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EXPLICIT UPPER BOUNDS
FOR EXPONENTIAL SUMS OVER PRIMES

HEDI DABOUSSI AND JOEL RIVAT

Dedicated to the memory of Chen Jing Run

ABSTRACT. We give explicit upper bounds for linear trigonometric sums over
primes.

1. INTRODUCTION

In 1937 I.M. Vinogradov [12] proved that every sufficiently large odd number is
the sum of three prime numbers. Later Chen and Wang [2] gave a lower bound for
the result of Vinogradov, which is very large, around 10%3°%°, The method used
is the Hardy-Littlewood circle method, and the following sums play an important
role in the proof:

Ze(ap), S(z,a) = Z A(n) e(na),

where A is the function of Von Mangoldt and e(a) = €2,
In [I] Chen proved that if o = % + q%, I8l <1, ¢ <z, then

. 1 1
Ze(ap) <1.2 x(logx)‘3/4 loglog x ( §—|— g084 + +v/loggq exp—ix/log:c> .
q x

p<z

More recently in [3] Chen and Wang proved that

|S(z, )] <0.177 % (log z)® + 3.8 2*/°(log 2)*2 + 0.08 \/zq (log z)>.

Our purpose is to improve on these two estimates. By a classical elementary
transformation it suffices to consider S(z, ).

In order to estimate this sum, a useful identity has been proved by R.C. Vaughan
[11]. Recently Daboussi [4] gave another identity, which has the advantage of
involving nice coefficients. This permits us to give a new explicit upper bound for
|1S(x, a)l.

In this paper we will need sharp versions of some classical inequalities which
have their own independent interest. We will prove
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TABLE 1. Upper bounds for z71|S(x, a)| when ¢ = (log x)3

x x71S(x, )|
10200 0.385
10300 0.293
10400 0.241
10590 0.207
101000 0.129
102000 0.080
105000 0.042
1010000 0.026
1020000 0.016
1043000 0.010

Theorem 1. For a = % + q%, 18] <1, g < x, we have

1 log4
|S(z,0)] < 14.86+/loglogz + 0.5  (log )%/ 4 10824

¢ mz
1
+6.45 \/loglog x + 0.5 z (log 2)*/* exp (—Ex/bg a:) .

From this theorem we can compute numerical upper bounds for z7![S(x, a)| (cf.
Table [) with the choice ¢ = (logx)® for which the result of Chen and Wang is not
even as good as the trivial upper bound.

Definitions and notations. For z real we will denote by |z] the greatest integer
< z, {z} the fractional part of x, [z] the smallest integer > z, ||z|| the distance
from = to the nearest integer, |z] the smallest integer n such that |z — n| < 1/2
(n is unique if {z} # 1/2). The letter p denotes always a prime number, 7(z)
denotes the number of primes < x. We denote by p and ¢ the Mébius and Euler
functions, respectively. The functions 2(n) and w(n) count the number of prime
factors of n, respectively, with and without multiplicity. We define the functions
uy and v, by u(m) = 1if (¥p, p|m = p > z) and u,(m) = 0 otherwise, and
vy(m) =1if (¥p, p|m = p < z) and v,(m) = 0 otherwise.

2. VINOGRADOV TYPE LEMMAS

In [1] Chen improved Vinogradov Lemmas 8a and 8b [13]. In this section, we
further improve the results of Chen.

Lemma 1. Letz €R, a = ¢ + q%, 18] <1, (a,q) =1, U > 0. We then have

1 2
Z min ( U, —— | <2 U 4 — qlog4g.
| sin(ran)| T
z<n<z+q

Remark 1. This is the analog of Vinogradov Lemma 8a. Chen obtained 5 U+qloggq.
The factor 2 instead of 5 is obtained by using ¢t = [¢]| + § with |6] < 1/2 which is
more precise than the classical ¢ = [t| + {t}. The factor 2/7 has been obtained by
dealing directly with (sint)~! without using the classical inequality sint > 2t /7 for
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0 <t < /2. Indeed we simply used the fact that (logtan(t/2))’ = (sint)~. We
acknowledge the referee’s improvement of this lemma (see below).

