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TRANSFORMATION OF HYPERSINGULAR INTEGRALS
AND BLACK-BOX CUBATURE

S. A. SAUTER AND C. LAGE

Abstract. In this paper, we will consider hypersingular integrals as they
arise by transforming elliptic boundary value problems into boundary integral
equations. First, local representations of these integrals will be derived. These
representations contain so-called finite-part integrals. In the second step, these
integrals are reformulated as improper integrals. We will show that these
integrals can be treated by cubature methods for weakly singular integrals as
they exist in the literature.

1. Introduction

In this paper, we will consider Fredholm integral equations on two-dimensional
surfaces in R3 which typically arise by applying the boundary element method to
boundary value problems (see, e.g., [8], [28]). Such boundary integral equations can
be solved numerically by Petrov-Galerkin methods by employing finite dimensional
test and trial spaces on the surface. In most practical applications, the surface
is piecewise smooth but contains corners and edges. Surface grids consisting of
(curved) triangles and quadrilaterals are used to set up these spaces as, e.g., finite
element spaces, wavelets, spectral elements, etc. Since finite element spaces are
applicable to a broad class of integral equations and flexible to resolve the possibly
singular behaviour of a solution by adaptivity, we restrict our consideration to the
boundary element method, i.e., finite elements lifted onto surfaces by local charts.
Alternative discretisations as, e.g., spectral elements, might be preferable for special
situations while they are limited to a comparatively small class of problems (e.g.,
integral equations on tori and spheres).

From the theoretical point of view, the Galerkin method, where test and trial
spaces coincide, is the method of choice since stability and optimal convergence
rates can be proved for much more general situations as, e.g., for the so-called
collocation method (point matching) and the Nyström method.

With increasing interest in the numerical solution of the Galerkin boundary
element method, the need of appropriate cubature1 methods for computing the
elements of the system matrix arises.

For weakly or Cauchy singular integrals, there exist appropriate cubature meth-
ods for approximating the elements of the system matrix (see [2], [26], [23], [9], [27],
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[4], [15], [17]). For many important problems as, e.g., mixed boundary value prob-
lems or transmission problems, the kernel functions are not integrable in the sense of
Cauchy principal values. They are hypersingular and have to be regularised in the
sense of Hadamard (see [8], [25]). For these kinds of integrals, cubature methods for
Galerkin discretisations are missing in the literature. To overcome this difficulty a
regularisation on the continuous level is often applied rendering the integrals weakly
or Cauchy singular (see [20], [11], [8]). The drawback of this technique is that it has
to be worked out for each kernel function separately, i.e., is not fully implicit. Here
and in the following, the term fully implicit is used in the sense that the definition
of the cubature method does not depend on the explicit form of the integrand but
works as a black-box method for all kernel functions specified in Section 3. Only
the subroutine for evaluating the kernel function in pairs of cubature points has to
be exchanged.

In our paper we present a direct approach for evaluating hypersingular integrals
which are efficient in the sense that this family of cubature rules is

1. fully implicit,
2. exponentially convergent (with respect to the order of the rule),
3. uniformly stable (with respect to the order of the rule).

The main purpose of this paper is the development of transformation techniques
rendering the integrands analytic. Gauß-Legendre cubature rules applied to these
integrands will converge exponentially with respect to the order. The development
of such regularising transformations requires a careful analysis of various singular-
ities occurring when applying hypersingular Fredholm integral operators to finite
element spaces on surfaces. The relevant properties will be derived in the first part
of the paper. The quantitative estimates of the local cubature errors and their
influence to the global discretisation error will be the topic of a forthcoming paper
which will also contain numerical experiments. The general theory of fully discrete
Galerkin methods including numerical cubature has been worked out in [5] and
[24]. The orders of integration for weakly singular and Cauchy singular kernel can
be found in [4].

For collocation methods, such techniques are described in [7], [6], [26], [13].
We will use these results to analyse the behaviour of the integrand for the outer
integration appearing for the Galerkin method. For the special situation of 1)
piecewise flat surfaces and 2) the hypersingular kernel function corresponding to
the Laplace operator, semi-analytic cubature techniques for the Galerkin method
are worked out in [14].

The paper is organised as follows. In Section 2 we will specify the class of
boundary integral equations which will be considered and formulate the Galerkin
discretisation of the arising weak formulation.

In Section 3 properties of boundary integral equations and corresponding kernel
functions are collected.

Then in Section 4 it is explained how the arising finite-part integrals (over the
whole surface) can be localized as finite-part integrals over pairs of panels.

In Section 5 the local finite-part integrals are reformulated as a sum of weakly
singular integrals by analysing the singular behaviour of the arising integrands.

Finally, in Section 6 families of cubature rules are defined for the approximation
of the derived weakly singular integrals which converge exponentially with respect
to the order.
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In this paper, we will consider the boundary element method based on a parti-
tioning of the surface into (curved) triangles. However, the theoretical results apply
also for meshes consisting of quadrilaterals as well as for meshes containing both
triangles and quadrilaterals. The coordinate transforms for such general meshes
have the same structure but, obviously, a different form. For readers interested in
these cases, we refer to the extended version of this paper [22] available via the
internet address http://www.numerik.uni-kiel.de/reports/1997/.

2. The boundary element method

Let Γ be a piecewise analytic, orientable surface of a bounded Lipschitz domain
Ω ⊂ R3 (see [21, p. 3]). The assumption on the analyticity of Γ is merely imposed
for convenience. We expect that this condition can be replaced by “sufficiently
smooth” in a similar fashion as worked out in [19]. However, the detailed extension
of the theory below to that more general case is not worked out yet.

Let L2 (Γ) denote the space of all measurable functions u : Γ → C which are
square integrable with respect to the surface measure dΓ. H1 (Γ) is defined as usual
by employing a Lipschitz atlas and a partition of unity. The intermediate spaces
Hs (Γ), 0 < s < 1, are defined via interpolation while, for −1 ≤ s < 0, Hs (Γ) is the
dual space of H−s (Γ) with respect to the L2-scalar product. This scalar product in
L2 (Γ) can be extended continuously to Hs (Γ)×H−s (Γ) and is denoted by (·, ·)0.

For i = 1, 2, consider the operators

λiI +Ki : Hsi → H−si ,(2.1)

where s1, s2 ∈ [−1, 1] and the functions λ1, λ2 are analytic on smooth parts of the
surface. The integral operators Ki, i = 1, 2, are given by

Ki [w] (x) = p.f.

∫
Γ

ki (x, y, y − x)w (y) dΓy.(2.2)

If the kernel function contains nonintegrable singularities, then the integral (2.2)
has to be understood in the regularised sense of Hadamard, which will be explained
in subsection 3.2.

We assume that
• for σ ∈ {0, s2 − s1}, the operators

λ1I +K1 : Hs1 → H−s1 ,

λ2I +K2 : Hs2+σ → H−s2+σ(2.3)

are continuous.
• the operator λ1I + K1 satisfies a G̊arding inequality, i.e., there exist ε > 0

and constants c1, c2 such that

(u, (λ1I +K1)u)0 ≥ c1 ‖u‖
2
s1
− c2 ‖u‖2s1−ε(2.4)

is satisfied for all u ∈ Hs1 (Γ).
We consider Fredholm integral equations in the variational form. For given

f ∈ H2s2−s1 (Γ) ,(2.5)

we are seeking u ∈ Hs1 (Γ) such that

(v, λ1u)0 + (v,K1u)0 = (v, λ2f)0 + (v,K2f)0 , ∀v ∈ Hs1 (Γ) .(2.6)
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The left-hand side of (2.6) defines the bilinear form a : Hs1 (Γ)×Hs1 (Γ)→ C and
the right-hand side the functional F ∈ H−s1 (Γ). In compact form, the variational
problem is given by seeking u ∈ Hs1 (Γ) so that

a (u, v) = F (v) , ∀v ∈ Hs1 (Γ)

is satisfied. Throughout this paper we assume that

s1, s2 ∈
{
−1

2
, 0,

1
2

}
holds (this requirement is satisfied for most practical applications in three dimen-
sions). However, we hasten to say that our theory is by no means limited to this
case and can be generalised to more general integral operators (see Remark 4).

The Galerkin discretisation of (2.6) is given by replacing the Sobolev space
Hs1 (Γ) by a finite dimensional subspace which will be constructed below.

Let Γ̃ be the (piecewise plane) surface of a polyhedron which interpolates Γ. Let
τ̃ := {K̃1, K̃2, . . . , K̃N} denote a grid on the surface Γ̃ consisting of plane (open)
triangles satisfying

Γ̃ =
⋃
K̃∈τ̃

K̃,

K̃ ∩ K̃ ′ = ∅, ∀K̃, K̃ ′ ∈ τ̃ with K̃ 6= K̃ ′.

