, . . . , xn ∈ [0, 1]d, d ≥ 1, is defined by

D(d)
n = D(d)(x1, . . . , xn) = sup

E

∣∣∣∣A(E;n)
n

− λ(E)
∣∣∣∣ ,

where the supremum is taken over all the subsets of [0, 1]d of the form E =
[0, t1) × · · · × [0, td), 0 ≤ tj ≤ 1, 1 ≤ j ≤ d, λ denotes the Lebesgue measure,
and A(E;n) denotes the number of the xj that are contained in E. A detailed
analysis of low discrepancy sequences can be found in [3, 6, 15] and in the refer-
ences therein.

A sequence x1, x2, . . . of points in [0, 1]d is a low discrepancy sequence if

D(d)
n ≤ c(d)

(log n)d

n
, ∀n > 1,

where the constant c(d) depends only on the dimension d.
The Koksma-Hlawka inequality establishes a relation between low discrepancy

sequences and multivariate integration (see [6]). If f is a real function defined on
[0, 1]d of bounded variation V (f) in the sense of Hardy and Krause, then for any
sequence x1, . . . , xn ∈ [0, 1)d we have∣∣∣∣∣

∫
[0,1]d

f(x) dx− 1
n

n∑
i=1

f(xi)

∣∣∣∣∣ ≤ V (f)D(d)
n .

1 The generalized Faure and the Sobol′ low discrepancy sequences are included in FINDER,
a Columbia University software system, and are available to researchers upon request by writing
the author.
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So far, we have discussed the discrepancy of a sequence of points with respect
to the Lebesgue measure. We briefly discuss the case where the uniformity of a
sequence is assessed with regard to a probability measure µ and introduce some
notation that we will use later. We assume that the support of µ is R+ and that µ
is absolutely continuous with respect to the Lebesgue measure.

For n > 1, let xi ∈ R+, i = 1, . . . , n, be any given points. Define the difference
between the empirical distribution (approximating µ using the points xi) and the
measure µ by

Rµ(E) =
A(E;n)

n
− µ(E), E ⊂ R+,

where A(E;n) denotes the number of xi contained in E and does not depend on µ
but depends only on the points xi. The discrepancy of the points xi, i = 1, . . . , n,
with respect to the probability measure µ is defined by

Dµ,n = Dµ,n(x1, . . . , xn) = sup
E
|Rµ(E)|,

where the supremum is taken over all sets of the form E = [0, x), x ∈ R+.
For x ≥ 0 we use the following notation:

µ(x) = µ([0, x)),

Rµ(x) =
∑n
i=1 1[0,x)(xi)

n
− µ(x) =

∑n
i=1 1[0,µ(x))(µ(xi))

n
− µ(x),

where 1A denotes the characteristic function of a set A. Thus, given a low discrep-
ancy sequence (with respect to the Lebesgue measure) ti ∈ [0, 1], i = 1, 2, . . . , the
sequence xi = µ−1(ti) ∈ R+, i = 1, 2, . . . , has discrepancy Dµ,n, with respect to the
measure µ, and satisfies Dµ,n(x1, . . . , xn) = D

(1)
n (t1, . . . , tn), n > 1. For brevity,

when d = 1 we will write Dn instead of D(1)
n .

3. Problem formulation

We consider the approximation of a weighted high-dimensional integral of the
form

Id(f) =
∫
Rd
f(‖x‖)e−‖x‖2 dx,(1)

where d is the dimension, f : R → R, and ‖ · ‖ denotes the Euclidean norm in Rd.
We also assume that f is such that the integral (1) is well defined and f ′ exists a.e.

