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ERROR ESTIMATES IN THE NUMERICAL EVALUATION
OF SOME BEM SINGULAR INTEGRALS

G. MASTROIANNI AND G. MONEGATO

Abstract. In some applications of Galerkin boundary element methods one
has to compute integrals which, after proper normalization, are of the form∫ b

a

∫ 1

−1

f(x, y)

x− y
dxdy,

where (a, b) ≡ (−1, 1), or (a, b) ≡ (a,−1), or (a, b) ≡ (1, b), and f(x, y) is a
smooth function.

In this paper we derive error estimates for a numerical approach recently
proposed to evaluate the above integral when a p−, or h − p, formulation of
a Galerkin method is used. This approach suggests approximating the inner
integral by a quadrature formula of interpolatory type that exactly integrates
the Cauchy kernel, and the outer integral by a rule which takes into account
the log endpoint singularities of its integrand. Some numerical examples are
also given.

1. Introduction

In the applications of Galerkin boundary element methods, for the numerical
solution of one-dimensional singular and hypersingular integral equations, one has
to deal (see [1]) with integrals which after proper normalization are of the form∫ b

a

∫ 1

−1

f(x, y)
x− y dxdy,(1.1)

where (a, b) ≡ (−1, 1), or (a, b) ≡ (a,−1), or (a, b) ≡ (1, b), and f(x, y) is a smooth
function of both variables. When y ∈ (−1, 1), the inner integral is defined in the
Cauchy principal value sense and will be denoted by the symbol

∮
. In particular,

one has to approximate (1.1) by quadrature rules.
Incidentally we note that two-dimensional singular integrals of type (1.1) arise

also in the calculation of the aerodynamic load on a lifting body (see [2]), and in
this context some numerical procedures for their evaluation have been proposed in
[15], [18].

A recent new numerical approach (see [1], [7]) suggests approximating the inner
integral by a quadrature formula of interpolatory type, based on the zeros of Le-
gendre polynomials, which exactly integrates the Cauchy kernel times an arbitrary
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polynomial of degree n− 1 and assumes the form∮ 1

−1

f(x, y)
x− y dx =

n∑
i=1

wn,i(y)f(xn,i, y) +RIn(f ; y),(1.2)

whenever y ∈ (−1, 1) or y /∈ (−1, 1) but is very close to one of the endpoints. For the
construction of these rules see [12]. When y is sufficiently away from (−1, 1), then
the integral is evaluated by a standard Gauss-Legendre formula. The outer integral
should be computed using rules like those proposed in [14, Remark 1] or [16], which
take into account the endpoint singular behaviour of the integrand function. These
rules are of the form ∫ b

a

F (y)dy =
m∑
j=1

vm,jF (ym,j) +Rm(F ),(1.3)

with vm,j > 0, j = 1, ...,m, and, taking for example (a, b) ≡ (−1, 1), they satisfy
the convergence property

lim
m→∞

m∑
j=1

vm,j
logk(1− y2

m,j)
(1 − y2

m,j)β
=
∫ 1

−1

logk(1− y2)
(1− y2)β

dy(1.4)

for β < 1, k = 0, 1. More generally, they converge whenever F (y) has only inte-
grable endpoint singularities.

The composition of (1.2) and (1.3) then leads to the final formula∫ b

a

∫ 1

−1

f(x, y)
x− y dxdy =

m∑
j=1

vm,j

n∑
i=1

wn,i(ym,j)f(xn,i, ym,j) + Rm,n(f),(1.5)

where

Rm,n(f) =
m∑
j=1

vm,jR
I
n(f ; ym,j) +Rm(

∫ 1

−1

f(x, ·)
x− · dx).(1.6)

Following [1], here we are referring to a p-formulation of the Galerkin BEM and
are interested in the accurate calculation of the corresponding integrals of form
(1.1). Therefore, we are not concerned with the behaviour of the quadrature rule,
having fixed the number of its nodes, as the size of the domain of integration tends
to zero. Instead, given a boundary element of fixed length, we let the number of
points tend to infinity and want to know the behaviour of Rm,n(f).

Since estimates for Rm are either available or easy to obtain (see [14], [16] and
Section 3), to determine the behaviour of Rm,n(f), as m,n→∞, we need to have
accurate pointwise (with respect to y) bounds for RIn(f ; y). All known estimates
refer to a variable y bounded away from the endpoints ±1 (see for example [3],
[12]). In this paper we derive for (1.2) a pointwise error estimate which, taking into
account property (1.4), will then allow us to obtain a bound for the global term
(1.6).