The following assumption links the true surface Γ with the auxiliary surface Γ̃. We
assume that there exists a bi-Lipschitz mapping η : Γ̃ → Γ having the property
that, for all K̃ ∈ τ̃ , the restriction η |K̃ can be extended to an analytic mapping
η : K̃ → Γ and the inverse η−1 has the analogue property.

The grid τ̃ induces a grid on the true surface Γ by

τ :=
{
η
(
K̃
)

: K̃ ∈ τ̃
}
.

The space of finite element functions on the surface Γ is defined as usual by lifting
polynomial spaces on a reference element onto the true surface. Let PK denote the
space of bivariate polynomials of total degree p. The reference triangle is given by

Q := int conv
(

(0, 0)T , (1, 0)T , (0, 1)T
)
,

where “conv” denotes the convex hull and “int” the interior of a set. The triangle Q
is mapped onto a surface triangle K by a composition of η with an affine mapping.
For K ∈ τ , let K̃ := η−1 (K). The affine mapping κK : Q→ K̃ is given by:

κK (x̂) = A+ (B −A) x̂1 + (C −A) x̂2,(2.7)

where A,B,C denote the vertices of K̃ (counterclockwise ordering). We emphasize
that, throughout the paper, all triangles are open sets.

For r ∈ N0, the finite element space Sr,pτ is defined by

Sr,pτ := {u ∈ Cr (Γ) | ∀K ∈ τ : u |K ◦η ◦ κK ∈ PK} .(2.8)

For r = −1, the condition u ∈ Cr (Γ) in (2.8) has to be replaced by u ∈ L∞ (Γ). For
continuous finite elements, i.e., r ≥ 0, we assume that, for all K,K ′ ∈ τ , K ′ 6= K,
the intersection K ∩K ′ is either empty, a common vertex, or a common edge. In
the following, we write Vτ short for Sr,pτ .
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The Galerkin discretisation of (2.6) is given by finding uG ∈ Vτ such that

a (uG, v) = F (v) , ∀v ∈ Vτ .(2.9)

This problem can be reformulated as a system of linear equations by introducing
the basis representation of uG :

uG (x) =
n∑
i=1

uiϕi (x) ,

where n := dimVτ . Then, (2.9) is equivalent to

Au = F,

where the system matrix A ∈Cn×n and the vector F ∈Cn are given by

Ai,j = a (ϕi, ϕj) ,
Fi = F (ϕi) .

To compute the matrix entries A and the right-hand side F fast cubature techniques
are needed for the evaluation of∫

Γ

ϕi (x)ϕj (x) λ (x) dx,∫
Γ

ϕi (x) p.f.
∫

Γ

k (x, y, y − x)ϕj (y) dΓydΓx,(2.10)

where λ is analytic on smooth parts of the surface and the kernel function k is either
k1 or k2. The evaluation of the first integral is not problematic, and we will discuss
in the following only the second one. In this paper, we will focus on the definition
of cubature rules for the numerical integration of (2.10) which approximate (2.10)
to any required accuracy with a priori known convergence behaviour. Quantitative
estimates of the local cubature error and the effect of replacing the true Galerkin
matrix by a cubature approximation on the global discretisation error is studied
thoroughly for weakly and Cauchy singular kernel in [24], [4], [5]. The extension to
hypersingular operators and formulae for the required cubature orders will be the
topic of a forthcoming paper.

3. Properties of boundary integral equations

3.1. The kernel function. The properties of an integral operator

K [u] (x) = p.f.

∫
Γ

k (x, y, y − x) u (y) dΓy(3.1)

are determined by the kernel function k : Γ × Γ → C. We assume that k has the
following representation

k (x, y, z) = ‖z‖−s
b∑

i,j=0

κi (x) ρj (y)Ai,j

(
‖z‖, z

‖z‖

)
, ∀x, y ∈ Γ, z = y − x, x 6= y,

(3.2)

where b is a finite number, and Ai,j (r, ξ) is analytic with respect to r in any
compact neighbourhood of zero and analytic with respect to ξ in a neighbourhood
of the sphere S2. The functions κi,ρi are assumed to be in L∞ (Γ) and analytic
on analytic parts of the boundary. To be more precise, we assume that, for all
K ∈ τ , the restrictions κi |K and ρi |K are analytic. We state that practically
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all kernel functions arising by transforming elliptic boundary value problems into
integral equations are of the form (3.2) (see [5] and the references therein). The
kernel functions are associated with fundamental solutions to differential equations.
The following examples illustrate that the fundamental solution of elliptic, scalar
differential operators in R3 are of the form (3.2).

Example 1. Let G ∈ R3×3 be a symmetric and positive definite matrix, let β ∈ R3

and c ∈ R. Consider the differential operator

Lu = − div (G gradu) + 2 〈β, gradu〉+ cu.

Put 〈·, ·〉G =
〈
G−1·, ·

〉
and ‖·‖G = 〈·, ·〉1/2G . The fundamental solution of L (satis-

fying LS = δ0 with δ0 denoting Dirac’s functional centred at the origin) is given
by

S (z) =
1

4π
√

detG
e〈β,z〉G−λ‖z‖G

‖z‖G
(3.3)

with λ2 = c+ ‖β‖2G. This function can be rewritten as

‖z‖−1
A

(
‖z‖ , z

‖z‖

)
with the function A defined by

A (r, ξ) =
1

4π
√

detG
er{〈β,ξ〉G−λ‖ξ‖G}

‖ξ‖G
.

Hence, S (z) is of the form (3.2) and satisfies the analyticity properties due to the
regularity of G.

Example 2. The kernel of the classical double layer potential for Laplace’s equa-
tion in 3D is the normal derivative of (3.3) with G = I, β = 0, c = 0:

k (x, y, z) = −〈n (y) , z〉
4π ‖z‖3

.

This function can be rewritten as

k (x, y, z) = −‖z‖−2
3∑
i=1

(
ni (y)

4π

)
zi
‖z‖ .

Since the components of the normal vector n are piecewise analytic, the kernel
function is of the form (3.2).

Finally, we remark that the kernel functions arising from the Lamé equation and
the velocity part of kernel functions corresponding to the Stokes equation satisfy
our general assumptions on k too.

In our paper, we will concentrate on elliptic boundary value problems of second
order. In [5] it is explained that for such problems the order of singularity s in (3.2)
typically satisfies

s ≤ 3.

For s ≤ 2 (in combination with the so-called Giraud-Mikhlin condition, see [25,
formula (11)] and [18, Chap. 9]), the finite-part integral reduces to a Cauchy prin-
cipal value where transformation rules and cubature techniques already exist in the
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literature (see [8], [23], [9], [27], [4]). In this paper, we will assume throughout that

s = 3

holds. We state that all our statements remain valid also for s ≤ 3, while some
of the assumptions can be weakened and formulae simplified. In Remark 4, it is
explained how our results can be extended to the case s > 3.

3.2. Finite-part integrals. We come now to the definition of the finite part in-
tegral involved in (3.1). For this, let x ∈ Γ be a point inside a smooth part of the
surface and, for ε > 0, let Bε (x) denote the (three-dimensional) ball with radius
ε centred at x. Let γ ⊂ Γ be a measurable subset of Γ satisfying x /∈ ∂γ. We
consider a function u ∈ L∞ (γ) being smooth in a neighbourhood of x (Hölder con-
tinuous with exponent λ > 1 is sufficient). Since the kernel function k (x, y, y − x)
is bounded for y 6= x the following integral exists as a usual Riemann integral

Iε,γ [u] (x) :=
∫
γ\Bε(x)

k (x, y, y − x) u (y)dΓy.

In [25] and [12], it was shown that the functional Iε,γ admits an expansion as

Iε,γ [u] (x) = A−1,γ [u] (x) ε−1 +Alog,γ [u] (x) log ε+A0,γ [u] (x) +Rε,γ [u] (x) ,

where Rε,γ [u] (x)→ 0 as ε→ 0. The finite part integral then is defined by

p.f.