Proof. The result is trivial for ¢ < 2. We therefore suppose ¢ > 3.
Let mo = |z] + [(¢+ 1)/2]. We have

> min (U’m): >, min (U’|sm(m(§m+m))l)'

r<n<z+q —q/2<m<gq/2

Now writing

Pmg

b—{amo—l———‘ and b+(5—am0+ﬂ 0
q q

(hence |§] < 1/2), we obtain

oz(mo—l—m):l(am—l—amo—i—&—i—ﬁm):l(am—i—b) (5+B_m>
q q q q q q

When m runs through the integers in the interval —¢/2 < m < ¢/2, am + b
runs through a complete set of residue classes modulo q. We introduce r such that

am+b=rmodqand —¢q/2 <r < ¢/2. Using ‘(54—%”‘ <1, we get for |r| > 2

min (U’ ST m>>|> = o <§('7"' - ”) |

For r = +1, the referee observed that

where f(r) =r+0+6(r), with |§(r)| < &. It follows that f(1) — f(—1) > 1 so that

{2 53]

q

Thus one of the two terms for » = £1 can be bounded by |sin(7/2¢)|~*. Hence we
obtain

lee(mo +m)|| =

1

1 1 1
in(U, ——— | <204+ ——+2 -
> min ( |Sln(7TCWL)|) sin (qu) 2<,Z<:q/2 sin (%(7“—1))

z<n<z+q
(the sum on the right hand side is empty for ¢ = 3).
Using the convexity of the function ¢ — 1/sin(wt/q) for 0 < t < ¢/2, we obtain

qg—1

1 2 dt 4
E — g/ — §glogcot41§glog—q,
- 1
3

S0 0 Rl S — ™ ™ ™
1<r<Z-1 q q q

and we have for ¢ > 3
1

sin (21q)
which completes the proof of Lemma [Tl O
Lemma 2. Let N > 1, a = % + q%, 18] <1, (a,q) =1, U > 0. We then have

5 e ) =[]0+ 2 ).

1<n<N

2 4 2
+ —qlog—q < —qlog4q,
T T T



434 HEDI DABOUSSI AND JOEL RIVAT

Proof. We divide the interval 1 < n < N into subintervals k¢ + 1 < n < (k+ 1)q,

for which we apply Lemma [l There are at most {%—‘ such subintervals. O

Lemma 3. Let N> 1, a= 2+ qﬁz, I8l <1, (a,q) =1, z > 0. We then have

a
q

1 8N 2 3

E min (2, — <2 Elog —+4 | +— Nlogdq + — qloghg.
n’ |sin(man)| q q ™ ™

1<n<N

Remark 2. This is the analog of Vinogradov Lemma 8b.

Proof. We can assume without loss of generality that N is an integer.
Using the convexity of ¢t — l for t > 0, we obtain for N > 1

> —</N+2 =log(2N +1).

1<n<N
This proves the result for ¢ < 2. We can now suppose ¢ > 3.
Writing K = [% — %—I, we have K > ﬂ —3and Kqg+ % > N. Hence

z
Z mln( |sm Tan) ) ZSk’

1<n<N

. [z 1
S0 = Z o (ﬁ’ |sin(7rom)|) ’

1<n<q/2

Sy = > min (x Ian(lm> '

kq—q/2<n<kq+q/2

where

and for k > 1

For 1 < n < ¢/2, we have an # 0 mod ¢ and an = % + %’%” with
Hence for an = r mod g with —¢/2 <r < ¢/2 and r # 0, we have

S
w33

Bn
q

| sin(ran)| >

and

1<r<q/2

IN
N

IN
[\
_|_
|&
<}
)
@]
2
/|\
—

INA
3|8
N
<
=1
(X5
|2
N—
_|_
<)
R
/‘\
\_/

IN

2
- loghq for ¢ > 4.
™
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For ¢ = 3 we also have Sy < 2|sin %rl =4< 2—: log 5q. This proves the result for
K <1, so from now we assume that K > 1.
By Lemma [I] we have