The estimate we derive for RIn(f ; y) may be useful for other types of applica-
tions. For example it could be used to obtain uniform (with respect to the colloca-
tion point) error estimates for the evaluation of integrals required by a collocation
method, or to obtain weighted uniform estimates for Nyström-type interpolants for
second kind singular integral equations on bounded intervals.
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2. Pointwise error estimates for the inner integral

For the sake of generality, we will derive a pointwise error estimate for a quadra-
ture rule of type (1.2) when a symmetric Jacobi weight function wα(x) :=
(1− x2)α, α > −1, is also present. Our results could be proved for a more general
Jacobi weight function wα,β(x) = (1 − x)α(1 + x)β , α, β > −1, but this would in-
troduce more cases to be examined in the proofs, depending upon the values of the
two parameters α, β; the proofs would be very similar anyway.

Thus we consider the quadrature rule∮ 1

−1

wα(x)
f(x, y)
x− y dx =

n∑
i=1

wn,i(y)f(xn,i, y) +RIn(f ; y).(2.1)

It is of interpolatory type and is obtained by replacing, for any given y, f(x, y) by
its Lagrange interpolation (with respect to x) polynomial of degree n− 1, that we
shall denote by Ln(f, y;x), based on the zeros of the nth-degree Jacobi polynomial
P

(α,α)
n (x): −1 < xn,n < · · · < xn,1 < 1 (see [19]).
In the following we define

H(f ; y) :=
∮ 1

−1

wα(x)
f(x, y)
x− y dx.(2.2)

We shall also make use of the quantities (see [8, (12.1.2)])

∆r
1,hφf(x, y) :=

r∑
k=0

(−1)k
(
r

k

)
f(x+ (

r

2
− k)hφ(x), y),

∆r
2,hφf(x, y) :=

r∑
k=0

(−1)k
(
r

k

)
f(x, y + (

r

2
− k)hφ(y)),

ωrI (f, t) = ωrI(f, t)∞ := sup
0<h≤t

max{‖∆r
1,hφf‖I , ‖∆r

2,hφf‖I}, t < 1,(2.3)

where h > 0, r ≥ 1 an integer, φ(z) :=
√

1− z2, I := [−1, 1]2,

‖f‖∞ ≡ ‖f‖I := sup
I
|f(x, y)|

and

∆r
i,hφf(x, y) := 0

whenever one of the arguments of f on the right-hand sides of the above definitions
does not belong to I.

Incidentally, we notice that if in the definition of ∆r
i,hφf we choose φ ≡ 1, then

the corresponding ωrI reduces to the ordinary modulus of continuity, which is greater
than or equal to that defined in (2.3). To obtain accurate pointwise error estimates
for (2.1), we need to use (2.3). This is because, among other properties, the new
modulus satisfies the following two inequalities:

Em(f)∞ ≤ ωrI(f,
1
m

) (see [8, (12.1.3)]),(2.4)

ωrI(f, t) ≤ ctr
b1/tc∑
k=0

(k + 1)r−1Ek(f)∞ (see [8, (12.1.4)]),(2.5)
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where∗

Ek(f)∞ := inf
pk∈Πk

‖f − pk‖∞.(2.6)

These bounds will be fundamental in deriving our results.
For notational convenience, we shall also set ωI(f, t) := ω1

I (f, t); moreover, the
symbol c will denote a constant which in general will take different values at different
occurences.

Theorem 1. Let α > −1 and y ∈ (−1, 1). For any f ∈ C[−1, 1]2 we have

|H(f ; y)| ≤ chα(y)[‖f‖∞ +
∫ 1

0

ωI(f ;u)
u

du],(2.7)

with

hα(y) =


wα(y), −1 < α < 0,
log 1

1−y2 , α = 0,
1, α > 0,

where the constant c = c(α) depends only upon α.

Proof. Assume first −1 < y < −1/2; then, since −1 < 2y + 1 < 0 and 2y + 1 > y,
we write ∮ 1

−1

wα(x)
f(x, y)
x− y dx =

∮ 2y+1

−1

+
∫ 1

2y+1

=: I1 + I2.

To bound I2 we proceed as follows. Notice first that x ≥ 2y + 1 implies 0 <
1+x
x−y ≤ 2; therefore we have

|I2| ≤ 2‖f‖∞
∫ 1

2y+1

(1 − x)α(1 + x)α−1dx.(2.8)

Moreover,

∫ 1

2y+1

(1− x)α(1 + x)α−1dx ≤ c[
∫ 0

2y+1

(1 + x)α−1dx+
∫ 1

0

(1 − x)αdx] ≤ chα(y).

By inserting the latter bound into (2.8) we obtain

|I2| ≤ 2c‖f‖∞(1 + y)α.(2.9)

To bound I1, first we note that∮ 2y+1

−1

dx

x− y = 0,

hence write

I1 = wα(y)
∫ y+(1+y)

y−(1+y)

f(x, y)− f(y, y)
x− y dx

+
∫ 2y+1

−1

f(x, y)
wα(x) − wα(y)

x− y dx =: I ′1 + I ′′1 .

