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ERROR BOUNDS
FOR INTERPOLATORY QUADRATURE RULES

ON THE UNIT CIRCLE

J. C. SANTOS-LEÓN

Abstract. For the construction of an interpolatory integration rule on the
unit circle T with n nodes by means of the Laurent polynomials as basis
functions for the approximation, we have at our disposal two nonnegative
integers pn and qn, pn + qn = n − 1, which determine the subspace of basis
functions. The quadrature rule will integrate correctly any function from this
subspace. In this paper upper bounds for the remainder term of interpolatory
integration rules on T are obtained. These bounds apply to analytic functions
up to a finite number of isolated poles outside T. In addition, if the integrand
function has no poles in the closed unit disc or is a rational function with poles
outside T , we propose a simple rule to determine the value of pn and hence qn
in order to minimize the quadrature error term. Several numerical examples
are given to illustrate the theoretical results.

1. Introduction

This paper deals with the numerical calculation of integrals around the unit
circle in the complex plane, that is, integrals of the form

I(f) =
∫ π

−π
f(eiθ)dψ(θ),(1)

where ψ is a distribution function (real valued, bounded and nondecreasing ) on
(−π, π). We write T = {z ∈ C : |z| = 1} for the unit circle.

Jones, Nj̊astad and Thron in [6] studied the so-called Szegö quadrature formulas
for the estimations of integrals (1). They are similar to the Gaussian formulas on
the real line, but the role played by polynomials and orthogonal polynomials is now
played by Laurent polynomials and para-orthogonal polynomials. These topics are
described below.

Let (p, q) be a pair of integers where p ≤ q. We denote by Λp,q the linear space of
all functions of the form

∑q
j=p cjz

j, cj ∈ C. The functions of Λp,q are called Laurent
polynomials or L-polynomials. We write Λ for the linear space of all L-polynomials.
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Consider the inner product on Λ× Λ given by

(f, g) =
∫ π

−π
f(eiθ)g(eiθ)dψ(θ).(2)

Let {ρn}∞0 be the sequence of polynomials obtained by orthogonalization of {zn}∞0
with respect to the inner product (2). The sequence {ρn}∞0 is the sequence of
Szegö polynomials with respect to the distribution function ψ. As is well known
(see, e.g., Theorem 3.4 in [5]) ρn has its zeros in the region |z| < 1. Thus they are
not adequate as nodes for quadrature formulas to estimate integrals (1) on the unit
circle.

Theorem 1 ([6]). Let {ρn}∞0 be the sequence of Szegö polynomials with respect to
the distribution function ψ. Let {κn}∞0 be a sequence of complex numbers satisfying
|κn| = 1, n ≥ 0. Let Bn(z, κn) = ρn(z) + κnρ

∗
n(z), where ρ∗n(z) = znρn(1/z). Then

Bn(z, κn) has n distinct zeros ζ(n)
m (κn) located on T. Let

λ(n)
m (κn) =

∫ π

−π

Bn(z, κn)

(z − ζ(n)
m (κn))B′n(ζ(n)

m (κn), κn)
dψ(θ), 1 ≤ m ≤ n.

Then

I(f) =
∫ π

−π
f(eiθ)dψ(θ) =

n∑
m=1

λ(n)
m (κn)f(ζ(n)

m (κn))(3)

for all f ∈ Λ−(n−1),n−1. It holds that λ(n)
m (κn) > 0, 1 ≤ m ≤ n, and the quadrature

formula (3) gives the largest domain of validity, that is, there cannot exist an n-point
quadrature formula µ(f) =

∑n
m=1 λmf(αm), αm ∈ T , which correctly integrates any

function f ∈ Λ−(n−1),n or any function f ∈ Λ−n,n−1.

The polynomials Bn(z, κn), n ≥ 0, are the para-orthogonal polynomials with
respect to the distribution function ψ.

In [2] Bultheel, González-Vera, Hendriksen and Nj̊astad proved that the Szegö
quadrature process converges as n tends to infinity to I(f), for all integrable func-
tions f on T with respect to the measure dψ. They also introduced the so-called
interpolatory rules on the unit circle.

Definition 1. [2] Let xj , 1 ≤ j ≤ n, be n distinct given points on T. Let
pn and qn be nonnegative integers such that pn+ qn = n−1. A quadrature formula
In(f) =

∑n
j=1 µjf(xj), µj ∈ C, to approximate the integral (1) is said

to be of interpolatory type in Λ−pn,qn if µj =
∫ π
−π Lj(e

iθ)dψ(θ), where Lj(z) =
xpnj N(z)/(zpn(z − xj)N ′(xj)), 1 ≤ j ≤ n, are the fundamental Lagrange
L-polynomials in Λ−pn,qn , with respect to the nodes xj , 1 ≤ j ≤ n, and N(z) =
Πn
j=1(z − xj).

Thus In(f) = I(L), where L(z) =
∑n
j=1 f(xj)Lj(z) is the L-polynomial in

Λ−pn,qn interpolating f at xj , 1 ≤ j ≤ n. An n-point Szegö quadrature formula
is of interpolatory type ([2]) in Λ−pn,qn for any pn and qn nonnegative integers
satisfying pn + qn = n − 1. The following theorem is proved in [1] for the general
case where the basis functions for the approximation is the set of rational functions
with prescribed poles, which includes the Laurent polynomials as a particular case.
We state it here for the Laurent polynomials.
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Theorem 2. Assume we are interested in the estimation of integrals of the
form Iρ(f) =

∫ π
−π f(eiθ)ρ(θ)dθ, where ρ(θ) is a complex valued function such

that
∫ π
−π |ρ(θ)|dθ < ∞. Let ω(θ) be a nonnegative weight function such that∫ π

−π |ρ(θ)|2/ω(θ)dθ < ∞. Let {xj,n}nj=1, n ≥ 1, be the zeros of the para-orthogonal

polynomial of degree n with respect to the distribution function s(θ) =
∫ θ
−π ω(t)dt.