∫
γ

k (x, y, y − x)u (y) dΓy := A0,γ [u] (x) .(3.4)

In [25] and [12], it was proved that the right-hand side above is finite.
The following general assumption on the integral operator K in (3.1) is assumed

throughout the paper. K is a bounded operator from Hµ onto H−µ with µ ∈{
− 1

2 , 0,
1
2

}
. For computation of the matrix elements, the integrals

(ϕq,K [ϕr])0 , 1 ≤ q, r ≤ n,(3.5)

have to be evaluated. For an arbitrary function v ∈ Hµ, the image K [v] lies in
H−µ and, for µ = 1/2, does not belong necessarily to L2. This would compli-
cate the development of cubature techniques for approximating the dual pairing
(w,K [v])0 = (w,K [v])µ×−µ substantially. In particular, the splitting

(w,K [v])0 =
∫

Γ

wK [v] dx =
∑
K∈τ

∫
K

wK [v] dx =
∑
K∈τ

(w,K [v])L2(K)

is not valid for all functions v, w ∈ Hµ (Γ). However, in many cases the operator
K satisfies a so-called shift property, i.e., K is a bounded operator from Hµ+σ

into H−µ+σ for a certain range of σ. For our purposes, it is sufficient to assume
throughout the paper that

K : Hµ (Γ)→ H−µ (Γ) ,(3.6)
K : H1 (Γ)→ L2 (Γ)(3.7)

is bounded.

Corollary 1. Let (3.6) and (3.7) be satisfied. The definition (2.8) of the finite-
dimensional spaces Vτ and Vτ ⊂ Hµ implies that

K [u] ∈ L2 (Γ) , ∀u ∈ Vτ .(3.8)
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Proof. For µ ≤ 0, the assertion follows from (3.6) and Vτ ⊂ Hµ via K [Vτ ] ⊂ H−µ ⊂
L2 (Γ). For µ = 1/2, all functions in Vτ are Lipschitz continuous and the result
follows from (3.7) by using Vτ ⊂ C0,1 (Γ) ⊂ H1 (Γ).

A comment on the validity of (3.7) is given below.

Remark 1. Assumption (3.7) is satisfied, e.g., for the hypersingular integral oper-
ators corresponding to elliptic boundary value problems of second order with the
Laplace operator as the principal part, discretised by Sr,pτ for r ≥ 0 (for a proof,
see [3]).

4. Local representation of hypersingular integrals

For the approximation of the integrals (3.5), it is important to localize the inte-
grals over the whole surface Γ by splitting them into a sum over the panels and to
transform these local integrals onto fixed reference panels. Then, it suffices to de-
velop cubature rules on these reference elements. In view of the finite part integrals,
this splitting and transformation is much more delicate as for weakly singular inte-
grals where such transformations are straightforward. For simplicity, we abbreviate
the integrand in (3.5) with

knew (x, y, z) := ϕq (x)ϕr (y) k (x, y, z)

and skip the superscript new in the following. For Ki,Kj ∈ τ , we define the
function Hi,j : Ki → C by

Hi,j (x) := p.f.

∫
Kj

k (x, y, y − x) dΓy ∀x ∈ Ki.

For t ∈ {i, j}, let ηt := η ◦ κKt (see (2.7)). For the following it is important that
the reference triangle Q (like the surface elements Kt) is assumed to be open.

The local kernel function is defined by

ki,j (x̂, ŷ) := k (ηi (x̂) , ηj (ŷ) , ηj (ŷ)− ηi (x̂)) gi (x̂) gj (ŷ) ,

where, for t ∈ {i, j}, the function gt denotes the surface area element corresponding
to the chart ηt. The local version of Hi,j defines a mapping Ĥi,j : Q→ C by

Ĥi,j (x̂) := p.f.

∫
Q

ki,j (x̂, ŷ) dŷ ∀x̂ ∈ Q.(4.1)

Note that, for the regularisation of the finite-part integral in (4.1), an ε-ball in the
parameter plane has to be subtracted. It is not necessary to perform the limit with
respect to the distorted ball η−1

i (Bε (x) ∩Ki). This fact will simplify the treatment
of the hypersingular integrals substantially.

The connection of Hi,j and Ĥi,j is expressed by the formula

gi (x̂) (Hi,j ◦ ηi) (x̂) = Ĥi,j (x̂) ∀x̂ ∈ Q,
which is proved in [25, Theorem 5]. The sum∑

Kj∈τ
Ĥi,j (x̂) =: Ĥi (x̂) ∀x̂ ∈ Q

can be regarded as a local version of the integral operator K (up to a bounded
factor):

gi (x̂)ϕq (x)K [ϕr] (x) = Ĥi (x̂) ∀x̂ ∈ Q, x = ηi (x̂) .
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The mapping property of K (see 3.8) implies Ĥi ∈ L2 (Γ). It follows that the
integral (3.5) equals ∑

Ki∈τ

∫
Q

∑
Kj∈τ

Ĥi,j (x̂) dx̂.(4.2)

In Lemma 8, we will prove that Ĥi,j is possibly singular only if x̂ → ∂Q. In this
light, we define, for δ > 0, the reduced element Qδ by

Qδ :=
{
δ < x̂1 < 1− 2δ
δ < x̂2 < 1− δ − x̂1

}
.

It follows from the weak singularity of Ĥi (x̂) that∫
Q

Ĥi (x̂) dx̂ = lim
δ→0

∫
Qδ

∑
Kj∈τ

Ĥi,j (x̂) dx̂ <∞.(4.3)

Since Ĥi,j is possibly singular only if x̂ → ∂Q (see Lemma 8), the integrand is
bounded on Qδ and we may interchange the summation with the integration∫

Q

Ĥi (x̂) dx̂ = lim
δ→0

∑
Kj∈τ

∫
Qδ
Ĥi,j (x̂) dx̂.

In Lemma 2(c), Lemma 4, and Lemma 7, we will prove that the integrals on the
right-hand side above have an expansion of the form∫

Qδ
Ĥi,j (x̂) dx̂ = Ii,jlog log δ + Ii,j0 + Ii,j1 (δ) ,(4.4)

where Ii,j1 (δ)→ 0 as δ → 0. From the boundedness of the integral (4.3), it follows
that ∑

Kj∈τ
Ii,jlog = 0

holds. This motivates the definition of a further finite-part integral:

p.f.
δ

∫
Q

Ĥi,j (x̂) dx̂ := Ii,j0 .

Lemma 1. The integral ∫
Γ

p.f.

∫
Γ

k (x, y, y − x) dΓydΓx

has the local representation∑
Ki∈τ

∑
Kj∈τ

p.f.
δ

∫
Q

p.f.

∫
Q

ki,j (x̂, ŷ) dŷdx̂.(4.5)

The inner finite-part integral reduces to the usual Riemann integral if Ki 6= Kj

holds. The outer finite-part integral reduces to an improper integral if Ki, Kj share
at most one point.

Proof. Let Ki 6= Kj and x ∈ Ki. The pull back x̂ := η−1
i (x) satisfies x̂ ∈ Q. For

sufficiently small ε > 0, the ball Bε (x̂) has positive distance from ∂Q. Hence, the
transformed ball ηi (Bε (x̂)) has positive distance from ∂Ki and, consequently, also
positive distance from Kj. Therefore, the integrand is bounded and the integral
converges to the usual Riemann integral as ε→ 0.
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If Ki and Kj share at most one point, the result follows from Lemma 2(b),
(c).

Remark 2. Formula (4.5) is a local representation of hypersingular kernel functions.
The reference element Q is fixed. Thus, it is sufficient to develop cubature rules on
Q (see Section 6).

Remark 3. For the special situation of flat triangular panels and the hypersingular
kernel function corresponding to the Laplace operator, a splitting of (3.5) into local
quantities is derived and worked out in [14]. The approach in the cited paper is
different from (4.5); the local quantities are of the form

p.f.
ε

∫
Ki

∫
Kj

‖x−y‖≥ε

. . . dxdy,

while additional line functionals appear in the local representation.

5. Finite-part-free representation of hypersingular integrals

As mentioned before, the single terms Ĥi,j are not integrable in general and,
hence, the inner sum in (4.2) may not be interchanged with the outer integral. In
the following, we will work out the character of the singularity of Ĥi,j in detail.
These results will play the key role in Section 6 for constructing appropriate vari-
able transforms rendering the integrands analytic such that the integrals can be
approximated efficiently by (tensor versions) of Gaussian quadrature rules.

In order to characterise the regularity of the function Ĥi,j we will distinguish
the following three cases:

I. Ki and Kj share at most one common point.
II. Ki and Kj share exactly one edge.

III. Ki = Kj .

Case I: From the analyticity of the charts ηi, ηj it follows that the functions gi,
gj and the coefficients κi, ρj from (3.2) are analytic in local coordinates. The pull
backs of the basis functions ϕq ◦ ηi, ϕr ◦ ηj are analytic, too. Thus, the singular
behaviour of the kernel function is characterized by the singular behaviour of the
function2 ‖z‖−3

A
(
‖z‖ , z

‖z‖

)
in local coordinates. If Ki ∩ Kj = ∅, the kernel

function is analytic in local coordinates. Therefore, we assume for the following
that the panels share exactly one point: Ki ∩ Kj = P . In local coordinates, the
difference z = y − x takes the form

z = ηj (ŷ)− ηi (x̂) .