∗Πk below denotes the space of all polynomials of degree k in each variable.
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We have

I ′1 = wα(y)[
∫ y

y−(1+y)

f(x, y)− f(y, y)
x− y dx+

∫ y+(1+y)

y

f(x, y)− f(y, y)
x− y dx],

hence, setting x− y = uφ(y)/2,

|I ′1| = wα(y)|
∫ 2

0

f(y + uφ(y)/2, y)− f(y − uφ(y)/2, y)
u

du|

≤ wα(y)
∫ 1

0

|∆1
1,uφf(y, y)|

u
du + 2wα(y)‖f‖∞.

Therefore, recalling definition (2.3) we have

|I ′1| ≤ wα(y)
∫ 1

0

ωI(f, u)
u

du+ 2wα(y)‖f‖∞.(2.10)

To bound I ′′1 we notice first that

wα(x)− wα(y)
x− y = (1 + x)α[

(1 − x)α − (1 − y)α

x− y ] + (1 − y)α[
(1 + x)α − (1 + y)α

x− y ],

and then write

|I ′′1 | ≤ ‖f‖∞[
∫ 2y+1

−1

(1 + x)α| (1− x)α − (1− y)α

x− y |dx(2.11)

+ (1− y)α
∫ 2y+1

−1

| (1 + x)α − (1 + y)α

x− y |dx].

Since y < −1/2 and x ≤ 2y + 1 < 0, we have

| (1− x)α − (1− y)α

x− y | ≤ c.

Moreover, setting 1 + x = u(1 + y) we obtain
(1 + x)α − (1 + y)α

x− y = (1 + y)α−1u
α − 1
u− 1

.

Thus, from (2.11) we have

|I ′′1 | ≤ c‖f‖∞[(1 + y)α+1 + wα(y)
∫ 2

0

|u
α − 1
u− 1

|du] ≤ c‖f‖∞wα(y).(2.12)

Combining (2.9), (2.10) and (2.12), we finally obtain

|
∮ 1

−1

wα(x)
f(x, y)
x− y dx| ≤ cw

α(y)[‖f‖∞ +
∫ 1

0

ωI(f, u)
u

du],(2.13)

where c = c(α) depends only upon α.
The cases α = 0 and α > 0 are even simpler. They can be easily derived by

repeating the preceding arguments, after having introduced some obvious simplifi-
cations. The symmetric situation 1/2 < y < 1 is quite similar; indeed it is sufficient
to replace y by −y in the proof above.

The final case −1/2 ≤ y ≤ 1/2 is fairly simple and can be dealt with as follows.
Let us consider

A =
∮ 1

−1

wα(x)
f(x, y)
x− y dx =

∫ y− 1
4

−1

+
∮ y+ 1

4

y− 1
4

+
∫ 1

y+ 1
4

=: A1 +A2 +A3.(2.14)
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We have

|A1| ≤ c‖f‖∞
∫ y− 1

4

−1

wα(x)dx ≤ c‖f‖∞

and, similarly,

|A3| ≤ c‖f‖∞.
For the remaining integral we proceed as follows. Write first

A2 = wα(y)
∫ y+ 1

4

y− 1
4

f(x, y)− f(y, y)
x− y dx+

∫ y+ 1
4

y− 1
4

wα(x)− wα(y)
x− y dx.(2.15)

Hence, setting x = y + uφ(y)/2, note that

|
∫ y+ 1

4

y− 1
4

f(x, y)− f(y, y)
x− y dx| = |

∫ 1
2φ(y)

− 1
2φ(y)

f(y + uφ(y)/2, y)− f(y, y)
u

du|

≤ c
∫ 1

2φ(y)

0

|f(y + uφ(y)/2, y)− f(y − uφ(y)/2, y)|
u

du ≤ c
∫ 1

0

ωI(f, u)
u

du.

By inserting this bound into (2.15) we obtain

|A2| ≤ c[‖f‖∞ +
∫ 1

0

ωI(f, u)
u

du],

and finally, from (2.14),

|A| ≤ cwα(y)[‖f‖∞ +
∫ 1

0

ωI(f, u)
u

du],

i.e., (2.7).

Theorem 2. Given any polynomial pm(x, y) of degree m > 1 in x and y, and a
function f(x, y) such that ∫ 1

0

ωI(f, u)
u

du <∞,

we have

|H(f − pm; y)| ≤ chα(y)[‖f − pm‖∞ logm+
∫ 1

m

0

ωrI(f, u)
u

du], −1 < y < 1,

(2.16)

for any α > −1 and r ≥ 1, where the constant c = c(α) depends only upon α and
hα(y) is defined as in Theorem 1.