Let
∑n

j=1 Aj,nf(xj,n) be the quadrature formula of interpolatory type in
Λ−pn,qn with nodes {xj,n}nj=1 to approximate the integral Iρ(f).
As usual, pn and qn are nonnegative integers satisfying pn + qn = n − 1. If
limn→∞ pn = limn→∞ qn =∞, then

lim
n→∞

n∑
j=1

Aj,nf(xj,n) = Iρ(f)

for all functions f bounded on T for which Iρ(f) exists as a Riemann integral.

In this paper it is assumed that the numerical calculation of integrals of the form
(1) is done by means of quadrature formulas In(f) of interpolatory type in Λ−pn,qn ,
where pn and qn are nonnegative integers satisfying pn + qn = n− 1. We will also
assume that the remainder term

Rn(f) = I(f)− In(f)

satisfies

|Rn(zk)| ≤Mn, k ≤ −(pn + 1), k ≥ qn + 1, k ∈ Z, n ≥ 1,(4)

where Mn > 0 is a constant independent of k. By construction, Rn(zk) = 0, −pn ≤
k ≤ qn. Condition (4) is satisfied by Szegö quadrature formulas (3). Indeed, let the
moments mk be given by

mk = I(zk), k ∈ Z.

Then, taking into account that |mk| ≤ m0, k ∈ Z, and the coefficients λ(n)
m (κn) of

the Szegö quadrature formula are positive, we get

|Rn(zk)| = |mk − In(zk)| ≤ m0 +
n∑

m=1

λ(n)
m (κn)|(ζ(n)

m (κn))k|.

Since the nodes ζ(n)
m (κn) are located on T and

In(1) =
n∑

m=1

λ(n)
m (κn) = I(1) = m0, n ≥ 1,

it results that

|Rn(zk)| ≤Mn = 2m0, k ∈ Z.
Quadrature formulas of interpolatory type as in Theorem 2, that is, with nodes

the zeros of para-orthogonal polynomials with respect to a given distribution func-
tion, also satisfy (4). This is due to the existence ([1]) of an absolute constant
B > 0 such that

∑n
j=1 |Aj,n| < B, n ≥ 1. Indeed,

|Rn(zk)| = |I(zk)− In(zk)| ≤ m0 +
n∑
j=1

|Aj,n| ≤ m0 +B, n ≥ 1, k ∈ Z.
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In the following theorem we consider the particular case of the weight function
ω = 1 in Theorem 2. We deduce that one can take Mn = 2m0 in (4). We will
make use of the well known result that the orthogonal polynomials with respect to
the distribution ψ(θ) =

∫ θ
−π ω(t)dt = θ + π are given by ([9]) ρn = zn, n ≥ 0, and

hence the para-orthogonal polynomials (see Theorem 1) are given by Bn(z, κn) =
zn + κn, κn ∈ C, |κn| = 1, n ≥ 0.

Theorem 3. Let In(f) =
∑n

j=1 cj,nf(zj,n) be the quadrature formula to approxi-
mate integrals (1) of interpolatory type in Λ−pn,qn with uniformly distributed nodes
zj,n on T, that is, the nodes are the roots of zn + κn = 0, κn ∈ C, |κn| = 1, n ≥ 1.
As usual, pn and qn are nonnegative integers satisfying pn + qn = n − 1. For
k ∈ Z one can write k = rkn + sk, rk ∈ Z, 0 ≤ sk ≤ n − 1, n ≥ 1. Then
In(zk) = msk/z

sk−k
1,n if sk ≤ qn and In(zk) = msk−n/z

sk−n−k
1,n otherwise. Hence

|Rn(zk)| ≤ 2m0, k ∈ Z, n ≥ 1.

Proof. We know ([8]),

cj,n =
1
n

qn∑
`=−pn

m`
w(1−j)`

z`1,n
, 1 ≤ j ≤ n, w = e

2πi
n , n ≥ 1.

Since the nodes zj,n can be calculated by means of zj,n = wj−1z1,n, 1 ≤ j ≤ n, we
deduce for k ∈ Z

In(zk) =
1
n

n∑
j=1

 qn∑
`=−pn

m`
w(1−j)`

z`1,n

w(j−1)kzk1,n =
zk1,n
n

qn∑
`=−pn

m`

z`1,n

n∑
j=1

(
wk−`

)j−1
.

We can write k = rkn+ sk, rk ∈ Z, 0 ≤ sk ≤ n− 1. Hence

In(zk) =
zk1,n
n

qn∑
`=−pn

m`

z`1,n

n∑
j=1

(
wsk−`

)j−1
.

Note that wsk−` = 1 if and only if sk− ` is a multiple of n. Since −n+ 1 ≤ sk− ` ≤
2n− 2, (take into account 0 ≤ sk ≤ n − 1 and −n + 1 ≤ −pn ≤ ` ≤ qn ≤ n − 1)
the value sk − ` is a multiple of n if and only if sk − ` = 0 or sk − ` = n. In
these cases it holds

∑n
j=1

(
wsk−`

)j−1 = n. If sk − ` 6= 0 and sk − ` 6= n, then∑n
j=1

(
wsk−`

)j−1 = 1−w(sk−`)n

1−wsk−` = 0. Furthermore, if sk ≤ qn, then taking into
account that −qn ≤ −` ≤ pn, we deduce −qn ≤ sk − ` ≤ pn + qn = n − 1. So, it
takes place sk − ` = 0 but no sk − ` = n. If sk > qn, then it takes place sk − ` = n
but no sk − ` = 0. The proof follows.