The integral (1) can be reduced, via a change of variable, to a one-dimensional
integral, which can often be solved analytically, e.g., f = cos. We do not do this
because we want to assess the performance of QMC methods for d-dimensional
integration. In [11], the empirical convergence rate of QMC is proportional to n−1,
as if it sees that this is really a one-dimensional problem. In contrast, the empirical
convergence rate of MC remains proportional to n−1/2; it does not see that the
problem is really one dimensional.
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We obtain an equivalent integral over the cube [0, 1]d. We have

Id(f) =
∫
Rd
f(‖x‖)e−‖x‖

2
dx = 2−d/2

∫
Rd
f(‖y‖/

√
2)e−‖y‖

2/2 dy

(2)

= πd/2
∫
Rd
f(‖y‖/

√
2)
e−‖y‖

2/2

(2π)d/2
dy = πd/2

∫
[0,1]d

f

√√√√ d∑
j=1

(φ−1)2(tj)/2

 dt,

where φ is the cumulative normal distribution function with mean 0 and variance
1,

φ(u) =
1√
2π

∫ u

−∞
e−s

2/2 ds, u ∈ [−∞,∞].

Let ti = (ti1, . . . , tid) ∈ [0, 1]d, i = 1, . . . , n, be any deterministically chosen
sample points. Let xi = (xi1, . . . , xid) ∈ Rd, be such that xij = φ−1(tij), j =
1, . . . , d, i = 1, . . . , n. We approximate the integral (1) by the QMC method

Id,n(f) =
πd/2

n

n∑
i=1

f(‖xi‖/
√

2).(3)

We derive the error equation and the convergence rate of the method Id,n for
the following class of functions.

Definition 1. F is the class of functions f : R → R, such that Id(f) < ∞, f is
absolutely continuous, f ′ exists a.e., and

ess sup {|f ′(r)| : r ∈ R} ≤M,

where M is a constant.

The examples originally considered by Keister [2, 5] and later by Papageorgiou
and Traub [11], and Novak et al. [9] belong to F since f = cos. The example
f(r) = (1 + r2)1/2 in [2, 9] also belongs to F .

4. Speed of convergence

In this section we derive the error and the convergence rate of the method (3)
for the integral (1) in the class F . We have

Id(f) = 2−d/2
∫
Rd
f(‖x‖/

√
2)e−‖x‖

2/2 dx(4)

= cd2−d/2
∫ ∞

0

f(r/
√

2)rd−1e−r
2/2 dr

= πd/2
∫ ∞

0

f(r/
√

2)µ′(r)dr,

where cd = 2πd/2/Γ(d/2) and µ′(·) is the density function of the distribution µ of
r = ‖x‖, x ∈ Rd. Note that r2 = ‖x‖2 follows the chi-square distribution (see [16]
for the relationship between µ and the chi-square distribution).

First we consider integrals with Gaussian weights and derive the error of a
method that uses the average of n function evaluations, at arbitrary points, to
approximate them. Then we show the error of the method Id,n in the class F , and
derive certain auxiliary inequalities for the measure µ. We conclude the section by
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showing that for a particular choice of the n sample points the convergence of the
method Id,n is O(

√
logn/n).

Lemma 1. Let h : R → R, d ≥ 1, be a function such that
∫
Rd h(‖x‖)e−‖x‖2 dx <

∞, h is absolutely continuous, and h′ exists a.e. Let xi ∈ Rd, i = 1 . . . , n be any
points, n ≥ 1. Then∫

Rd
h(‖x‖)e

−‖x‖2/2

(2π)d/2
dx− 1

n

n∑
i=1

h(‖xi‖) =
∫ ∞

0

Rµ(r)h′(r) dr,

where µ is defined in (4) and Rµ(r) = 1
n

∑n
i=1 1[0,r)(‖xi‖)− µ(r), r ∈ R+.