S < > > min(q(lqm—%)7|SiH(jT0m)|>

1<k<K 1<k<K kq—q/2<n<kq+q/2

2
< Z (2 T~ + —qlog4q>
Gk N alk=3) 7
2 2 1
< —Kqlogdq+ = Z I
T 1<k<K (k—3)
Hence,
2 2 K+3 gt
Y oS < —quog4q+—x<2+/ - )
1<k<K & q % (t-3)
2 2z
< —Kqlog4qg+ —(2+1logK)
™ q
2 (N 1 2
< = (— + —> qlog4q + == log (°K)
T\qg 2 q
2 q 2z 9
< =Nlog4q+ —logdq + — log (¢°K) .
™ ™ q
Finally,
. [z 1
Z min (| =, ———
n’ | sin(ran)|
1<n<N
2q lo log4 2
< —Nlog4q+ — (logq+1og5 + % + O§ ) + ?xlog (e’K)
2 3q 2logh log4 2
< —Nlogdq+ — <log + -t o8 ) + v log (ezK)
us 3 3 q
2 3
< ZNlogdq+ q10g5q+ log( K)
T
2 8N
< —Nlogdq+ —10g5q—|— — log <—+4) ,
T T q q
which completes the proof. O

3. RANKIN’S METHOD

Elliott [6, pages 81-83] has given an effective version of Rankin’s method. In this
section we generalize and improve his results numerically.

Lemma 4. Let z > 2, f a multiplicative function with f >0, and

S = Zl—i—f g P.

We assume S > 0 and write K (t) =logt — 1+ 1 fort > 1.
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For any y with logy > S we have

gvxn)ﬁ(nmn) < (11(1 + f(p))) exp HiyK (1§y)> 7
;vzm);ﬁ(n)f(n) > (11<1 + f(p))) (1 ~exp (_% K <%>>) ,

In particular for any y with logy > 7S we have

S v.(m)pP(n)f(n) < (H(l + f(p))) exp <—1§”) ,

gvz(nmn)f(n) > (1:[2(1 4 f(p))) (1 ~exp Hiy» .

Proof. The special case for logy > 7S is a direct consequence of the general case
logy > S, as for all t > 7 we have K(t) > K(7) > 1.
We note that

Yoot ()f(n) + Y v’ (n)f(n) = [T+ F(0),

n<y n>y p<z

which shows that the required lower bound for the first sum will follow from the
required upper bound for the second sum.
For all n > 0 we have

S < v(m)n)f(n) (ﬁ)
n>y n=1 Y
< y [+ 1) 7).

p<z

Now

I (1+ 555 0 - ”)) |

p<z

[Ta+rw "= (H(l +f(p))> (

p<z p<z

Using log(1 + u) < u for u > 0 we get

fo) ox fo)
H(1+1+f(p)(p ”) . p( i ” ”)’

p<z
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fe) f(p)
L 'Y S L
) <= (nlogp)*

= ;é; L+ f(p) 2;2 k!
— 1" (log 2)F ! f(p)

S LT LT
S =" (logz)¥

= 1ogz; k!
S

IN

oz 2 (exp(nlogz) —1).

Writing v = nlog z we get

y”ll(1+1{%%5(ﬂt—n)fgxp<E§;<@m@0—1—uk§y>).

The last inequality is valid for any v > 0, in particular for v = log (logy). Hence

S
gézzk(nJMQ(n)f(n)
< 11(1 + f(p)) | exp (1022 (1053/ _1- logy log <lo§y))>
< 11(1 + f(p)) | exp (—EiiK (10§y>) .

4. EFFECTIVE INEQUALITIES

Lemma 5. For all x > 1 we have
T

m(2z) —7w(x) < logz

Proof. P. Dusart [5] improved some results of [9] and proved for > 60184 that
x x
log(z) — 1 <ml@) < log(xz) — 1.1
This implies for z > 60184 that

(22) (@) < 2x T < = 1 0.016 < T
Y — T - -
“logx—041 logz—1 " logx log x log x

using the inequalities 1 +u < 12— < 14 Zu (valid for 0 < u < 1/6). The result

u
can be easily extented for all x > 1 by computer evidence. O

Remark 3. We note that the result of this lemma is sharp for x = 113/2 for which
113/2