In this paper we are interested in the calculation of upper bounds for the remain-
der term Rn(f) for interpolatory quadrature rules In(f) in Λ−pn,qn for functions f
analytic in a simply connected domain D up to a finite number of isolated poles
outside T. We will assume that D contains T in its interior. This class of functions
is equal to the set of all functions f that can be written in the form

f(z) =
g(z)

(z − α1)τ1 · · · (z − αν)τν
,(5)

where τj ≥ 0, τj ∈ N, αj ∈ C, |αj | 6= 1, αk 6= αj , 1 ≤ j, k ≤ ν and g is analytic
in D.
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Note that if the interpolatory rules are constructed as in Theorem 2, then they
converge for all functions of the form (5). Error bounds for Szegö quadrature
formulas of analytic functions were given in [2], and for the particular case of
integrals that represent Carathéodory functions and real parts of such integrals in
[7]. In [8] error bounds for interpolatory integration rules were studied for analytic
functions.

Let Γ be a positively oriented Jordan curve in D that contains T in its interior,
and that does not pass through any of the singular points α1, . . . , αν . By the Cauchy
integral formula

g(z) =
1

2πi

∫
Γ

g(ζ)
ζ − z dζ, z ∈ T.(6)

From (5) and (6) is straightforward to deduce that

Rn(f) =
1

2πi

∫
Γ

Kn(ζ)g(ζ)dζ,(7)

where

Kn(ζ) = Rn

(
1

(ζ − z)(z − α1)τ1 · · · (z − αν)τν

)
, ζ ∈ Γ, z ∈ T.(8)

Thus from (7) we obtain

| Rn(f) |≤ `(Γ)
2π

max
ζ∈Γ
| Kn(ζ) | max

ζ∈Γ
| g(ζ) |,(9)

where `(Γ) denotes the length of Γ.
The structure of the paper is the following. In Section 2 we obtain, by means of

equation (9), upper bounds for the remainder termRn(f) for functions f of the form
(5). These bounds are studied in Section 3. As a result we propose guidelines which
help us in the choice of the parameters pn and qn at our disposal for the construction
of the interpolatory quadrature formula in order to minimize the error. In Section
4 we illustrate the proposed guidelines through several numerical examples.

2. Error bounds

For clearness and in order to show the idea that we will use to bound the error
term in the general case of multiple poles, we first consider analytic functions and
functions with simple poles.

Theorem 4. Let In be a quadrature formula of interpolatory type in Λ−pn,qn where
pn and qn are nonnegative integers satisfying pn + qn = n − 1. Assume that its
corresponding error term satisfies (4). Let f be a function of the form (5) with
τj = 1, 1 ≤ j ≤ ν, and let Γ be a positively oriented Jordan curve in D that
contains T in its interior and that does not pass through any of the singular points
α1, . . . , αν . As usual D is a simply connected domain containing T in its interior.
Then for n ≥ 1, it holds that

|Rn(f)| ≤ Mn`(Γ)
2π

 1
ebqn+1(b − 1)

+
∑
|αj |<1

|αj |pn
ej |P ′(αj)|(1− |αj |)

+
∑
|αj |>1

1
ej |P ′(αj)|(|αj | − 1)|αj|qn+1

max
ζ∈Γ
|g(ζ)|,
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where `(Γ) denotes the length of Γ, Mn is defined by (4), P (z) = (z−α1) · · · (z−αν),
e = minζ∈Γ |P (ζ)|, and

b = min
ζ∈Γ
|ζ|, ej = min

ζ∈Γ
|ζ − αj |, 1 ≤ j ≤ ν.(10)

Proof. For ζ ∈ Γ and z ∈ T we can make the partial fraction decomposition

1
(ζ − z)(z − α1) · · · (z − αν)

=
B0

ζ − z +
B1

z − α1
+ · · ·+ Bν

z − αν
,

where

B0 =
1

P (ζ)
, Bj =

1
(ζ − αj)P ′(αj)

, 1 ≤ j ≤ ν.(11)

Thus

Kn(ζ) = Rn

(
1

(ζ − z)(z − α1) · · · (z − αν)

)
(12)

= B0Rn

(
1

ζ − z

)
+

ν∑
j=1

BjRn

(
1

z − αj

)
, z ∈ T, ζ ∈ Γ.

Let α be a complex number, |α| > 1, then taking into account that z ∈ T and
Rn(zk) = 0, −pn ≤ k ≤ qn, n ≥ 1, we get

Rn

(
1

z − α

)
= Rn

− 1
α

∑
k≥0

( z
α

)k
= −

∑
k≥0

1
αk+1

Rn(zk) = −
∑

k≥qn+1

1
αk+1

Rn(zk).

(13)

Thereby from (4) one can deduce

∣∣∣∣Rn( 1
z − α

)∣∣∣∣ ≤Mn

∑
k≥qn+1

(
1
|α|

)k+1

=
Mn

|α|qn+1(|α| − 1)
, z ∈ T, |α| > 1.

(14)

In particular, for α = ζ ∈ Γ we get∣∣∣∣Rn( 1
z − ζ

)∣∣∣∣ ≤ Mn

|ζ|qn+1(|ζ| − 1)
.(15)

Consider now a complex number α, |α| < 1. Then

Rn

(
1

z − α

)
= Rn

1
z

∑
k≥0

(α
z

)k =
∑
k≥0

αkRn

(
1

zk+1

)
=
∑
k≥pn

αkRn

(
1

zk+1

)
.