Proof. Recalling (2.4), we consider first the term∫ 1

0

ωI(f − pm, u)
u

du =
∫ 1

m

0

+
∫ 1

1
m

=: B1 +B2,

and note that

|B2| ≤ c‖f − pm‖∞ logm, m > 1,(2.17)

since from the definition of ωI it follows that

ωI(f, u) ≤ c‖f‖∞.
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To bound B1 we use inequality (2.5) with r = 1 and

Ek(f − pm)∞ ≤
{
‖f − pm‖∞, k ≤ m,
Ek(f)∞, k > m.

(2.18)

The bound (2.18) follows directly from the definition of Ek(f)∞. These inequalities
allow us to write

ωI(f − pm, u) ≤ cu
b1/uc∑
k=0

Ek(f − pm)∞ ≤ cu[(m+ 1)‖f − pm‖∞ +
b1/uc∑
k≥m+1

Ek(f)∞.

(2.19)

Recalling (2.4) we further have
b1/uc∑
k=m+1

Ek(f)∞ ≤ c
b1/uc−1∑
k=m

ωrI(f,
1

k + 1
)(2.20)

≤ c
b1/uc−1∑
k=m

∫ k+1

k

ωrI (f,
1
v

)dv ≤ c
∫ 1

u

m

ωrI (f ;
1
v

)dv = c

∫ 1
m

u

ωrI(f, t)
t2

dt, r ≥ 1.

Thus (2.19) becomes

ωI(f − pm, u) ≤ cu[(m+ 1)‖f − pm‖∞ +
∫ 1

m

u

ωrI(f, t)
t2

dt], r ≥ 1,(2.21)

and the integral B1 can be estimated as

|B1| ≤ c[‖f − pm‖∞ +
∫ 1

m

0

∫ 1
m

u

ωrI(f, t)
t2

dtdu], r ≥ 1.

By interchanging the order of integration, the last double integral can be rewritten
as ∫ 1

m

0

ωrI(f, t)
t

dt.(2.22)

Finally, from (2.22) and (2.17) we derive the bound∫ 1

0

ωI(f − pm;u)
u

du ≤ c[‖f − pm‖∞ logm+
∫ 1

m

0

ωrI (f ;u)
u

du].

Combining the latter with Theorem 1, we obtain (2.16).

Remark 1. If ωrI(f, u) = O(uγ) for some real γ > 0, then∫ 1
m

0

ωrI (f, u)
u

du = O(m−γ).

In particular, when f ∈ Hp(µ, µ), where Hp(µ, µ) denotes the space of functions
with all partial derivatives of order ≤ p continuous on [−1, 1]2, and with those of
order p that are Hölder continuous of degree µ, we have

ωrI(f, u) = O(up+µ),

for any integer r ≥ p+ µ, hence∫ 1
m

0

ωrI (f, u)
u

du = O(m−p−µ).
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Theorem 3. Let − 1
2 ≤ α ≤ 1

2 and y ∈ (−1, 1). Given any f ∈ C[−1, 1]2, for the
remainder term in (2.1) we have

|RIn(f ; y)| ≤ ch̄α(y)[En−1(f)∞ logn+
∫ 1

n−1

0

ωrI(f, u)
u

du], n > 1,(2.23)

where

h̄α(y) =


w
α
2−

1
4 (y), α < 0,

w−
1
4 (y) log 1

1−y2 , α = 0,
w−

1
4 (y), α > 0,

and c = c(α) depends only upon α.

Proof. From the representation

RIn(f ; y) =
∫ 1

−1

wα(x)
f(x, y) − Ln(f, y;x)

x− y dx,

we know that the bound

|RIn(f ; y)| ≤ |
∫ 1

−1

wα(x)
f(x, y)− pm(x, y)

x− y dx|

+ |
∫ 1

−1

wα(x)
Ln(f − pm, y;x)

x− y dx| =: I1 + I2

(2.24)

holds for any polynomial pm of degree m ≤ n− 1 with respect to each variable. By
taking as pm a “best” (uniform) approximation polynomial of degree n− 1 defined
by (2.18), from Theorem 2 we immediately derive

|I1| ≤ chα(y)[En−1(f)∞ logn+
∫ 1

n−1

0

ωrI(f, u)
u

du].(2.25)

To bound I2, for notational convenience we set em = f − pm and write

I2 =
∫ 1

−1

wα(x)
Ln(em, y;x)− Ln(em, y; y)

x− y dx+ Ln(em, y; y)
∫ 1

−1

wα(x)
x− y dx.