————— =14.0051... .
log(113/2)

7(113) — 7(113/2) = 14 <
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Lemma 6. For z > 2 we have

3 (1 + g)fl @ log .

q<z

Proof. By Lemma 8 of Montgomery-Vaughan [7] we have for z > 100

3 (1+ g)fl % > log z + 0.361

and the result follows by a direct computation for 2 < z < 100. O

q<z

Lemma 7. For 2 < z < x we have

T
< .
Z us(m) < log 2z

r<m<2x

Proof. Suppose first that v2z < z < z. For x < m < 2z, we have u,(m) = 1 if
and only if m is prime. Using Lemma [l we obtain

Z uz(m) = w(2z) —w(x) < <

et 2 ~ logx T logz

X

Hence we can suppose z < v/2z.
By Corollary 1 of Montgomery-Vaughan [7] we have for any positive number z,
-1

> ua(m)<a 2(14-%)_1 12 (q) ,

r<m<2x q<z

and using Lemma [6] we obtain for z < %x

S wm e (S8R <o

r<m<2x q<z @(Q)

Thus we can suppose \/gm <z <2z

For 2 > 15 we have (2z)'/% < /22 < z < V22 and
Z uy(m) =7 (2x) — () + m (2, z) — ma(x, 2),
r<m<2x
where
ma(z,z) =#{n <z, Qn)=2, pln=p> z}.
We have using Lemma[d
2
w2 (22, 2) — ma(x, z) < Z (7‘(‘ (_x) -7 (£>) < Z %.
z<p<V2z p p z2<p<V2z & P

For « > 15 we have z/z > e and the function ¢ — t/logt is increasing for ¢t > e.
Hence

— T\ T, 2 337/27_(_ ) — T2 L/ZTFZ—TFZ
ma(20,2) = ma(e,2) < i bos (1(VEE) — w(e) < (E s (n(22) — 7 (2)),
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and using Lemma Bl we obtain
x
2 — < —
m2(2w,2) = ma(w, 2) < log(x/z)log 2

Therefore we have for x > 15

Y " logx  log(z/z)log 2

z<m<2x

and using the inequality z < v/2z we obtain for x > 200

log v/2 1
S wm) < o (B <
log 2z log x log \/x/2 log 2z

r<m<2x
and it suffices to show the result for x < 200 and z < +/2z, which can be verified
easily by computer. This completes the proof of Lemma [7 [l

Corollary 1. For 2 < z <z we have

T
< .
2, uslm) < log =

rz<m<2x

Proof. If  is not an integer or if z is an integer and z = z (in this case u,(z) = 0),

we have
T
< < .
g uy(d) < E uy(d) < oz 2

r<d<2x r<d<2x

If x is an integer and z < z, we have

Soud = > uz(d)glozz.

r<d<2x r—<d<2z—

Lemma 8. Forxz > 2 and 1 < h <z we have

> A(m)A(n+h) <15 x (loglogz + 0.5).

n<z

Proof. If h is odd, we have A(n)A(n+ h) = 0 if n is not a power of 2. Hence, when
h is odd,

Z An)A(n+h) < Z log2 log2x <logx log2x < 2.

n<z log z
= TS Tog2
g

We can suppose that h is even, and A(n)A(n + h) # 0 implies that n is odd,;
therefore n > 3 and x > 3.

The contribution of the terms for which n and n + h are not both primes is at
most

2log2x Z logp < 2 m(vV2z) log? 2.
pr<2e

r>2

By inequality 3.6 of Rosser and Schoenfeld [8] we have
Vo >1, w(z) < 1.25506 ——;
log x
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therefore the contribution of the terms for which n and n 4+ h are not both primes
is at most

7.1 vz log2x.
By the theorem of Siebert [10] the number of primes p < x such that p + h is

prime is at most
II < > og T p 2
p>3 1 p|h

p23

=3 (i)

1)+

plh
p>3

We remark that

and when h is even

so that Siebert’s expression can be written as

T h 8z h
s 11 ( ))mg 2 o) S TogZe wh)