(16)

Thereby ∣∣∣∣Rn( 1
z − α

)∣∣∣∣ ≤Mn

∑
k≥pn

|α|k =
Mn|α|pn
1− |α| , z ∈ T, |α| < 1.(17)

The proof follows by virtue of (9) and taking into account (11), (12), (14), (15) and
(17).
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For the particular case Γ = Cρ where

Cρ = {ζ ∈ C : |ζ| = ρ}, ρ > 1(18)

we deduce the following

Corollary 1. Under the conditions of Theorem 4 with Γ = Cρ it holds

|Rn(f)| ≤Mnρ

 1
|ρ− |α1|| · · · |ρ− |αν ||ρqn+1(ρ− 1)

(19)

+
∑
|αj |<1

|αj |pn
(ρ− |αj |)|P ′(αj)|(1− |αj |)

+
∑
|αj|>1

1
|ρ− |αj |||P ′(αj)|(|αj | − 1)|αj |qn+1

max
ζ∈Cρ

|g(ζ)|.

For a function f analytic in D we can also make use of Theorem 4. This is what
we do in the following corollary.

Corollary 2. Let f be a function analytic in D, i.e., the multiplicities τj in (5)
are equal to zero for 1 ≤ j ≤ ν. Let In be a quadrature formula of interpolatory type
in Λ−pn,qn , where pn and qn are nonnegative integers satisfying pn + qn = n − 1.
Assume that its corresponding error term satisfies (4). Let Γ be a positively oriented
Jordan curve in D that contains T in its interior and 0 ∈ D. Then

|Rn(f)| ≤ Mn`(Γ)
2πbqn+2(b − 1)

max
ζ∈Γ
|f(ζ)|.

For the particular case Γ = Cρ we deduce

|Rn(f)| ≤ Mn

ρqn+1(ρ− 1)
max
ζ∈Cρ

|f(ζ)|.(20)

Proof. Define h(z) = g(z)/z if z 6= 0 where g(z) = zf(z) and h(0) = f(0). Since
h(z) = f(z), z ∈ T and the nodes of the quadrature formula are located on T,
it holds Rn(h) = Rn(f). The proof follows by making use of Theorem 4 for the
function h(z).

The error bound (20) was also deduced in [8].
We consider next the general case of multiple poles, that is, we deal with func-

tions f of the form (5) with the multiplicities τj ≥ 1. For ζ ∈ Γ and z ∈ T it holds
that

1
(ζ − z)(z − α1)τ1 · · · (z − αν)τν

=
B(ζ)
ζ − z +

ν∑
j=1

τj∑
`=1

Bj,`(ζ)
(z − αj)`

,

where

B(ζ) =
1

(ζ − α1)τ1 · · · (ζ − αν)τν
,

Bj,`(ζ) =
1

(τj − `)!
lim
z→αj

dτj−`

dzτj−`

[
(z − αj)τj

(ζ − z)(z − α1)τ1 · · · (z − αν)τν

](21)
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for 1 ≤ ` ≤ τj , 1 ≤ j ≤ ν. Thus

Kn(ζ) = B(ζ)Rn

(
1

ζ − z

)
+
∑
|αj |<1

τj∑
`=1

Bj,`(ζ)Rn

(
1

(z − αj)`

)
(22)

+
∑
|αj|>1

τj∑
`=1

Bj,`(ζ)Rn

(
1

(z − αj)`

)
, ζ ∈ Γ, z ∈ T,

where B(ζ) and Bj,`(ζ) are given by (21). Our goal now is to get a bound for
maxζ∈Γ |Kn(ζ)|. Note that we can write

Bj,`(ζ) =
Cj,`

(ζ − αj)τj−`+1
, 1 ≤ ` ≤ τj , 1 ≤ j ≤ ν,(23)

where Cj,` is a constant independent of ζ. Thus

|B(ζ)| ≤ 1
e
, |Bj,`(ζ)| ≤

|Cj,`|
e
τj−`+1
j

, ζ ∈ Γ,(24)

where ej, 1 ≤ j ≤ ν is given by (10) and

e = min
ζ∈Γ
|(ζ − α1)τ1 · · · (ζ − αν)τν |.(25)

By induction on ` it is simple to deduce the relation

Rn

(
1

(z − α)`

)
=

1
(`− 1)!

d`−1

dα`−1
Rn

(
1

z − α

)
, ` ≥ 1, z ∈ T, α ∈ C− T.

(26)

Let us consider a complex number α in the open unit disc, i.e., α ∈ C, |α| < 1.
Taking into account (16), we can deduce from (26) that∣∣∣∣Rn( 1

(z − α)`

)∣∣∣∣ ≤ Mn

(`− 1)!

∑
k≥k(pn,`)

k(k − 1) · · · (k − (`− 2))|α|k−`+1, ` ≥ 2,

where k(pn, `) = max{pn, `− 1}.
Define for ` ∈ N, ` ≥ 1, m ≥ 0, m ∈ N and α a complex number |α| < 1,

S(`)
α,m =

∑
k≥k(m,`)

k(k − 1) · · · (k − (`− 2))|α|k−`+1, ` ≥ 2,(27)

and for ` = 1

S(1)
α,m =

∑
k≥m
|α|k =

|α|m
1− |α| ,

where as usual k(m, `) = max{m, `− 1}.
Thus for a pole αj of f, |αj | < 1, it can be written∣∣∣∣Rn( 1

(z − αj)`

)∣∣∣∣ ≤ Mn

(`− 1)!
S(`)
αj ,pn , 1 ≤ ` ≤ τj , z ∈ T.(28)

Note that by virtue of (17) the above equation is also valid for ` = 1. Observe that

S(`)
α,m =

[
d`−1

dx`−1

(
xk(m,`)

1− x

)]
x=|α|

, ` ∈ N, ` ≥ 1, m ∈ N, m ≥ 0, α ∈ C, |α| < 1.