Then we discretize the first integral by means of the corresponding n-point Gaussian
rule with nodes {xn,i} and weights {λn,i}; we obtain

I2 =
n∑
i=1

λn,i
Ln(em, y;xn,i)− Ln(em, y; y)

xn,i − y
+ Ln(em, y; y)

∫ 1

−1

wα(x)
x− y dx(2.26)

if all xn,i 6= y, or

I2 =
n∑

i=1,i6=j
λn,i

Ln(em, y;xn,i)− Ln(em, y; y)
xn,i − y

+ λn,jL
′
n(em, y; y)(2.27)

+Ln(em, y; y)
∫ 1

−1

wα(x)
x− y dx

if xn,j = y.
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For simplicity we examine only (2.26), since the case of (2.27) is very similar.
Expression (2.26) can be reformulated as

I2 = A∗(y)Ln(em, y; y)

+
n∑

i=1,i6=ic

λn,i
em(xn,i; y)
xn,i − y

+ λn,ic
Ln(em, y;xn,ic)− Ln(em, y; y)

xn,ic − y

=: A1 +A2 +A3,

where

A∗(y) =
∫ 1

−1

wα(x)
x− y dx−

n∑
i=1,i6=ic

λn,i
xn,i − y

and xn,ic denotes the closest node to y. Notice that since m = n − 1, above we
have used the property Ln(em, y;xn,i) = em(xn,i; y).

We recall (see for example [6, Lemma 5.3]) that the following bound has been
proved:

|A∗(y)| ≤ chα(y),

where hα(y) is defined as in (2.7). Moreover, since (see [10, (2.7) and (2.11)]) for
α ≥ −1/2

‖w α
2 + 1

4Ln(em, y; ·)‖∞ ≤ c‖em‖∞ logn,

for A1 we have

|A1| ≤ c
hα(y)

w
α
2 + 1

4 (y)
‖em‖∞ logn.(2.28)

To bound A2 we recall preliminarily that from [4, Lemma 3.4] we have
n∑

i=1,i6=ic

λn,i
|xn,i − y|

≤ chα(y) logn,

hence

|A2| ≤ chα(y)‖em‖∞ logn.(2.29)

In the case of A3 we rewrite the corresponding expression in the form

A3 = λn,icL
′
n(em, y; ξn,ic), |y − ξn,ic | < |y − xn,ic |,

recall (see [17, p.370]) the estimate

λn,ic ∼

√
1− x2

n,ic

n
wα(xn,ic),(2.30)

and note that for y ∈ [−1 + δ, 1− δ], δ = (1 − xn,1)/2, we have

1± ξn,ic ∼ 1± xn,ic ∼ 1± y,
where a ∼ b means that there exist two positive constants c1, c2 such that c1 ≤
a/b ≤ c2. We obtain

|A3| ≤
c

n
wα+1/2(ξn,ic)|L′n(em, y; ξn,ic)|,

hence

|A3| ≤ cw
α
2−

1
4 (ξn,ic)‖w

α
2 + 1

4Ln(em, y; ·)‖∞ ≤ cw
α
2−

1
4 (y)‖em‖∞ logn,
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since
1
k
‖wβ+1/2p′k‖∞ ≤ c‖wβpk‖∞, β ≥ 0,

for any polynomial of degree k ≥ 1. This last estimate follows almost immediately
from [17, Lemma 2] (see, for example, [11, Corollary 2.3]). Finally,

|A3| ≤ cw
α
2−

1
4 (y)‖em‖∞ logm.(2.31)

From (2.28), (2.29) and (2.31) bound (2.23) follows.
The case y /∈ [−1 + δ, 1− δ] follows directly from expression (2.26) and the above

bounds once we rewrite it in the form

I2 = [A2 +
λn,ic

xn,ic − y
em(xn,ic ; y)] + Ln(em; y)[A∗(y) +

λn,ic
xn,ic − y

],

where ic is either 1 or n. To this end we further need to recall the symmetry of the
nodes xn,i, hence notice that from (2.30), the estimate (see [19]) 1 − xn,1 ∼ n−2

and the bound y − xn,1 > δ we also have

λn,1
xn,1 − y

≤ cwα(xn,1) ≤ c
{

1 if α ≥ 0,
wα(y) if α < 0.

Remark 2. If in (2.23) f ∈ Hp(µ, µ), 0 < µ ≤ 1, then

|En−1(f)| ≤ c
∫ 1

n−1

0

ωrI (f ;u)
u

du = O(n−p−µ)

for any given integer r ≥ p+ 1, and

|RIn(f ; y)| ≤ c logn
np+µ

h̄α(y).(2.32)

Next we examine the situation |y| > 1. The derivation of the corresponding
results is fairly simple.

Lemma 1. For any real β > −1 and |y| > 1, we have

|
∫ 1

−1

wβ(x)
x− y dx| ≤ cδβ(y),(2.33)

where

δβ(y) =


1, β > 0,
| log(y2 − 1)|, β = 0,
(y2 − 1)β, β < 0,

and the constant c = c(β) depends only upon β.

Proof. When β = 0 a direct calculation of the above integral gives the bound
| log(y2 − 1)|. When β 6= 0, it is sufficient to consider the integral

I =
∫ 1

0

(1− x)β

y − x dx, y > 1.

For β > 0 this integral can be bounded by

|I| ≤
∫ 1

0

(1 − x)β−1dx ≤ c.