Proof. Niederreiter [6] exhibits the error of a quasi-Monte Carlo method approxi-
mating the integral of a differentiable function. We apply a similar technique. For
n, d ≥ 1 consider xi ∈ Rd, i = 1, . . . , n. Then∫

Rd
h(‖x‖)e

−‖x‖2/2

(2π)d/2
dx− 1

n

n∑
i=1

h(‖xi‖)

=
∫ ∞

0

h(r)µ′(r) dr − 1
n

n∑
i=1

h(‖xi‖)

=
∫ 1

0

h(µ−1(t)) dt− 1
n

n∑
i=1

h(‖xi‖)

=
∫ 1

0

g(t) dt− 1
n

n∑
i=1

g(si), si = µ(‖xi‖), g = h ◦ µ−1

=
∫ 1

0

R(t)g′(t) dt, R(t) =
1
n

n∑
i=1

1[0,t)(si)− t

=
∫ 1

0

R(t)
dh(z)
dz

∣∣∣∣
z=µ−1(t)

(µ−1)′(t) dt

=
∫ 1

0

R(t)
dh(z)
dz

∣∣∣∣
z=µ−1(t)

dµ−1(t)

=
∫ ∞

0

R(µ(r))h′(r) dr

=
∫ ∞

0

Rµ(r)h′(r) dr,

which completes the proof.

In the proof of the Lemma 1 we have used the quantity Rµ(r) = R(µ(r)), r ∈ R+,
which is bounded from above by the discrepancy Dn of the points µ(‖xi‖), i =
1, . . . , n. This suggests that good sample points can be obtained by appropriately
transforming one-dimensional low discrepancy sequences as we will see below.

We now turn our attention to the integral Id. For each f ∈ F , we define the
error of the method Id,n(f) by

e(Id,n, f) = |Id(f)− Id,n(f)|.
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We also define the worst case error of this method in the class F by

e(Id,n) = sup
f∈F

e(Id,n, f).

Accordingly, the quantity e(Id,1, f) is the error we obtain using a sample of size 1.
This quantity can also be viewed as the initial error of the method Id,n(f) when
n > 1.

Lemma 2. For f ∈ F , the method Id,n approximates the integral Id with error

e(Id,n, f) =
πd/2√

2

∣∣∣∣∣
∫
R+

Rµ(r)f ′(r/
√

2) dr

∣∣∣∣∣ ,
where µ is defined in (4), Rµ(r) = 1

n

∑n
i=1 1[0,r)(‖xi‖) − µ(r), and xi ∈ Rd, i =

1, . . . , n are arbitrary but fixed sample points.

Proof. The proof follows from Lemma 1 by setting h(·) = πd/2f(·/
√

2).

Theorem 1. For the class of functions F , the error of the method (3) satisfies

e(Id,n) =
e(Id,1)
ρ(‖x1‖)

∫
R+

|Rµ(r)| dr,

where ρ(‖x1‖) =
∫
R+
|1[0,r)(‖x1‖)−µ(r)| dr, and xi ∈ Rd, i = 1, . . . , n are arbitrary

but fixed sample points.

Proof. Using Lemma 2 and by considering a function f ∈ F such that |f ′| = M

and Rµ(r)f ′(r/
√

2) ≥ 0 we derive e(Id,n). Similarly, we derive e(Id,1) and the proof
follows.

We proceed to obtain bounds for 1 − µ(r), r > 0, on which the value of the
quantity

∫
R+
|Rµ(r)| dr depends. We have

1− µ(r) =
∫ ∞
r

µ′(y) dy

=
∫ ∞

0

µ′(r + y) dy = cd(2π)−d/2
∫ ∞

0

(r + y)d−1e−(r+y)2/2 dy

= γdr
d−1e−r

2/2

∫ ∞
0

(y
r

+ 1
)d−1

e−rye−y
2/2 dy, γd = cd(2π)−d/2

≤ γdr
d−1e−r

2/2

∫ ∞
0

e−wye−y
2/2 dy, w = r − d− 1

r
, and r2 ≥ d ≥ 1

≤ γdr
d−1e−r

2/2w−1,

where the last inequality holds by virtue of the fact that
∫∞

0
e−yz dy = z−1, z > 0,

and e−y
2/2 ≤ 1. Since r2 ≥ d ≥ 1, we conclude that w−1 ≤ d/r (for d = 1 the

above expression holds for w = r ≥ 1) and that

1− µ(r) ≤ dγdrd−2e−r
2/2 = d

µ′(r)
r

, r ≥
√
d ≥ 1.(5)
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In a similar way we derive a lower bound for 1− µ(r). We have