Furthermore, the value S
(`)
α,m can be obtained recursively according to the rule

stated in the next theorem.
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Theorem 5. Let α ∈ C, |α| < 1, m ≥ 0, m ∈ N and ` ≥ 2, ` ∈ N. If m ≥ `− 1,
then

S(`)
α,m =

m(m− 1) · · · (m− (`− 2))|α|m−`+1

1− |α| + (`− 1)
S

(`−1)
α,m

1− |α| , ` ≥ 2.

If `− 1 > m, then

S(`)
α,m =

`− 1
1− |α|S

(`−1)
α,m , ` ≥ 2.

Proof. Consider the parial sums of S(`)
α,m given by

S
(`)
α,m,t =

k(m,`)+t−1∑
k=k(m,`)

k(k − 1) · · · (k − (`− 2))|α|k−`+1, t ≥ 1.

The difference S(`)
α,m,t − |α|S

(`)
α,m,t yields for t ≥ 2

(1− |α|)S(`)
α,m,t = k(m, `)(k(m, `)− 1) · · · (k(m, `)− (`− 2))|α|k(m,`)−`+1

(29)

+ (`− 1)A(k(m, `), α, `, t)

− (k(m, `) + t− 1) · · · (k(m, `) + t− 1− (`− 2))|α|k(m,`)+t−`+1,

where

A(k(m, `), α, `, t) = k(m, `)(k(m, `)− 1) · · · (k(m, `)− (`− 3))|α|k(m,`)−`+2 + · · ·
+ (k(m, `) + t− 2) · · · (k(m, `) + t− 2− (`− 3))|α|k(m,`)+t−`.

Ifm ≥ `−1, then k(m, `) = k(m, `−1) = m and hence A(k(m, `), α, `, t) = S
(`−1)
α,m,t−1.

If `− 1 > m, then k(m, `) = `− 1 = k(m, `− 1) + 1 and hence

A(k(m, `), α, `, t) = S
(`−1)
α,m,t−1 − (`− 2)!

+ (k(m, `) + t− 2) · · · (k(m, `) + t− 2− (`− 3))|α|k(m,`)+t−`.

Note that

0 ≤ lim
t→∞

(k(m, `) + t− 1) · · · (k(m, `) + t− 1− (`− 2))|α|k(m,`)+t−`+1

≤ lim
t→∞

(2t− 1)`−1|α|t−`+1 = 0.

Furthermore

0 ≤ lim
t→∞

(k(m, `) + t− 2) · · · (k(m, `) + t− 2− (`− 3))|α|k(m,`)+t−`

≤ lim
t→∞

(2t− 2)`−2|α|t−` = 0.

The proof follows taking limit when t tends to infinity in (29).
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We consider next a pole αj of f, |αj | > 1. From (26) taking into account (13)
one gets∣∣∣∣Rn( 1

(z − αj)`

)∣∣∣∣ ≤ Mn

(`− 1)!

∑
k≥qn+1

(k + 1)(k + 2) · · · (k + `− 1)
1

|αj |k+`
, ` ≥ 2.

Replace in the last summation k by t = k + `− 1. We obtain

∣∣∣∣Rn( 1
(z − αj)`

)∣∣∣∣ ≤ Mn

(`− 1)!|αj |`
S

(`)
1/αj ,qn+`, |αj | > 1, 1 ≤ ` ≤ τj , z ∈ T.

(30)

Note that this equation is also valid for ` = 1 by virtue of (14).
We can now summarize in the following theorem.

Theorem 6. Let In be a quadrature formula of interpolatory type in Λ−pn,qn with
property (4) where pn and qn are nonnegative integers satisfying pn+qn = n−1, n ≥
1. Let f be a function of the form (5) and analytic in a simply connected domain
D containing T in its interior. Consider a positively oriented Jordan curve Γ in D
that contains T in its interior and that Γ ∩ {α1, . . . , αν} = ∅. Then

| Rn(f) |≤ Mn`(Γ)
2π

 1
ebqn+1(b− 1)

+
∑
|αj |<1

τj∑
`=1

|Cj,`|S(`)
αj ,pn

e
τj−`+1
j (`− 1)!

+
∑
|αj|>1

τj∑
`=1

|Cj,`|S(`)
1/αj ,qn+`

e
τj−`+1
j (`− 1)!|αj |`

max
ζ∈Γ
| g(ζ) |,

where `(Γ) denotes the length of Γ and b and ej are given by (10). Cj,` and e are
given by (23) and (25), respectively. The function S

(`)
α,m is defined in (27) and can

be evaluated by means of Theorem 5.

Proof. Take into account (9) jointly with (22), (15), (28) and (30).

In the case of simple poles, i.e., τj = 1, 1 ≤ j ≤ ν, Theorem 6 reduces to
Theorem 4.

Corollary 3. Under the conditions of Theorem 6 it holds for Γ = Cρ = {ζ ∈ C :
|ζ| = ρ}, ρ > 1 that

| Rn(f) |≤Mnρ

 1
|ρ− |α1||τ1 · · · |ρ− |αν ||τνρqn+1(ρ− 1)

+
∑
|αj |<1

τj∑
`=1

|Cj,`|S(`)
αj ,pn

(ρ− |αj |)τj−`+1(`− 1)!

+
∑
|αj|>1

τj∑
`=1

|Cj,`|S(`)
1/αj ,qn+`

|ρ− |αj ||τj−`+1(`− 1)!|αj |`

max
ζ∈Cρ

| g(ζ) | .