NUMERICAL EVALUATION OF SOME BEM SINGULAR INTEGRALS 261

For β < 0 we could represent I by using the Gauss hypergeometric function
2F1(1, 1, β + 2; 1/y) (see [9]); however this becomes singular as y → 1+ and we
should derive its behaviour. For our purposes it is sufficient to proceed in the
following elementary way.

Write

I = (y − 1)β
∫ 1

0

(1−x
y−1 )β

y − x dx

and set t = 1−x
y−1 . We obtain, assuming y < 2,

I = (y − 1)β
∫ 1

y−1

0

tβ

t+ 1
dt

≤ (y − 1)β [
∫ 1

0

tβdt+
∫ 1

y−1

1

tβ−1dt] ≤ c(y − 1)β .

By considering then the corresponding integral over (−1, 0) we finally obtain (2.33).

Since in the present case the results corresponding to those of Theorems 1 and
2 are trivial to derive, we state explicitly only the one concerning the behaviour of
the remainder term RIn(f ; y).

Theorem 4. Let α ≥ −1/2 and |y| > 1. Given any f ∈ C[−1, 1]2, for the remain-
der term in (2.1) we have

|RIn(f ; y)| ≤ cδ̄α(y)En−1(f)∞ logn,(2.34)

where

δ̄α(y) =


| log(y2 − 1)| if α = 1

2 ,

1 if α > 1
2 ,

(y2 − 1)
α
2−

1
4 otherwise.

Proof. We note preliminarily that

|
∫ 1

−1

wα(x)
f(x, y)
x− y dx| ≤ c‖f‖∞

∫ 1

−1

wα(x)
|x− y|dx = cδα(y)‖f‖∞,

where δα(y) is defined as in Lemma 2. Then we consider

|RIn(f ; y)| ≤ |
∫ 1

−1

wα(x)
f(x, y) − pm(x, y)

x− y dx|

+ |
∫ 1

−1

wα(x)
Ln(f − pm, y;x)

x− y dx| =: I1 + I2,

where pm denotes a best (uniform) approximation polynomial of degree n − 1 as-
sociated with f . Recalling Lemma 2, it is then straightforward to derive for I1 the
bound

|I1| ≤ cδα(y)En−1(f)∞.
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To bound I2 we need to assume α ≥ −1/2. In this case we have

|I2| = |
∫ 1

−1

w
α
2−

1
4 (x)

w
α
2 + 1

4 (x)Ln(f − pm, y;x)
x− y dx|

≤ ‖w α
2 + 1

4Ln(f − pm)‖∞
∫ 1

−1

w
α
2−

1
4 (x)

|x− y| ≤ cδα2− 1
4
(y)En−1(f)∞ logn.

This proves (2.34).

3. Behaviour of the global error and numerical examples

For the remainder term of our quadrature formula (1.2), in Section 2 we have
derived a pointwise bound which is, whenever f ∈ Hp(µ, µ), p ≥ 0, of the form

|RIn(f ; y)| ≤ cg(y)n−p−µ logn.

where the constant c is independent of y and n, while the function g(y) is
(1− y2)−

1
4 log 1

1−y2 when |y| < 1, and (y2 − 1)−
1
4 when |y| > 1.

The quadratures we suggest using to evaluate the outer integral have positive
weights and, for functions g(y) of the type defined above, they satisfy the conver-
gence property

lim
m→∞

m∑
j=1

vm,jg(ym,j) =
∫ b

a

g(y)dy;

furthermore, for the corresponding error term in (1.3) in general we have the esti-
mates that we present next.

When in (1.3) F (y) is of the form log | 1−y1+y |h(y), with h(y) analytic, then the rules
proposed in [14, Remark 1] and in [16] produce errors of the form Rm(F ) = O(m−l)
with l > 0 that can be arbitrarily high. In particular we have

Rm(
∫ 1

−1

f(x, ·)
x− · dx) = O(m−l)

whenever f(x, y) is analytic with respect to both variables and, in the case of rule
[14], the required smoothing exponent is sufficiently large. To see this it is sufficient
to write

F (y) =
∫ 1

−1

f(x, y)
x− y dx =

∫ 1

−1

f(x, y)− f(y, y)
x− y dx+ f(y, y) log |1− y

1 + y
|(3.1)

and recall the convergence estimates obtained in [14] (see also [5, Theorem 6]), [16].
This is the situation that most frequently occurs in BEM applications. However,

if we want to consider the more general case of a function f ∈ Hp(µ, µ) for some
integer p ≥ 0 and real 0 < µ ≤ 1, then the rule proposed in [14] appears more
suitable. We recall that this rule originates from the combination of a smoothing
change of variable y = γ(s) of polynomial type (see (3.7),(3.8) below), mapping
[−1, 1] onto [−1, 1] and with |γ′(s)| ≤ c in the interval of integration, and the
application of the n-point Gauss-Legendre rule to the transformed integral. By
taking a proper smoothing exponent in γ(s), for this rule we obtain the following
convergence result.
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Theorem 5. When in (1.6) f ∈ Hp(µ, µ), for some integer p ≥ 0 and real 0 <
µ ≤ 1, then we have

Rm(
∫ 1

−1

f(x, ·)
x− · dx) = O(m−p−µ+ε),(3.2)

with ε > 0 arbitrarily small.