Without loss of generality we assume that ηj
(

0
0

)
= ηi

(
0
0

)
= P . Obviously, z = 0 if

and only if ŷ = x̂ = (0, 0)T . Taylor expansion of ηj and ηi about the origin results
in

z =
∞∑
m=1

(〈ŷ,∇〉m ηj (0))− (〈x̂,∇〉m ηi (0))
m!

,(5.1)

2For simplicity, we write A instead of Ai,j .
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where the differential operator 〈ŷ,∇〉m is defined by

〈ŷ,∇〉m ηj =
m∑
k=0

(
m
k

)
ŷk1 ŷ

m−k
2

(
∂k1∂

m−k
2 ηj

)
.

Let ẑ = (x̂, ŷ). We introduce four-dimensional polar coordinates by

ẑ = rξ(5.2)

with r = ‖ẑ‖ and ξ = ẑ/ ‖ẑ‖ ∈ S3. Then, (5.1) becomes

z = r
∞∑
m=0

rmlm (ξ) =: ra1 (r, ξ)(5.3)

with

lm (ξ) :=

(
〈ξ34,∇〉m+1

ηj (0)
)
−
(
〈ξ12,∇〉m+1

ηi (0)
)

(m+ 1)!

and ξθt = (ξθ, ξt)
T . The function a1 (r, ξ) is analytic in any compact neighbourhood

of r = 0 and is analytic in ξ in a suitable neighbourhood of S3. As in [25, Lemma
1, Remark 7] one can show that a1 (r, ξ) has no zero in a neighbourhood of r = 0
and ξ ∈ S3. Consequently, ‖z‖−s admits the local representation about r = 0 :

‖z‖−s = r−sa2,s (r, ξ) ,(5.4)

where a2,s is analytic in a neighbourhood of r = 0 and ξ ∈ S3. The ratio z
‖z‖

similarly can be expanded by multiplying (5.3) with (5.4) (choosing s = 1) resulting
in

z

‖z‖ = a2,1 (r, ξ) a1 (r, ξ) =: a3 (r, ξ) ,

where the function a3 (r, ξ) is analytic with respect to r in a neighbourhood of r = 0
and with respect to ξ in a neighbourhood of S3. Combining these expansions we
have proven that, for sufficiently small r and ξ ∈ S3, the kernel function ki,j (x, y)
can be expressed in local coordinates by

ki,j (x̂, ŷ) = r−sa4 (r, ξ) ,(5.5)

where a4 is analytic for r ≤ δ with sufficiently small δ > 0, and analytic in ξ in a
neighbourhood of S3. On the other hand, r > δ/2 implies that ‖x− y‖ ≥ Cδ holds.
Hence, in this case the kernel function is analytic, too. It follows that a4 (r, ξ) is
analytic for all r = ‖ẑ‖, ξ = ẑ/ ‖ẑ‖ with ẑ = (x̂, ŷ) and all x̂, ŷ ∈ Q.

Proposition 1. Let Ki and Kj share at most one common point (Case I). Then,
the integral ∫

Q

∫
Q

ki,j (x̂, ŷ) dŷdx̂(5.6)

exists as an improper integral.

Proof. Due to the analyticity of a4, the integrand can be estimated by cr−s. By
introducing four-dimensional polar coordinates (x̂, ŷ) = rψ (α1, α2, α3) with r2 =∥∥x̂2
∥∥ + ‖ŷ‖2 and ψ = (x̂,ŷ)T

r ∈ S3, the integrand in the new variables can be
estimated by the constant c from which the integrability follows.
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Lemma 2. (a) If Ki and Kj share at most one point, then the function Ĥi,j has
the representation

Ĥi,j (x̂) =
∫
Q

ki,j (x̂, ŷ) dŷ,

where, for all x̂ ∈ Q, the integral exists as a usual Riemann integral.
(b) The function Ĥi,j (x̂) is weakly singular, i.e.,

∫
Q Ĥi,j (x̂) dx̂ coincides with

(5.6).
(c) Expansion (4.4) is valid with Ii,jlog = 0 :∫

Qδ
Ĥi,j (x̂) dx̂ =

∫
Q

Ĥi,j (x̂) dx̂+R (δ) ,(5.7)

where R (δ)→ 0 as δ → 0.
(d) The function Ĥi,j (x̂) is analytic in Q.

Proof. The first assertion follows from (3.2) since, for fixed x̂ ∈ Q, the integrand
is bounded and the finite part integral coincides with the usual Riemann integral.
The second assertion follows from Proposition 1 and Fubini’s theorem.

Expansion (5.7) follows from statement (b) as in [8, Chap. 6.1.3].
The analyticity of Ĥi,j is a direct consequence of (5.5).

This result will later be the base for the construction of the cubature method.
Case II: In the following, we will investigate the singular behaviour of Hi,j in

the case that Ki and Kj share exactly one edge. Without loss of generality we
assume that the charts ηi, ηj mapping the reference element Q onto Ki, Kj satisfy

ηi
(
t
0

)
= ηj

(
t
0

)
∀t ∈ [0, 1] .(5.8)

Hence, the difference

z = ηj (ŷ)− ηi (x̂)

is zero if and only if the three-dimensional relative coordinates

ẑ := (ŷ1 − x̂1, ŷ2, x̂2)T(5.9)

equal zero. The difference z then can be rewritten as

z = ηj
(
x̂1+ẑ1
ẑ2

)
− ηi

(
x̂1

ẑ3

)
.

Using the abbreviations r = ‖ẑ‖ and ξ = ẑ/r and expanding z about r = 0 yields
the representation

z = ηj
(
x̂1+ẑ1
ẑ2

)
− ηi

(
x̂1

ẑ3

)
= r

∞∑
m=0

rmλm (x̂1, ξ)

with

λm (x̂1, ξ) =
〈ξ12,∇〉m+1

ηj
(
x̂1
0

)
− (ξ3∂2)m+1

ηi
(
x̂1
0

)
(m+ 1)!

.
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Similarly as in Case I, the following expansion is derived

ki,j (x̂, ŷ) = r−sb (x̂1, r, ξ) ,(5.10)

where b (x̂1, r, ξ) is analytic with respect to
1. x̂1 in a neighbourhood of (0, 1) ,
2. r in a neighbourhood of

{
r ∈ R | ∃x̂, ŷ ∈ Q : r2 = x̂2

2 + ŷ2
2 + (ŷ1 − x̂1)2

}
,

3. ξ in a neighbourhood of S2.

In contrast to the result of Proposition 1, the function Ĥi,j (x̂) contains nonin-
tegrable singularities for x̂2 → 0. In this light, we will investigate the integrals∫

Qδ
Ĥi,j (x̂) dx̂

as δ → 0 (cf. (4.4)). In Lemma 3, we will prove that Qδ can be replaced by the
simpler domain Q̃δ defined by

Q̃δ := {x̂ ∈ Q | x̂2 > δ} .(5.11)

Lemma 3. The difference

R (δ) :=
∫
Qδ
Ĥi,j (x̂) dx̂−

∫
Q̃δ
Ĥi,j (x̂) dx̂

converges to zero as δ → 0.

Proof. Let QI denote the triangle with vertices (0, 0)T , (1, 0)T , and (1/4, 1/4)T .
The complement is denoted by QII := Q\QI . It suffices to prove that Ĥi,j is
weakly singular on QII . The assertion then follows from [8, Chap. 6.1.3]. From
(5.10), it follows∣∣∣Ĥi,j (x̂)

∣∣∣ ≤ ∫
Q

|ki,j (x̂, ŷ)| dŷ ≤
∫ 1

0

∫ 1

0

c(
x̂2

2 + (ŷ1 − x̂1)2 + ŷ2
2

)3/2
dŷ.

Introducing polar coordinates about (x̂1, 0)T results in∣∣∣Ĥi,j (x̂)
∣∣∣ ≤ ∫ π

0

∫ R(α,x̂1)

0

cr

(x̂2
2 + r2)3/2

drdα,

where R (α, x̂1) denotes the upper limit of the r-integration. Performing the r-
integration analytically yields∣∣∣Ĥi,j (x̂)

∣∣∣ ≤ c ∫ π

0

1
x̂2
− 1√

x̂2
2 +R (α, x̂1)2

dα ≤ πc

x̂2
.

The weak singularity of Ĥi,j on QII follows from∫
QII

∣∣∣Ĥi,j (x̂)
∣∣∣ dx̂ ≤ ∫ 1

0

∫ 1

x̂1

πc

x̂2
dx̂+

∫ 1

0

∫ 1

(1−x̂1)/3

πc

x̂2
dx̂ = πc (2 + ln 3) .