(31)
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3. Convergence analysis

As we mentioned in Theorem 2, the convergence of interpolatory rules for
bounded Riemann integrable functions on T, based on the zeros of para-orthogonal
polynomials with respect to a given distribution function, is constrained to the con-
dition that when n tends to infinity then the parameters at our disposal, pn and
qn, pn + qn = n− 1, must both tend to infinity. In the case that one of the parame-
ters is fixed to a given value and the other tends to infinity, then convergence may
be lost. This case is shown in Example 1 given below where a nonsuitable fixed
value leads into a nonconvergent sequence of quadrature formulas. But as we will
show, for a subclass of functions of (5) we can appropriately fix a value for one of
the parameters while retaining convergence. The advantage of this strategy is to
minimize the quadrature error bound.

Example 1. Consider f(z) = z. (Note that we can write f(z) = g(z)/z where
g(z) = z2.) For n ≥ 1, take qn = 0 and hence pn = n − 1. Consider the Poisson
integral

I(f) =
∫ π

−π
f(eiθ)dψ(θ),(32)

where ψ(θ) is the absolutely continuous distribution function with derivative

ψ′(θ) =
1− |r|2
|eiθ − r|2 , r ∈ C, 0 ≤ |r| < 1, −π ≤ θ < π.(33)

It holds that

I(zk) = 2πrk, I(
1
zk

) = 2πrk, k ≥ 0.(34)

Consider any fixed r ∈ C, 0 < |r| < 1. Let In be the quadrature formula of inter-
polatory type in Λ−(n−1),0 to estimate the integral (32) with uniformly distributed
nodes on T, that is, the nodes are the roots of zn+κn = 0, κn ∈ C, |κn| = 1, n ≥ 1.
The L-polynomial in Λ−(n−1),0 interpolating f at such a set of nodes is −κn/zn−1.
Then taking into account the remark after Definition 1 we get In(f) = In(z) =
I
(
−κn/zn−1

)
= −2πκnrn−1. Thus limn→∞ In(f) = 0 6= I(f) = 2πr.

On the other hand, consider qn = q, q ≥ 1, n ≥ q+ 1 and hence pn = n− 1− q.
Let In be the quadrature formula of interpolatory type in Λ−pn,q with uniformly
distributed nodes on T to estimate (32). Then In(f) converges to I(f) = I(z) since
by construction In(f) = I(f), n ≥ q + 1.

From here on we will assume that the constant Mn in (4) is also independent of
n, so we will write M rather than Mn. As we saw in Section 1, this is the case of
the most frecuently used quadrature formulas on the unit circle.

Suppose first that all the poles lie inside the open unit disc, that is, |αj | < 1, 1 ≤
j ≤ ν. Let α be a pole with maximum modulus. From (31) we can write

| Rn(f) |≤Mρ

[
1

(ρ− |α|)τρqn+1(ρ− 1)

+
ν∑
j=1

τj∑
`=1

|Cj,`|S(`)
αj ,pn

(ρ− |αj |)τj−`+1(`− 1)!

max
ζ∈Cρ

| g(ζ) |,
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where τ = τ1 + · · ·+ τν . From definition (27) of S(`)
α,m we deduce that

S(`)
αj ,pn ≤

∑
k≥pn

kτ̂−1|α|k−τ̂+1 < +∞, 1 ≤ j ≤ ν, 1 ≤ ` ≤ τj , pn > τ̂ − 1,

where τ̂ = max1≤j≤ν τj . Furthermore if ρ− |α| > 1, then

| Rn(f) |≤Mρ

 1
(ρ− |α|)τρqn+1(ρ− 1)

+
τM̂

ρ− |α|
∑
k≥pn

kτ̂−1|α|k−τ̂+1

max
ζ∈Cρ

| g(ζ) |,

(35)

where M̂ = max1≤j≤ν, 1≤`≤τj |Cj,`|.
Let us assume that g is an entire function satisfying

max
ζ∈Cρ

| g(ζ) |≤ cρd, ρ > 1,(36)

where c ≥ 0 and d ≥ 0, d ∈ N, are constants independent of ρ. From Liouville’s
theorem, see, e.g., [4, p. 159], it follows that the set of functions g satisfying (36)
is the set of polynomials of degree at most d.

Taking into account (35) and (36) we get

| Rn(f) |≤Mcρd+1

 1
(ρ− |α|)τρqn+1(ρ− 1)

+
τM̂

ρ− |α|
∑
k≥pn

kτ̂−1|α|k−τ̂+1

 , pn > τ̂ − 1.

Observe that∑
k≥pn

kτ̂−1|α|k−τ̂+1 = pτ̂−1
n |α|pn−τ̂+1

∑
k≥0

(
pn + k

pn

)τ̂−1

|α|k

≤ pτ̂−1
n |α|pn−τ̂+1Dα,τ̂ ,

where

Dα,τ̂ =
∑
k≥0

(1 + k)τ̂−1|α|k < +∞.

Hence

| Rn(f) |≤Mcρd+1

[
1

(ρ− |α|)τρqn+1(ρ− 1)

+
τM̂Dα,τ̂p

τ̂−1
n |α|pn−τ̂+1

ρ− |α|

]
, pn > τ̂ − 1.

(37)

From where we deduce that if both pn and qn, pn + qn = n− 1 tend to infinity as n
tends to infinity we get convergence for any fixed ρ, ρ−|α| > 1. Convergence is also
assured if qn is fixed to a nonnegative integer qn = q ≥ d− τ and limn→∞ pn =∞,
pn + qn = n− 1. Indeed, from (37)

lim
n→∞

|Rn(f)| ≤ Mcρd+1

(ρ− |α|)τρq+1(ρ− 1)

for any ρ such that ρ− |α| > 1. The assertion follows taking infimum in ρ.
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The right hand part of (37) as a function of pn is decreasing for sufficiently large
pn. Thus we suggest for functions of the form (5) with all its poles in the open unit
disc and satisfying (36), that is, the rational functions with poles on the open unit
disc, to take qn = q = max{0, d− τ}, τ = τ1 + · · ·+ τν , and hence pn = n− 1− q.