Proof. First we notice that we can always associate with the function

g(y) :=
∫ 1

−1

f(x, y)− f(y, y)
x− y dx

a sequence of polynomials {qk(y) ∈ Πk} such that

‖g − qk‖∞ ≤
c

kp+µ−ε
,

with ε > 0 arbitrarily small.
To see this it is sufficient to recall the proofs given in [13] for results which in

some sense are similar. Indeed, if pj(x, y) ∈ Πj is a best (uniform) approximation
polynomial defined by (2.6), i.e., such that ‖f − pj‖∞ = O(j−p−µ+ε), then

q2j−1(y) :=
∫ 1

−1

pj(x, y)− pj(y, y)
x− y dx

is a polynomial of degree 2j − 1, and furthermore (see [13, p.166])

‖g − q2j−1‖∞ ≤
c

jp+µ−ε
.

A polynomial q2j(y) of degree 2j, satisfying the same estimate, can be easily ob-
tained by adding to q2j−1(y) a term of the type y2j/jp+µ.

Therefore, a sequence of polynomials qk(y), of degree k = 0, 1, 2, ..., such that

‖g − qk‖∞ ≤
c

kp+µ−ε
(3.3)

can always be found, and

max
−1≤s≤1

|[g(γ(s))− qk(γ(s))]γ′(s)| ≤ c

kp+µ−ε
.

To derive the final estimate we set in (1.3)

F (y) = g(y) + g0(y), g0(y) := f(y, y) log |1− y
1 + y

|,

hence write

Rm(F ) = Rm(g) +Rm(g0).

By subtracting from g a polynomial qk defined above, of proper degree k, and from
g0(γ(s))γ′(s) a best (uniform) approximation polynomial, we obtain (3.2).

Remark 3. Incidentally we notice that (3.3) in particular implies

Ek(g)∞ ≤
c

kp+µ−ε
,

hence, using the one-dimensional analogue of (2.5) (see [8, (2.1.2), (7.2.6)]), that

ωrφ(g,
1
m

) ≤ cm−r
m∑
k=0

(k + 1)r−1Ek(g)∞ ≤
c

mp+µ−ε .
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Therefore, for the global error (1.6) we have the bounds (see Theorem 3 and
Remark 1)

Rm,n(f) = O(n−l1) +O(m−l2),(3.4)

with li > 0 that can be arbitrarily large, when f is analytic and we use the rules
proposed in [14], with a sufficiently large smoothing exponent q, or in [16]. When-
ever f ∈ Hp(µ, µ) and we use the quadrature suggested in [14] (with a sufficiently
large smoothing exponent) we have

Rm,n(f) = O(n−p−µ logn) +O(m−p−µ+ε),(3.5)

with ε > 0 arbitrarily small.
To check the validity of these bounds, we consider the following integral

I1(f) =
∫ 1

0

∮ 1

0

f(x, y)
x− y dxdy(3.6)

first with f(x, y) ≡ f1(x, y) = log[(x+ 2)2 + y2], and then with f(x, y) ≡ f2(x, y) =
|y − 1.5x|2.6 + (x− 0.3)2, and apply to it formula (1.6) with m = n. Here we take
m = n only for simplicity, since our main goal is to test the theoretical convergence
estimate we have derived. From the computational point of view there might be
more convenient choices of m.

In particular, as rule (1.3) we take the n-point Gauss-Legendre rule combined
with the smoothing procedure suggested in [14]. This procedure is given by the
change of variable

y = γ1(s) :=
[(q − 1)!]2

(2q − 1)!

∫ s

0

xq−1(1− x)q−1dx, q > 1.(3.7)

It is a nondecreasing function which maps [0, 1] onto [0, 1] and has all derivatives of
order k, k = 1, ..., q − 1, vanishing at the endpoints 0, 1. Recalling the convergence
estimate derived in [5, Theorem 6], for the above procedure in the case of I1(f1)
we will have Rn = O(n−2q log n), hence Rn,n(f) = O(n−2q logn) since the function
f1 is analytic in the domain of integration.

In the case of I1(f2) we have f2 ∈ H2(0.6, 0.6). From Theorem 3 and Remark
1 the bound |RIn(f2; y)| ≤ ch̄αn

−2.6 logn then follows; taking q = 2 in (3.7), from
(3.5) we obtain Rn,n(f2) = O(n−2.6+ε). Actually, in this case, a finer error estimate
gives O(n−2.6+ε) +O(n−2q logn).