(p,h)=1

By inequality 3.41 and 3.42 of Rosser and Schoenfeld [8] we have for h > 3
h 2.50637
—— < ¢€Vloglogh + ———;
o) = ¢ oBR Tt e h
hence for x > 3 we have

2.50637
loglog x

log 2x
log x

ZA A(n+h) <8

n<x

(e“’ loglog z + ) +7.1 vz log 2z,

and for z > 108 we obtain

ZA A(n+h) <15 z (loglogx + 0.5).

n<z

For z < 108 we have

> A(m)A(n+h) < log2x Y A(n)

n<z n<z

and we use the inequality 3.35 of Rosser and Schoenfeld [§]
> A(n) <1.03883 z for all z >0,

n<x
which gives for 10 < z < 108
> A(n)A(n + h) < 1.03883 log(2.10%) 2 < 20 z < 15 x (loglogz + 0.5).
n<lx

For x < 10 the inequality is verified by direct computation. O
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5. SuMs OF TYPE I AND II
For z > 3 depending on z only we can split S(z, «) as follows:
S(i[:, a) = Z A(n) e(na) =51 ((E, a) + SQ(xa a)a
n<x

where

Si(z,a) = sz(n)A(n) e(na),

n<x

So(z, ) = Zuz(n)A(n) e(na).

n<x
We can estimate S1(z, «) trivially:

1
[S1(z, )| < Z logp = Zlogp {%J < w(2)logz < zlogz.

A =%

Now we split S2(x, ) into By (x, o) — Ba(z, «) (see [] for details) where

Bi(z,a) = Zuz(n) log(n) e(na),

By(z,a) = > wd) Y. u.(m) A(m) e(mda).
z<d<z/z z<m<z/d

6. SUMS OF TYPE I
Lemma 9. Fora:%—i—q%, 18] <1, (a,q) =1, 3" < 27 <y <z, we have

2 1
|Bi(z,a)] < < e’zlogzlog3dz exp | — 8y
3 log 2z

2 3
+ 2 E10gat:10g3y+ — ylogxlogdq + — qlogxlog5q.
q us us

Proof. We write
™ dt T dt
Bi(z,a) = Z uz(n) e(noz)/1 " :/1 " Z uz(n) e(na).
n<x t<n<z
Introducing T1 (¢, z, ) = >, -, uz(n) e(na), we see that

|Bi(z,a)| <logz sup |Ti(t,x,a)l.
1<t<z

By the Mobius inversion formula

Ty(t,z, o) = Z vz(n) p(n) e(nda).

n,d
t<nd<z

Let y such that 27 < y < x. We have
Tia(tz,a) = Y Y v.(n) u(n) e(nda),
n<lyt<nd<z

Tio(t,z, ) = Z Z vz(n) p(n) e(nda).

y<n<zt<nd<z

441
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Clearly

x 1
Ty 1(t < in(|—, — | .
ITia(t 2, 0)] < me (n’ |sin(7ma)|)

n<y
Hence by Lemma, [
T 2 3
Ty 1(t, z,a)] <2 ElogSy—i— - ylogdq + — qlog 5q.

We have

Lot .)€ 3 v) lnlm)| 3 1 <23 W 2,

n>y d<z/n n>y

In [8], Rosser and Schoenfeld proved (inequality 3.24) that

1
Z o8P <logx forall z > 1.
p<z

Using this inequality we get

1
- 1 1
0<S:E 1_illogp§§ ﬂglogzgosy.

p<z p p<z

Hence by Rankin’s method (Lemma []) we get

1 logy
Ty 2(t,z,0)| <z H (1 + 5) oxXp (_logz> '

p<z

Now for z > 3 we have
1 1 1 2
ERLTER (R
p<z p p<z p p<z p
In [8], Rosser and Schoenfeld proved (inequality 3.31) that
p 1
HpTl<6’yZ H forallle.
p<z 1<n<z

Using these inequalities we obtain

2 1 logy
Ty o(t < Z e E - —
| 172( ,:L',Oé)| =73 e'x n eXp< 1ng) )

1<n<z

and finally

2 1
|T1 2(t7$70é)| < - €7$10g3zexp _ﬂ ’
’ 3 log 2z

which completes the proof.
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7. SUMS OF TYPE II

Let J satisfy 27 [2] < /2 < 2771 [2]. We have

By(z,0)] < ) > u(d)| Y u.(m) A(m) e(mda)| .