Suppose now that all the poles lie outside the closed unit disc, that is, |αj | >
1, 1 ≤ j ≤ ν. Then from (31)

| Rn(f) |≤Mρ

 1
|ρ− |β||τρqn+1(ρ− 1)

+
ν∑
j=1

τj∑
`=1

|Cj,`|S(`)
1/αj ,qn+`

|ρ− |αj ||τj−`+1(`− 1)!|αj |`

max
ζ∈Cρ

|g(ζ)|,

where β is a pole for which is attained minαj |ρ−|αj || and as usual τ = τ1 + · · ·+τν .
From the definition (27) of S(`)

α,m we deduce that

S
(`)
1/αj ,qn+` ≤

∑
k≥qn

kτ̂−1|β̂|k−τ̂+1 <∞, 1 ≤ j ≤ ν, 1 ≤ ` ≤ τj , qn > τ̂ − 1,

where β̂ = max1≤j≤ν 1/|αj|.
Then

| Rn(f) |≤Mρ

 1
|ρ− |β||τρqn+1(ρ− 1)

+
τB̂

|ρ− |β||δ
∑
k≥qn

kτ̂−1|β̂|k−τ̂+1

max
ζ∈Cρ

| g(ζ) |,

(38)

where B̂ = max1≤j≤ν, 1≤`≤τj |Cj,`|/((` − 1)!|αj |`), τ̂ = max1≤j≤ν τj , δ = 1 if
|ρ− |β|| ≥ 1 and δ = τ̂ if |ρ− |β|| < 1.

The expression in brackets in the right hand part of (38) decreases for increasing
values of qn, 0 ≤ qn ≤ n− 1, n sufficiently large. Hence for functions of the form
(5) with all its poles outside the closed unit disc we suggest qn = n− 1 and hence
pn = 0, n ≥ 1. Note that this choice also assures convergence.

If the function f is analytic, then the bound (20) attains its minimum for qn =
n− 1 and hence pn = 0, n ≥ 1. We also find convergence (if Mn does not depend
on n).

If there are poles of f in the interior and exterior of the open unit disc, then
one can decompose 1/(z−α1)τ1 · · · (z−αν)τν into two parts: the first part, say h1,
with the singularities in the open unit disc and the second part, h2, with all the
singularities located in the exterior of the closed unit disc. Then I(f) = I(gh1) +
I(gh2). Now we can approximate both integrals by means of two interpolatory type
quadrature rules with the values of pn and qn previously proposed to each case.
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4. Numerical examples

In this section we show by means of several numerical examples the effectiveness
of our guidelines for the choice of the parameters pn and qn. For the numerical
examples we consider quadrature formulas

In(f) =
n∑
j=1

cj,nf(zj,n) .=
∫ π

−π
f(eiθ)dψ(θ)

of interpolatory type in Λ−pn,qn , pn and qn nonnegative integers such that pn+qn =
n − 1, with uniformly distributed nodes zj,n, 1 ≤ j ≤ n on T, i.e., the nodes are
the roots of zn + κn = 0, κn ∈ C, |κn| = 1, n ≥ 1. We will take κn = −1, n ≥ 1 in
all the examples.

We will consider the absolutely continuous distribution function ψ given by

ψ(θ) =
∫ θ

−π
ψ′(t)dt, −π ≤ θ < π,

where ψ′ is given by (33).
The coefficients cj,n, 1 ≤ j ≤ n, n ≥ 1 are given by ([8])

cj,n =
1
n

qn∑
`=−pn

m`
w(1−j)`

z`1,n
, w = e2πi/n, m` = I(z`).(39)

Since we have fixed κn = −1, n ≥ 1, we take z1,n = 1 for n ≥ 1. Taking into
account (39) and (34) we obtain

cj,n =
2π
n

[ −pn∑
`=−1

r|`|w(1−j)` +
qn∑
`=0

r`w(1−j)`

]
.

Each term in brackets is a geometric sum. Thus

cj,n =
2π
n

[
w(1−j)(pn+1) − rpn+1

(w1−j − r)w(1−j)pn
− 1 +

1− (rw1−j)qn+1

1− rw1−j

]
, 1 ≤ j ≤ n, n ≥ 1.

In the following examples, all the tables list the absolute error |Rn(f)| achieved.
We have taken r = 0.5 in all the examples.

Example 2. Consider f(z) = g(z)/(z − 0.2)2 where g(z) = z3. One has I(f) =
157π/81. The function f has a pole of order two at z = 0.2 in the open unit
disc. Thus the sum of the multiplicities of the poles is τ = 2. The function g(z)
satisfies maxζ∈Cρ |g(z)| ≤ cρd, ρ > 1 with c = 1 and d = 3. Thereby qn = q =
max{0, d − τ} = max{0, 1} = 1 and hence pn = n − 2 minimize the error bound
(37) from a certain n on. See Table 1.

Example 3. Let f(z) = g(z)/(z − 2) where g(z) = z3. It holds I(f) = −π/6. The
function f has a simple pole at z = 2 in the exterior of the closed unit disc. Thus
for pn = 0 and hence qn = n− 1 the error bound (38) attains its minimum from a
certain n on. See Table 2.