1− µ(r) = γdr
d−1e−r

2/2

∫ ∞
0

(y
r

+ 1
)d−1

e−yre−y
2/2 dy

≥ γdr
d−1e−r

2/2

∫ ∞
0

e−yre−y
2/2 dy(6)

≥ γdr
d−1e−r

2/2

(
1
r
− 1
r3

)
, r > 0,

where the last inequality can be found in [16, p. 174].

Theorem 2. There exist deterministic points xi ∈ Rd, i = 1, . . . , n, for which the
error of the method Id,n for the integral Id is bounded as follows:

e(Id,n) ≤ e(Id,1)
ρ(ζ)

c

n

[√
2 log

(
d

Γ(d/2)
n

)
+ d

]
(1 + o(1)),

where c is a constant, ρ(ζ) =
∫
R+
|1[0,r)(ζ) − µ(r)| dr, and ζ = µ−1(1/2), i.e.,

e(Id,n) = O(
√

logn/n).

Proof. Let ti ∈ [0, 1), i = 1, . . . , n, be n numbers with discrepancy Dn = c/n,
where c ≥ 1/2 is a constant. For instance, these numbers can be n terms of a low
discrepancy sequence or a (t,m, 1)-net. It is shown in [6] that the discrepancy of
these points is given by

Dn =
1

2n
+ max

1≤i≤n

∣∣∣∣t(i) − 2i− 1
2n

∣∣∣∣ ,
where t(1) ≤ · · · ≤ t(i) ≤ · · · ≤ t(n) denotes the ordered sequence of the points.

This implies that the discrepancy of the sequence

τi =
{

ti if ti < 1− (4n)−1

ti − (4n)−1 otherwise , i = 1, . . . , n,

cannot exceed c/n and its maximum term satisfies τ(n) < 1 − (4n)−1. Hence,
without loss of generality, we assume that t(n) < 1− (4n)−1.

Consider xi ∈ Rd such that µ(‖xi‖) = ti, i = 1, . . . , n. Let r∗ = r∗(n) =
max1≤i≤n{‖xi‖}, assume that n is sufficiently large so that r∗2 > d ≥ 1 and
consider the error equation of Theorem 1. We have

e(Id,n)
e(Id,1)

=
1

ρ(‖x1‖)

∫
R+

|Rµ(r)| dr ≤ 1
ρ(ζ)

∫
R+

|Rµ(r)| dr,

because ρ(s) ≥ ρ(ζ), ∀s ∈ R+, for ζ = µ−1(1/2). Thus,

ρ(ζ)
e(Id,n)
e(Id,1)

≤
∫ r∗

0

|Rµ(r)| dr +
∫ ∞
r∗

[1− µ(r)] dr.

Since |Rµ(r)| ≤ c/n, r ∈ R+, we estimate the first term of the above equation by
cr∗/n. We estimate the second term using (5) and∫ ∞

r

|Rµ(z)| dz ≤
∫ ∞
r

[1− µ(z)] dz ≤ d[1− µ(r)], r ≥
√
d ≥ 1,

and 1− µ(r∗) ≤ c/n. Thus,

ρ(ζ)
e(Id,n)
e(Id,1)

≤ c

n
(r∗ + d).
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Consider the function

q = g(r) = d
µ′(r)
r

= dγdr
d−2e−r

2/2, r >
√
d ≥ 1.