The corresponding relative errors are reported in the tables below. As exact
values we consider the approximations given by our quadrature rule with q = 4 and
n = 128:

I1(f1) ∼= 0.312377389077288, I1(f2) ∼= 0.741458766596067.

The quantity EOC = log en
e2n

/ log 2, where ek is the absolute error produced by the
rule with n = m = k, denotes the estimated order of convergence (see Tables 1 and
2).

Finally we consider the integral

I2(f1) =
∫ 0

−1

∫ 1

0

f1(x, y)
x− y dxdy

and apply the procedure suggested in [1]. Since in this case the associated function
F (y) (see (1.3)) has a log singularity only at the origin, it is sufficient to introduce
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Table 1. Relative errors and EOCs for I1(f1).

n q = 1 EOC q = 2 EOC q = 3 EOC q = 4 EOC q = 5 EOC

4 9.6E-02 2.2E-02 2.5E-02 2.1E-01 5.1E-01
1.88 3.67 6.54 11.9 11.5

8 2.6E-02 1.7E-03 2.7E-04 5.6E-05 1.8E-04
1.93 3.86 5.93 7.59 12.5

16 6.8E-03 1.2E-04 4.5E-06 2.9E-07 3.0E-08
1.96 3.92 5.90 7.91 9.98

32 1.8E-03 7.9E-06 7.5E-08 1.2E-09 3.0E-11
1.98 3.96 5.94 7.93 9.05

64 4.5E-04 5.1E-07 1.2E-09 4.9E-12 5.7E-14
1.99 3.98 5.97

128 1.1E-04 3.2E-08 1.9E-11

Table 2. Relative errors and EOCs for I1(f2).

n q = 1 EOC q = 2 EOC q = 3 EOC q = 4 EOC q = 5 EOC

4 2.7E-02 2.5E-02 1.9E-02 4.4E-02 1.4E-01
2.02 4.75 5.05 7.07 8.62

8 6.6E-03 9.2E-04 5.8E-04 3.3E-04 3.7E-04
1.91 2.79 3.45 2.61 2.08

16 1.8E-03 1.3E-04 5.3E-05 5.3E-05 8.7E-05
1.95 4.99 6.24 3.49 6.26

32 4.6E-04 4.2E-06 6.9E-07 4.8E-06 1.1E-06
1.98 4.71 1.93 7.69 1.09

64 1.2E-04 1.6E-07 1.8E-07 2.3E-08 5.3E-07
1.99 2.94 4.51

128 2.9E-05 2.1E-08 8.0E-09

the simpler change of variable

y = γ2(s) := sq, q ≥ 1,(3.8)

which leads to the bound Rn(f1) = O(n−2q logn). For the evaluation of the inner
integral we proceed as suggested in [1] (see also [7]): we use (1.2) when, for example,
−0.05 = y0 < y < 0, and the n-point Gauss-Legendre formula otherwise. We recall
that in this particular case the remainder term of the latter rule is O(n−l) with
l arbitrarily large; therefore it can also be bounded by (2.34). This allows us to
obtain the final estimate

Rn,n(f1) = O(n−2q logn).

The above choice of y0 is purely indicative. We recall that if it is too large, then the
recurrence relationships used to compute the weights of the internal quadrature rule
are unstable (see [7]); if, on the contrary, it is too small, then the Gauss-Legendre
rule that we use to compute the inner integral whenever −1 < y ≤ y0 would require
too many points to produce the required accuracy. A good choice of y0 should be
suggested by a criterion analogous to that used in [7].

Some numerical results are reported in Table 3. In this example as reference value
for the computation of the errors we have considered the approximation obtained
with q = 5 and n = 64:

I2(f1) ∼= 2.411514970798973.

All computations have been performed using double precision arithmetic (16 digits);
nodes and weights of the Gauss-Legendre formulas have been computed to about
15 digit accuracy.
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Table 3. Relative errors and EOCs for I2(f1).

n q = 1 EOC q = 2 EOC q = 3 EOC q = 4 EOC q = 5 EOC

4 2.3E-02 4.1E-04 3.7E-04 2.9E-04 9.1E-04
2.20 3.77 2.89 6.31 4.43

8 5.1E-03 3.0E-05 5.0E-05 3.7E-06 4.2E-05
1.92 1.96 9.18 12.1 17.8

16 1.3E-03 7.8E-06 8.6E-08 8.5E-10 1.8E-10
1.96 3.92 5.89 6.99 11.9

32 3.4E-04 5.2E-07 1.5E-09 6.7E-12 4.6E-14
1.98 3.96 5.94 7.84

64 8.7E-05 3.3E-08 2.4E-11 2.9E-14
1.99 3.62

128 2.2E-05 2.7E-09
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