Example 4. We consider here the case of an analytic function. Let f(z) = ez.
One has I(f) = 2πe1/2. The values qn = n − 1 and hence pn = 0, n ≥ 1, were
proposed for analytic functions. See Table 3.
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Example 5. Let f(z) = g(z)/((z−α)(z−β)) where g(z) = z3, α = 0.25 and β = 3.
One finds I(f) = −4π(−3/313+1/10).We have compared two procedures. For the
first one, calculate In(f) as interpolatory type in Λ−pn,qn . In this case, the error
listed and the integer in brackets behind it are the lesser error and the value of qn for
which this error is attained respectively. This value of qn is not known in advance, so
we have taken it from the numerical results. In the second procedure, which we de-
note by PFD, we calculate the partial fraction decomposition of 1/(z−α)(z−β) =
−az3/(z − α) + az3/(z − β), a = 4/11 and then I(f) = I(−az3/(z − α)) +
I(az3/(z − β)). Taking into account our guidelines, we approximate the integral
I(−az3/(z − α)) by means of the quadrature formula of interpolatory type in
Λ−pn,qn = Λ−(n−3),2, and for the integral I(az3/(z − β)), we take pn = 0 and
hence qn = n− 1, n ≥ 1. See Table 4.

Table 1.

qn n = 4 n = 6 n = 8 n = 10 n = 12

0 .234D+01 .294D+01 .309D+01 .313D+01 .314D+01
1 .317D–01 .203D–02 .107D–03 .525D–05 .248D–06
2 .317D–01 .430D–02 .258D–03 .132D–04 .632D–06
3 .252D+00 .430D–02 .522D–03 .301D–04 .150D–05
4 .334D–01 .522D–03 .603D–04 .339D–05
5 .387D+00 .419D–02 .603D–04 .678D–05
6 .513D–01 .505D–03 .678D–05
7 .422D+00 .640D–02 .592D–04
8 .559D–01 .766D–03
9 .431D+00 .695D–02

10 .570D–01
11 .434D+00

Table 2.

qn n = 8 n = 10 n = 12 n = 14 n = 16

0 .685D–01 .327D+00 .462D+00 .505D+00 .518D+00
1 .928D–01 .321D+00 .461D+00 .505D+00 .518D+00
2 .986D–01 .319D+00 .460D+00 .505D+00 .518D+00
3 .394D+00 .491D–01 .736D–01 .114D+00 .126D+00
4 .394D+00 .123D+00 .184D–01 .169D–01 .280D–01
5 .320D+00 .123D+00 .368D–01 .614D–02 .384D–02
6 .228D+00 .104D+00 .368D–01 .107D–01 .192D–02
7 .131D+00 .814D–01 .322D–01 .107D–01 .307D–02
8 .572D–01 .265D–01 .959D–02 .307D–02
9 .327D–01 .204D–01 .815D–02 .278D–02

10 .143D–01 .664D–02 .242D–02
11 .818D–02 .511D–02 .204D–02
12 .358D–02 .166D–02
13 .205D–02 .128D–02
14 .895D–03
15 .511D–03
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Table 3.

qn n = 4 n = 6 n = 8 n = 10 n = 12

0 .171D+01 .345D+01 .392D+01 .404D+01 .407D+01
1 .666D+00 .506D+00 .827D+00 .908D+00 .928D+00
2 .666D+00 .829D–01 .904D–01 .134D+00 .145D+00
3 .272D+00 .829D–01 .773D–02 .117D–01 .165D–01
4 .338D–01 .773D–02 .604D–03 .119D–02
5 .924D–02 .282D–02 .604D–03 .410D–04
6 .778D–03 .195D–03 .410D–04
7 .164D–03 .488D–04 .118D–04
8 .104D–04 .265D–05
9 .181D–05 .523D–06

10 .923D–07
11 .136D–07

Table 4.

n = 6 n = 12 n = 18 n = 24 n = 30

In(f) .152D–01(5) .119D–03(9) .506D–06(12) .428D–08(15) .178D–11(19)
PFD .336D–01 .465D–04 .637D–07 .874D–10 .121D–12
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[3] P. González-Vera, O. Nj̊astad and J.C. Santos-León, Some results about numerical quadrature

on the unit circle, Adv. Comput. Math. 5 (1996) 297-328. MR 98f:41028
[4] P. Henrici, Applied and computational complex analysis (Vol. 1, John Wiley and Sons, New

York, 1974). MR 51:8378
[5] W.B. Jones, O. Nj̊astad and W.J. Thron, Continued fractions associated with trigonometric

and other strong moment problems, Constr. Approx. 2 (1986) 197-211. MR 88m:30087
[6] W.B. Jones, O. Nj̊astad and W.J. Thron, Moment theory, orthogonal polynomials, quadrature,

and continued fractions associated with the unit circle, Bull. London Math. Soc. 21 (1989) 113-
152. MR 90e:42027

[7] W.B. Jones and H. Waadeland, Bounds for remainder term in Szegö quadrature on the unit
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[9] G. Szegö, Orthogonal polynomials (Amer. Math. Soc. Providence, R.I., 1939).

Department of Mathematical Analysis, La Laguna University, 38271-La Laguna,

Tenerife, Canary Islands, Spain

E-mail address: jcsantos@ull.es

http://www.ams.org/mathscinet-getitem?mr=98f:41028
http://www.ams.org/mathscinet-getitem?mr=51:8378
http://www.ams.org/mathscinet-getitem?mr=88m:30087
http://www.ams.org/mathscinet-getitem?mr=90e:42027
http://www.ams.org/mathscinet-getitem?mr=96i:41029

	1. Introduction
	2. Error bounds
	3. Convergence analysis
	4. Numerical examples
	Acknowledgments
	References