In view of (4.4), we have to show that

I (δ) :=
∫
Q̃δ

∫
Q

ki,j (x̂, ŷ) dŷdx̂(5.12)
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admits an expansion of the form

I (δ) = Ilog log δ + I0 + I1 (δ) ,(5.13)

where I1 (δ) converges to zero as δ → 0. Since the integrand in (5.12) is analytic,
the transformation rule of variable applies and the domain of integration can be
split into appropriate subdomains. We introduce relative coordinates by

x̂1

x̂2

ŷ1

ŷ2

 := Mẑ :=


1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1




ẑ1

ẑ2

ẑ3

ẑ4

 .

As an abbreviation we write k̂ (ẑ) = ki,j ((Mẑ)12 , (Mẑ)34). The domain of integra-
tion is given by

D =


δ ≤ ẑ2 ≤ 1

0 ≤ ẑ1 ≤ 1− ẑ2

−ẑ1 ≤ ẑ3 ≤ 1− ẑ1

0 ≤ ẑ4 ≤ 1− ẑ3 − ẑ1

 .(5.14)

The integrand k̂ is singular only if (ẑ1, ẑ2, ẑ3)T = 0 (cf. (5.9)). Since k̂ is smooth
with respect to ẑ1, we interchange the ordering of integration such that ẑ1 becomes
the innermost integration (cf. [23] and [9]). In order to characterize D by a system
of inequalities, where ẑ1 stands at the last position, one has to split D into five
subdomains:

D =
5⋃

m=1

Dm,

I (δ) =
5∑

m=1

∫
Dm

k̂ (ẑ) dẑ.

These subdomains are given explicitly below:

D1 =


δ ≤ ẑ2 ≤ 1

ẑ2 − 1 ≤ ẑ3 ≤ 0
0 ≤ ẑ4 ≤ ẑ2 − ẑ3

−ẑ3 ≤ ẑ1 ≤ 1− ẑ2

 , D2 =


δ ≤ ẑ2 ≤ 1

ẑ2 − 1 ≤ ẑ3 ≤ 0
ẑ2 − ẑ3 ≤ ẑ4 ≤ 1

−ẑ3 ≤ ẑ1 ≤ 1− ẑ3 − ẑ4

 ,

D3 =


δ ≤ ẑ2 ≤ 1
0 ≤ ẑ3 ≤ ẑ2

0 ≤ ẑ4 ≤ ẑ2 − ẑ3

0 ≤ ẑ1 ≤ 1− ẑ2

 , D4 =


δ ≤ ẑ2 ≤ 1
0 ≤ ẑ3 ≤ ẑ2

ẑ2 − ẑ3 ≤ ẑ4 ≤ 1− ẑ3

0 ≤ ẑ1 ≤ 1− ẑ3 − ẑ4

 ,

D5 =


δ ≤ ẑ2 ≤ 1
ẑ2 ≤ ẑ3 ≤ 1

0 ≤ ẑ4 ≤ 1− ẑ3

0 ≤ ẑ1 ≤ 1− ẑ3 − ẑ4

 .

By applying suitable four-dimensional rotations these subdomains can be mapped
onto four-dimensional polyhedrons having the property that the origin is a corner
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point. We will need the following reference elements:

D̂1 =


δ ≤ v1 ≤ 1
δ ≤ v2 ≤ v1

δ ≤ v3 ≤ v2

v1 ≤ v4 ≤ 1

 , D̂2 =


δ ≤ v1 ≤ 1
δ ≤ v2 ≤ v1

0 ≤ v3 ≤ v2

v1 ≤ v4 ≤ 1

 ,

D̂3 =


δ ≤ v1 ≤ 1
0 ≤ v2 ≤ v1

0 ≤ v3 ≤ v2

v1 ≤ v4 ≤ 1

 , D̂4 =


δ ≤ v1 ≤ 1
δ ≤ v2 ≤ v1

0 ≤ v3 ≤ v1

v1 ≤ v4 ≤ 1

 .

The integral over D can be rewritten as

I (δ) =
∫
D

k̂ (ẑ) dẑ =
4∑

m=1

∫
D̂m

k̂m (v) dv.(5.15)

The functions k̂m are defined by

k̂m (v) :=
{
k̂ (M1v) + k̂ (M2v) , m = 1,
k̂ (Mm+1v) , m = 2, 3, 4,

with

M1 =


−1 1 −1 1
0 0 1 0
0 −1 1 0
1 0 0 0

 , M2 =


−1 0 0 1
0 0 1 0
0 1 0 0
1 −1 0 0

 ,

M3 =


−1 0 0 1
0 1 0 0
0 0 1 0
1 0 −1 0

 , M4 =


−1 0 0 1
1 0 0 0
0 0 1 0
0 1 −1 0

 ,

M5 =


0 −1 0 1
0 1 0 0
−1 1 0 0
0 0 1 0

 .
The linearity of the transformations Mm implies that the kernel function k̂m is

singular if and only if (v1, v2, v3)T = 0 (cf. (5.9)). Furthermore, the smoothness
behaviour of k̂m can be derived from the smoothness behaviour of the function ki,j
of (5.10). In particular, k̂m is analytic in the variable v4 (which corresponds to
the behaviour of ki,j (x̂, ŷ) with respect to x̂1). Hence, the innermost integration
(with respect to v4) in (5.15) defines a function κ̌m (v1, v2, v3) which has the same
smoothness behaviour as ki,j as a function of ẑ (see (5.9)). Let D̂−m denote the
domain D̂m reduced by the last variable,

D̂−m :=
{
w ∈ R3 | ∃v ∈ D̂m, ∀i = 1, 2, 3 : wi = vi

}
,

resulting in

I (δ) =
4∑

m=1

∫
D̂m

k̂m (v) dv =
4∑

m=1

∫
D̂−m

κ̌m (w) dw.(5.16)
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In order to describe the domains D̂−m in spherical coordinates (r, α, β), i.e.,

w = rψ (α, β) = r

 cosα cosβ
sinα cosβ

sinβ

 ,

we will employ the three-dimensional parameter domains Pθ,m (δ), 1 ≤ θ ≤ 3,
1 ≤ m ≤ 2. Let

a1 = 0, a2 = a3 = arctan δ,
b1 (α) = b2 (α) = 0, b3 (α) := arctan (δ cosα) ,
B1 (α) := arctan cosα, B2 (α) := arctan sinα.

(5.17)

Then

Pθ,m =


αθ ≤ α ≤ π

4
bθ (α) ≤ β ≤ Bm (α)
δ

ψθ(α,β) ≤ r ≤
1

cosα cosβ

 .

We do not indicate explicitly the dependence of Pθ,m on δ, while, for δ = 0, we
write P 0

θ,m instead. Then, the integral (5.15) can be written in the following form:

I (δ) =
∫
D

k̂ (v) dv =
4∑

m=1

∫
Ď−m

κ̌m (rψ) r2 cosβdrdβdα(5.18)

with
Ď−1 = P3,2, Ď−2 = P2,2,
Ď−3 = P1,2, Ď−4 = P2,1.

(5.19)

Since the transformation of the spherical coordinates appearing in (5.18) onto the
coordinates (5.10) is analytic, the smoothness and singular behaviour of the func-
tion κ̂m (rψ) carries over from the behaviour of ki,j (see (5.10) and the remarks
thereafter). This means that the integrand in (5.18) can be represented by

r2κ̌m (rψ) cosβ =
κ̌0
m (ψ)
r

+ κ̌1
m (r, ψ) ,

where

κ̌0
m (ψ) = lim

r→0

(
r3κ̌m (rψ) cosβ

)
,(5.20)

κ̌1
m (r, ψ) = r2κ̌m (rψ) cosβ − κ̌0

m (ψ) /r(5.21)

are analytic with respect to r, α, β. The domain Ď−m depends on δ. Since κ̌1
m is

analytic, the coefficient Ilog in (5.13) depends only on the first sum below while the
second stays bounded as δ → 0

I (δ) =
4∑

m=1

∫
Ď−m

κ̌0
m (ψ)
r

drdβdα +
4∑

m=1

∫
Ď−m

κ̌1
m (r, ψ) drdβdα.