We estimate its inverse, g−1, by

h(q) =
{

2
[
log(adq−1) +

d− 2
2

log log(adq−1)
]}1/2

=
√

2 log(adq−1)(1 + o(1)),

where ad = d/Γ(d/2). Indeed,

g(h(q)) =
dγd2(d−2)/2

ad

{
log(adq−1) +

d− 2
2

log log(adq−1)
}(d−2)/2

× q

[log(adq−1)](d−2)/2

= q(1 + o(1)), as q → 0.

From (5) and (6) we have tight bounds for µ(r),

1
d
g(r)

(
1− 1

d

)
≤ 1
d
g(r)

[
1− 1

r2

]
≤ 1− µ(r) ≤ g(r), r >

√
d ≥ 1.

The function g is decreasing for r2 > d− 2, which implies that g−1[1−µ(r∗)] ≥ r∗.
We substitute r∗ by the value g−1[1− µ(r∗)] in the error estimate to obtain

ρ(ζ)
e(Id,n)
e(Id,1)

≤ c

n
(g−1[1− µ(r∗)] + d).

Since we have assumed that t(n) < 1 − (4n)−1 and µ(r∗) = t(n), we have 1 −
µ(r∗) > (4n)−1. This implies that r = g−1[1 − µ(r∗)] =

√
2 log(adn)(1 + o(1)),

which completes the proof.

We do not know if the bound of Theorem 2 is sharp. The proof of Theorem 2
not only shows how good sample points can be obtained but also how the quality
of any sample can be assessed by calculating the discrepancy of its points. If the
discrepancy Dµ,n of the sample points xi, i = 1, . . . , n, is small, then the error of
the method Id,n will be small.

The quantity
√

2 log(adn), ad = d/Γ(d/2), in the error bound of Theorem 2 is
small in practice. For d as small as 6 a sample of size n > 108 is required for√

2 log(adn) > d.

Corollary 1. For
√

2 log(adn) ≤ d, ad = d/Γ(d/2), we have

e(Id,n) ≤ e(Id,1)
ρ(ζ)

2d
c

n
.

Corollary 2. If r∗ is small so that r∗ = r∗(n) ≤
√
d, then we have

e(Id,n) ≤ e(Id,1)
ρ(ζ)

[
√
d+ d]

c

n
.
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Proof. When r∗ ≤
√
d we cannot directly use (5) as we did in the proof of Theorem

2. Using |Rµ(r)| ≤ c/n, r ∈ R+, we have∫ ∞
0

|Rµ(r)| dr ≤
∫ √d

0

|Rµ(r)| dr +
∫ ∞
√
d

[1− µ(r)] dr

≤ c
√
d

n
+ d[1− µ(

√
d)] ≤ c

√
d

n
+ d[1− µ(r∗)]

≤ c

n
[
√
d+ d],

which completes the proof.

Corollaries 1 and 2 show conditions that relate the size of the dimension d and
the sample size n and how these conditions affect the error of the method Id,n.
These conditions can be interesting in practice.

In all cases, the size of Dµ,n and the conditions of the above two corollaries
can be easily checked to yield practical numerical error estimates. For instance,
the discrepancy of the points used by QMC-GF in [11] is small for n ≤ 106 and
d ≤ 100. This implies that they can be used to efficiently evaluate integrals of
functions in the class F . Thus, simulation results reporting fast convergence even
when d is large as in [9, 11] can be explained.
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[14] Sloan, I.H., and Woźniakowski, H. (1998), When Are Quasi-Monte Carlo Algorithms Efficient
for High Dimensional Integrals?, J. Complexity, 14(1), 1–33.

[15] Tezuka, S. (1995), “Uniform Random Numbers: Theory and Practice,” Kluwer Academic
Publishers, Boston.

[16] Tong, Y.L. (1990), “The Multivariate Normal Distribution,” Springer Verlag, New York.
MR 91g:60021

[17] Traub, J.F. and Werschulz, A.G. (1998), “Complexity and Information,” Cambridge Univer-
sity Press, Cambridge, UK. CMP 99:13
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