The r-integration can be carried out analytically for the first integral above. We
obtain ∫

Ď−m

κ̌0
m (ψ)
r

drdβdα = − log δ
∫ π/4

aθ

∫ Bt(α)

bθ(α)

κ̌0
m (ψ) dβdα

+
∫ π/4

aθ

∫ Bt(α)

bθ(α)

κ̌0
m (ψ) log

ψθ (α, β)
cosα cosβ

dβdα,
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where aθ, bθ, Bt are as in (5.17) and (θ, t) is determined by

Ď−m = Pθ,t(5.22)

(see (5.19)). The first integral defines the coefficient Ilog,m while the second inte-
grand is weakly singular. From [8, Chap. 6.1.3], it follows that∫

Ď−m

κ̌0
m (ψ)
r

drdβdα

= Ilog,m log δ +
∫ π/4

0

∫ Bt(α)

0

κ̌0
m (ψ) log

ψθ (α, β)
cosα cosβ

dβdα+ I1,m (δ)

(5.23)

holds, where I1,m (δ) → 0 as δ → 0. The considerations above are summarized in
the next lemma.

Lemma 4. Let Ki,Kj ∈ τ share exactly one edge. Then∫
Qδ
Ĥi,j (x̂) dx̂ = Ilog log δ + I0 + I1 (δ)

holds, where I1 (δ)→ 0 as δ → 0 and

Ilog =
4∑

m=1

Ilog,m,

I0 =
4∑

m=1

π/4∫
0

Bt(α)∫
0

κ̌0
m (ψ) log

ψθ (α, β)
cosα cosβ

dβdα +
∫
Ď0
m

κ̌1
m (rψ) drdβdα.

The function Bt and indices (θ, t) are defined as in (5.22), and Ď0
m is obtained by

setting δ = 0 in the definition of Pθ,t.

Proof. The proof follows from the representation (5.23).

Cubature rules for computing the integrals appearing in the definition of I0 will
be presented in Section 6.

Case III: It remains to discuss the case of coinciding panels Ki = Kj. The
function Ĥi,j is defined as a finite-part integral (cf. (3.4))

Ĥi,i (x̂) := p.f.

∫
Q

ki,i (x̂, ŷ) dŷ.

The integrand is singular only if y = x. The difference

z = ηi (ŷ)− ηi (x̂)

is zero only if ŷ = x̂. In this light, we introduce the following two-dimensional
relative coordinates (cf. [23], [9])

ẑ = ŷ − x̂

resulting in

z = ηi (x̂+ ẑ)− ηi (x̂) .
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Using the abbreviation r = ‖ẑ‖ and ξ = ẑ/r and expanding z about r = 0 yields
the representation

z = ηi (x̂+ rξ) − ηi (x̂) = r

∞∑
m=0

rmχm (x̂, ξ) ,

where

χm (x̂, ξ) =
〈ξ,∇〉m+1

ηi (x̂)
(m+ 1)!

.

Similarly as in Case I, the following expansion is derived:

ki,i (x̂, ŷ) = r−sc (x̂, r, ξ) ,(5.24)

where c (x̂, r, ξ) is analytic with respect to
1. x̂ in a neighbourhood of Q,
2. r in a neighbourhood of {r ∈ R | x̂, ŷ ∈ Q : r = ‖ŷ − x̂‖} ,
3. ξ in a neighbourhood of S1.

Due to the analyticity of c we can define the following functions:

c0 (x̂, ξ) = lim
r→0

c (x̂, r, ξ)(5.25)

c1 (x̂, ξ) = lim
r→0

∂rc (x̂, r, ξ)(5.26)

kreg (x̂, x̂+ rξ) =
c (x̂, r, ξ)− c0 (x̂, ξ)− rc1 (x̂, ξ)

rs
.(5.27)

In view of the analyticity of the coefficients c, c0, c1, and of the kernel function,
kreg (x̂, x̂+ rξ) can be written as

kreg (x̂, x̂+ rξ) =
c̃ (x̂, r, ξ)

r
(5.28)

(recall s ≤ 3), where c̃ has the same analyticity behaviour as the function c from
(5.24). Similarly as worked out in Proposition 1 and Lemma 2, one proves that

Ĥreg
i,i (x̂) :=

∫
Q

kreg (x̂, ŷ) dŷ

exists as an improper integral and is weakly singular with respect to x̂. Altogether,
the representation

Ĥi,i (x̂) = p.f.

∫
Pi

c0 (x̂, ψ (α))
r2

drdα + p.f.

∫
Pi

c1 (x̂, ψ (α))
r

drdα + Ĥreg
i,i (x̂)

= Ĥ0
i,i (x̂) + Ĥ1

i,i (x̂) + Ĥreg
i,i (x̂)

(5.29)

is proved, where

ψ (α) :=
(

cosα
sinα

)
and Pi denotes the domain (Q− x̂) in polar coordinates

Pi =
{

0 ≤ α ≤ 2π
ε ≤ r ≤ R (α, x̂)

}
.
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The function R (α, x̂) is defined as follows. Let {Pm}3m=1 denote the vertices of Q
(counterclockwise ordering and P1 = (0, 0)T ), and em = Pm+1 − Pm the edges of
Q. The distance of x̂ ∈ Q from the mth edge is given by

dm (x̂) := inf
t∈(0,1)

‖Pm + tem − x̂‖ ,

and the auxiliary functions am (x̂) , pm (α) by the following table.

m am (x̂) = pm (α) =

0 −π + arctan
x̂2

x̂1

1 − arctan
x̂2

1− x̂1
− sinα

2 π − arctan
1− x̂2

x̂1

cosα+ sinα√
2

3 π + arctan
x̂2

x̂1
− cosα

Then, R (α, x̂) is given by

R (α, x̂) =
dm (x̂)
pm (α)

∀α ∈ (am−1 (x̂) , am (x̂)) .

The r-integration in the definition of Ĥ0
i,i and Ĥ1

i,i can be performed analytically
and the finite-part process as well:

Ĥ0
i,i (x̂) = p.f.

∫ 2π

0

∫ R(x̂,α)

ε

c0 (x̂, ψ (α))
r2

drdα = −
∫ 2π

0

c0 (x̂, ψ (α))
R (x̂, α)

dα

= −
3∑

m=1

1
dm (x̂)

∫ am(x̂)

am−1(x̂)

pm (α) c0 (x̂, ψ (α)) dα =:
3∑

m=1

Cm (x̂)
dm (x̂)

(5.30)

Ĥ1
i,i (x̂) =

3∑
m=1

∫ am(x̂)

am−1(x̂)

c1 (x̂, ψ (α)) log
dm (x̂)
pm (α)

dα.(5.31)

The properties of the functions Ĥ0
i,i and Ĥ1

i,i are collected in the following lemma.

Lemma 5. The integrands in (5.30) and (5.31) are weakly singular (with respect
to α).

The function Ĥ1
i,i is weakly singular while the function Ĥ0

i,i contains noninte-
grable singularities as x → ∂Q. The function Cm in (5.30) is analytic. More
precisely, the function Cm

dm
is strongly singular only if x̂ → PmPm+1 and analytic

in Q.

Proof. These statements follow directly from (5.30) and the analyticity of pm and
c0.

Next, we have to prove that∫
Qδ
Ĥi,i (x̂) dx̂ = Ilog log δ + I0 + I1 (δ)(5.32)

holds with I1 (δ) → 0 as δ → 0. Similarly as in the case of a common edge (cf.
Lemma 3), this problem can be simplified. Let Q̃δ be defined as in (5.11). For
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m = 1, 2, 3, the mapping Wm : Q→ Q and the numbers gm are given by (notation:
P4 := P1 and P5 := P2)

Wm (x̂) = Pm + (Pm+1 − Pm) x̂1 + (Pm+2 − Pm) x̂2,

gm :=
{ √

2 if m = 2,
1 otherwise.

(5.33)

Lemma 6. The difference

R (δ) :=
∫
Qδ
Ĥi,i (x̂) dx̂−

{∫
Q

Ĥreg
i,i (x̂) + Ĥ1

i,i (x̂) dx̂+
3∑

m=1

gm

∫
Q̃δ

Cm (Wmx̂)
x̂2

dx̂

}
converges to zero as δ → 0.

Proof. We have to show that

R̃ (δ) := gm

∫
Q̃δ

Cm (Wmx̂)
x̂2

dx̂−
∫
Qδ

Cm (x̂)
dm (x̂)

dx̂

converges to zero as δ → 0. We observe that Wm maps Qδ onto Qδ. Since
dm (Wmx̂) = x̂2/gm, it suffices to proof that{∫

Q̃δ

Cm (Wmx̂)
x̂2

dx̂ −
∫
Qδ

Cm (Wmx̂)
x̂2

dx̂

}
δ→0→ 0.(5.34)

The proof of (5.34) follows by the same arguments as the proof of Lemma 3.

Now we can prove that (5.32) holds.

Lemma 7. The integral
∫
Qδ Ĥi,i (x̂) dx̂ can be written as∫

Qδ
Ĥi,i (x̂) dx̂ = Ilog log δ + I0 + I1 (δ) ,

where I1 (δ)→ 0 as δ → 0.

Proof. Due to the analyticity of Cm the functions

C0
m (x̂1) : = lim

x̂2→0
gmCm (Wmx̂) ,(5.35)

C1
m (x̂) : =

gmCm (Wmx̂)− C0
m (x̂1)

x̂2
(5.36)

are analytic too. Therefore

gm

∫
Q̃δi

Cm (Wmx̂)
x̂2

dx̂ = − log δ
∫ 1

0

C0
m (x̂1) dx̂1 +

∫ 1

0

C0
m (x̂1) log (1− x̂1) dx̂1

+
∫
Q

C1
m (x̂) dx̂+R (δ) ,

where R (δ)→ 0 as δ → 0.

As a side result we obtain a statement on the analyticity of Ĥi,j .

Lemma 8. The function Ĥi,j (x̂) is analytic in Q and is possibly singular as x̂→
∂Q.
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Proof. Let B ⊂ Q. For Ki 6= Kj, the function ki,j : B × Q → C is analytic since
dist (ηi (B) ,Kj) > 0. Hence, Hi,j (x̂) =

∫
Q ki,j (x̂, ŷ) dŷ is analytic in B.

Now, let Ki = Kj . We employ the splitting (5.29). The term Ĥreg
i,i was defined

by

Ĥreg
i,i (x̂) :=

∫ 2π

0

∫ R(α,x)

0

c̃
(
x̂, r,

(
cosα
sinα

))
drdα

with c̃ as in (5.28). The integrand is analytic in all variables and the upper bound
R (α, x̂) for the r-integration is also analytic in Q. Hence, the same holds for Ĥreg

i,i .
The term Ĥ0

i,i can be written in the form
∑ν

m=1
Cm(x̂)
dm(x̂) with analytic Cm and dm

denoting the distance to the mth edge. Hence, Ĥ0
i,i has also the asserted analyticity

properties.
Taylor expansion of the function c0 (x̂, ψ (α)) of (5.31) with respect to x̂ and

integrating the coefficients with respect to α implies that Ĥ1
i,i has the asserted

analyticity properties too.

The following remark concerns the extension of the analysis presented to the
case that the kernel function contains stronger singularities: s > 3. However, we
emphasize that, in most applications in R3, s ≤ 3 holds and the modifications below
are irrelevant.

Remark 4. Let the kernel function be of the form (3.2) with s > 3. If Ki, Kj share
exactly one common point, the kernel function in (5.5) is no longer integrable. One
has to subtract a Taylor expansion of a4 (r, ξ) about r = 0 (of order s − 3), i.e.,
introduce a further finite part process similarly as in the case of a common edge
and s = 3.

In the case of a common edge or for identical panels, the orders of the Taylor
expansions appearing in (5.21), (5.27), and (5.36) have to be increased. Further-
more, the replacement of the domain Qδ by the simplified domains Q̃δ are no longer
possible due to the arising stronger corner singularities. Instead one has to carry
out the integration over Qδ explicitly and introduce appropriate regularisations for
both edge and corner singularities.

6. Cubature techniques

In this section, we will define families of cubature rules for the approximation of
the local, regularised integrals

p.f.
δ

∫
Q

p.f.

∫
Q

ki,j (x̂, ŷ) dŷdx̂(6.1)

appearing in the sum (4.5). We distinguish the following four cases:
1. Ki ∩Kj = ∅,
2. Ki,Kj share exactly one point,
3. Ki,Kj share exactly one edge,
4. Ki = Kj .

Case 1: In the first case, the integrand is analytic and both finite part integrals
in (6.1) reduce to usual Riemann integrals. Thus, four-dimensional tensor versions
of properly scaled Gauß-Legendre quadrature rules are converging exponentially
towards the true integral.
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Case 2: The integrand in this case is weakly singular, and we can write∫
Q×Q

ki,j (x̂, ŷ) dŷdx̂.(6.2)

The domain of integration is given by

0 ≤ x̂1 ≤ 1,
0 ≤ x̂2 ≤ 1− x̂1,

0 ≤ ŷ1 ≤ 1,
0 ≤ ŷ2 ≤ 1− ŷ1.

As explained in [4], [23] the transformations

χI (ω, η) :=


η1ω

ω (1− η1)
η2η3ω

η2ω (1− η3)

 , χII (ω, η) :=


η2η3ω

η2ω (1− η3)
η1ω

ω (1− η1)


map the four-dimensional unit cube onto two disjoint domains D1, D2 satisfying
Q×Q = D1 ∪D2. The Jacobian of both mappings is given by ω3η2. The integral
in (6.2) becomes∫

(0,1)4

{
ki,j

(
χI12, χ

I
13

)
+ ki,j

(
χII12, χ

II
13

)}
ω3η2dωdη.(6.3)

Since the transform of these coordinates onto the polar coordinates (5.2) is ana-
lytic, the integrand in (6.3) is analytic, too (cf. [8, Remark 9.4.2]). Thus, four-
dimensional Gauß-Legendre formulae defines an exponentially convergent family of
cubature rules for approximating (6.2). Quantitative estimates of the local cuba-
ture errors along with formulae for the cubature orders required for a consistent
discretisation will be presented in a forthcoming paper.

We expect that the integral (6.2) can be treated with extrapolation techniques
as well (cf. [16], [15], [17], [26]), although the corresponding error expansions are
not worked out yet.

Case 3: Now, we consider the case where Ki and Kj share exactly one edge.
The following representation was proved in Lemma 4 where the quantities λ, Bm,
κ̌0
m, κ̌1

m, ψ, Ď0
m are also defined (for (θ, t) , see (5.19) and (5.22)):

p.f.
δ

∫
Q

p.f.

∫
Q

ki,j (x̂, ŷ) dŷdx̂ =
4∑

m=1

π/4∫
0

Bt(α)∫
0

κ̌0
m (ψ) log

ψθ (α, β)
ψ1 (α, β)

dβdα

+
∫
Ď0
m

κ̌1
m (rψ) drdβdα.

(6.4)

It was proved that the functions κ̌0
m and κ̌1

m are analytic. The domain of integration
Ď0
m is given by

0 ≤ α ≤ π

4
,

0 ≤ β ≤ Bt (α) ,

0 ≤ r ≤ 1
cosα cosβ

.
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The integration bounds depend analytically on the parameters. Hence, the second
integral on the right-hand side above can be approximated by tensor versions of
properly scaled Gauß-Legendre quadrature rules. This family of quadrature meth-
ods again is exponentially convergent with respect to the order.

For the first integral on the right-hand side of (6.4), we observe that

• for θ = 1, the integral vanishes;

• for θ = 2, the integral can be rewritten as
∫ π/4

0

log tanα
∫ Bt(α)

0

κ̌0
m (ψ) dβdα;

• for θ = 3, the integral takes the form

π/4∫
0

Bt(α)∫
0

κ̌0
m (ψ) log

tanβ
cosα

dβdα.(6.5)

For θ = 2, the α-integration can be approximated by Gauß-like formula with
logarithmic weight (substituting tanα = s) as explained, e.g., in [1], while the
integrand is analytic with respect to β. Hence, integration with respect to β can
be approximated with Gauß-Legendre quadrature rules.
θ = 3 implies m = 1 and t = 2 (cf. (5.19)). In this case, we substitute the

variable β by

β (α, ξ) = arctan (ξ sinα) .

Let the auxiliary function ρ and ψ be defined by

ρ (α, ξ) := sinα
1+ξ2 sin2 α , ψ (α, ξ) := (cosα,sinα,ξ sinα)T√

1+ξ2 sin2 α
.

Then, (6.5) can be rewritten as

1∫
0

log ξ

π/4∫
0

ρκ̌0
m (ψ) dαdξ +

π/4∫
0

(log tanα)

1∫
0

ρκ̌0
m (ψ) dξdα.(6.6)

Hence, Gauß-Legendre rules can be used with respect to those variables where the
integrand is analytic and to Gauß-like rules with logarithmic weight with respect
to the remaining variables.

We conclude this case by discussing how the function κ̌0
m (defined in (5.20)),

κ̌0
m (ψ) := lim

r→0

(
r3κ̌m (rψ) cosβ

)
(6.7)

can be evaluated in quadrature points, where κ̌ was defined by (5.18). Since the
expression in the brackets in (6.7) is analytic in r, the function κ0

m can be approx-
imated for sufficiently small ε > 0 by

˜̌κ0

m (ψ) := ε3κ̌m (εψ) cosβ,

where the arising error is proportional to ε.
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Case 4: In the case of identical panels we have proved that

p.f.
δ

∫
Q

p.f.

∫
Q

ki,i (x̂, ŷ) dŷdx̂ =
∫
Q×Q

kreg (x̂, ŷ) dŷdx̂

+
3∑

m=1


∫
Q

am∫
am−1

c1 (x̂, ψ (α)) log
dm (x̂)
pm (α)

dαdx̂

+
∫
Q

C1
m (x̂) dx̂+

1∫
0

C0
m (x̂1) log (1− x̂1) dx̂1


=: Ireg +

3∑
m=1

{
I(1)
m + I(2)

m + I(3)
m

}
holds, where all quantities are defined in Section 4, Case III. For the approximation
of Ireg, we employ the transformations and cubature techniques as described in [4]
which goes back to [23].

The functions C1
m are analytic on Q and, hence, I(2)

m can also be approximated
by tensor versions of properly scaled Gauß-Legendre rules. The last integral I(3)

m

can be approximated efficiently using Gauß-like formulas with weight log (1− x̂1).
It remains to consider the approximation of the integral I(1)

m . We employ the
transformation Wm, which was used in Lemma 6, and observe that dm (Wmx̂) =
x̂2/gm (cf. (5.33)) holds. This means that

3∑
m=1

I(1)
m =

3∑
m=1

∫
Q

am(Wmx̂)∫
am−1(Wmx̂)

c1 (Wmx̂, ψ (α)) log
x̂2

gmpm (α)
dαdx̂

holds, where the functions am are as in (5.31). In the next step, this integral will
be transformed onto a standard domain such that the singular behaviour of the
integrand is simplified. Let the constant γm be defined by

γ1 = −π
2
, γ2 =

π

4
, γ3 = π.

Substituting α← γm + arctan ẑ
x̂2

, we obtain

I(1)
m =

∫
Q

ρ1
m(x̂)∫
ρ0
m(x̂)

čm (x̂, ẑ) ω̌m (x̂, ẑ) dẑdx̂,(6.8)

where the quantities ρm, čm, and ω̌m are defined by

ρ0
1 = −x̂1, ρ1

1 = 1− x̂1,
ρ0

2 = −2x̂1 − x̂2, ρ1
2 = 2− 2x̂1 − x̂2,

ρ0
3 = −x̂1 − x̂2, ρ1

3 = 1− x̂1 − x̂2

and

čm (x̂, ẑ) : = c1

(
Wmx̂, ψ

(
γm + arctan

ẑ

x̂2

))
,

ω̌m (x̂, ẑ) : =
x̂2

x̂2
2 + ẑ2

log

√
ẑ2 + x̂2

2

gm
.
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Since the integrand in (6.8) is smooth with respect to x̂1, we interchange the
ordering of integration such that x̂1 is the innermost variable. Again the integration
domain has to be split into subdomains. Then the reference domain

D1 :=


0 ≤ v1 ≤ 1
0 ≤ v2 ≤ v1

0 ≤ v3 ≤ 1− v1


is mapped onto these subdomains. Let transformations χmµ be defined as follows.
• For m = 1, by

χ11 (v) =

 1 −1 1
0 1 0
−1 1 0

 v1

v2

v3

 , χ12 (v) =

 0 0 1
1 0 0
0 1 0

 v1

v2

v3

 ,

χ13 (v) =

 0 0 1
0 1 0
1 0 0

 v1

v2

v3

 .

• For m = 2, by

χ21 (v) =

 0 0 1
1 0 0
−1 2 0

 v1

v2

v3

 , χ22 (v) =

 0 0 1
0 1 0
2 −1 0

 v1

v2

v3

 ,

χ23 (v) =

 1 −1 1
0 1 0
−2 1 0

 v1

v2

v3

 .

• For m = 3, by

χ31 (v) =

 1 0 1
0 1 0
−1 0 0

 v1

v2

v3

 , χ32 (v) =

 0 0 1
1 0 0
0 −1 0

 v1

v2

v3

 ,

χ33 (v) =

 0 0 1
0 1 0
1 −1 0

 v1

v2

v3

 .

Now, integral (6.8) can be written in the form∫
D1

g2
m

3∑
µ=1

(ω̌m ◦ χmµ) (v) (čm ◦ χmµ) (v) dv.

The transform v2 = ξv1 leads to

∫ 1

0

∫ 1

0

∫ b(v1,ξ)

0

g2
m

3∑
µ=1

v1 (ω̌m ◦ χmµ) (v1, ξv1, v3) (čm ◦ χmµ) (v1, ξv1, v3) dv3dξdv1.

(6.9)

Now, these integrals can be integrated by standard formulae. Exemplarily, we study
only the case of µ = m = 1, where

v1 (ω̌1 ◦ χ11) (v1, ξv1, v3) =

(
ξ

(1− ξ)2 + ξ2
log v1

)
+

ξ log
√

(1− ξ)2 + ξ2

(1− ξ)2 + ξ2


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holds. Hence, integral (6.9) can be decomposed into two integrals, where one inte-
grand is analytic in all variables and the other is analytic in ξ and v3 and contains
a logarithmic singularity of the form log v1. Thus, properly scaled Gauß-Legendre
formulae with respect to the smooth variables and Gauß-like formulae with loga-
rithmic weight for the integral containing log v1 converge exponentially.

As in Section 5 we will finish this section by explaining how the functions c0 and
c1 appearing in (5.25) and (5.26) can be evaluated. Let a pair of points x̂, ŷ ∈ Q
be given. First, the quantities r = ‖ŷ − x̂‖, ξ = (ŷ − x̂) /r, y = ηi (ŷ), x = ηi (x̂),
and z = y − x have to be computed. As in (5.24) we define

c (x̂, r, ξ) = rski,i (x̂, rξ + x̂) .

Then, c0 is given by

c0 (x̂, ξ) = lim
r→0

c (x̂, r, ξ) .

We have proven that the function c is analytic with respect to all variables. Hence,
for small ε > 0, the function c0 (x̂, ξ) can be approximated by

c0 (x̂, ξ) =
1
2

(c (x̂, ε, ξ) + c (x̂,−ε, ξ)) +O
(
ε2
)
.

For the evaluation of c1 (x̂, ξ) we use the formula

c1 (x̂, ξ) = lim
r→0

∂r (c (x̂, r, ξ)) .

For sufficiently small value of ε, this quantity can be approximated by

c̃1 (x̂, ξ) =
c (x̂, ε, ξ)− c (x̂,−ε, ξ)

2ε
+O

(
ε2
)
.(6.10)

Note that these formulae are fully implicit; the derivatives of the kernel function
or special expansions are never used in the cubature rules. However, if the three-
dimensional derivatives of the kernel function k (x, y, z) are available and all second
order derivatives of the chart ηi as well, then ∂r (c (x̂, r, ξ)) can be expressed explic-
itly while the numerical evaluation might then behave more robustly with respect
to cancellation errors.

It remains to explain the approximation of the function C0
m (x̂1) as defined in

(5.35). The limit

C0
m (x̂1) = gm lim

x̂2→0

∫ am(x̂)

am−1(x̂)

pm (α) c0 (x̂, ψ (α)) dα

has to be computed. The integration bounds am (x̂) can be evaluated at x̂2 = 0.
The same holds for the function c0. Again, the integrand is analytic and can be
evaluated by properly scaled Gauß-Legendre rules.

Summarizing, we have developed cubature formulae for all integrals appear-
ing in the context of hypersingular integral operators. First, appropriate variable
transforms are applied rendering the integrand either analytic or analytic with a
logarithmic weight. Such integrals finally can be treated by Gauß-like formulae.
The algorithm is fully implicit, we never made use of the explicit form of the kernel
function and/or the surface parametrisation. The transformations of the Gauss-
ian points on true surface points is easy to implement and to debug since these
transformations are given either by 4× 4 or 3× 3 matrices.

Concerning the work for assembling the system matrix, we emphasize that the
number of singular cases (i.e., Ki ∩ Kj 6= ∅) is proportional to O (N) where N
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denotes the number of panels. The integrand is regular in O
(
N2
)

cases. Hence,
the overall complexity is dominated by the regular or so-called farfield integrals.
For the singular cases, it is important to have robust cubature rules along with a
proper convergence analysis to control the perturbation error arising by replacing
the true Galerkin matrix by the cubature approximation (see [5]).

Alternative regularisation techniques, like partial integration or global regulari-
sation (i.e., subtracting functions lying in the null space of the operator), have the
drawback that the evaluation of the integrand for the farfield integrals is possibly
more costly (cf. [10], [11]) compared to the evaluation of the original kernel func-
tion. Hence, the work for approximating the farfield integrals could be substantially
larger compared to using the true kernel function.
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