0<j<J 20 [2]<d<29+1[2] 2<m<z/d

We observe that Jlog2 <logz — 2logz < logx — log 2, and we define

To(M) = Z u(d) Z uz(m) A(m) e(mda)| .

M<d<2M z2<m<ax/d
We get
log x
B < To(M)|.
|Ba (2, 0)] < log 2 zgﬂlgpx/z' 2(M)]
MeN

By the Cauchy-Schwarz inequality
2

LOOP < Y wE@] Y Y ws(m) A(m) e(mda)

M<d<2M M<d<2M |z<m<z/d

By Corollary [, we have

Z u?(d) < M .

~ logz
M<d<2M

Expanding the square and summing first over the d’s we obtain

To(M)]? <
|T2(M)] < Togz

Z A(m) Z A(m/) Z e((m —m')da)|,

z<m<z/M z<m'’<z/M deI(m,m’)

where I(m,m’) is the interval of d’s such that M < d < min(2M -1, =, -%).
We distinguish m = m’ and m # m’ and obtain

[ To(M)|? < [To1 (M)]? + [T2,2(M)[?,

where

M2
DA == 32 Am)
8 z<m<zx/M

and

Too(M)? =2 M Z Z A(m) A(m + h) Z e(hda)| .

- T logz
1<h<z/M z<m<z/M deI(m,m+h)

We have

> e(hda)| < min (M, m> .

del(m,m+h)
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By Lemma

Z A(m) A(m + h) <15 (loglogz + 0.5)
z<m<xz/M

M
So

T 1
— in| M, ——— | .
log 2 Z i ( ’ |sin(7rha)|)

1<h<z/M

|T2.2(M)|? < 30 (loglogz + 0.5)

Using Lemma P and z < M < z/z we get

1 2
i M, — < — 41 2M + —qglog4
2 mm< ’|sin<wha>|> = (Mq+ >< Traie q)

1<h<z/M
2x 2z log4 2
+2M—I—ﬂ+—q10g4q
wM T
2z 2x 2xlog4 2
2 O Zlogdg
q z Tz ™
1 log4 log4
2x<_+7r+ ogdg , qlog q).
q Tz T

A
|

IN

IN

We obtain

x? 1 log 93 log 4
ITa.0(M)|? < 60 (loglogz + 0.5) < 428704 4708 q),

log =z Tz T

> A(n) <1.03883 z for all z > 0.

n<x

For z > 3, the function M —— M log(xz/M) is increasing on [z, x/z]. Hence by
Rosser and Schoenfeld [8] inequality 3.35 we have

Ty1 (M)[? < 1.03883 xM% < 1.03883 x;
and
[Bs(x. )| < 7%32883;1

+ @\/60 (loglogz + 0.5) xll(;ggi <\/Tg4q \/k’ngq>
Finally

By(z,0)] < 148-=logx

NE

[1 qlog4 1
+11.18 /loglog z + 0.5 ng < L Y Og93q>
q
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8. PROOF OF THEOREM [1I

We can suppose z > 10'84; otherwise

1
Vloglogz 4+ 0.5 (logx)5/4 exp (—§\/logx> > 0.166

and the result is trivial using Rosser and Schoenfeld [§] inequality 3.35. Furthermore
we can suppose

X

log z)*/? loglogx < ¢ < ~
(logz)™ " loglog z < g < (log x)5/2 loglog x’

otherwise the result is trivial.
We choose log z = y/log x and we obtain

1 log 4
1 qlogdg
q T

|By(x,0)] < 11.18+/loglogz + 0.5 z (log )3/
1
+ 1.48 2 log z exp <—§\/logx>
1
+ 6.31 \/loglogz + 0.5 z (log z)%/* exp (—Ex/bgm)

1 log4
1, glogdg
q

IN

11.18 \/loglog z + 0.5 z (log z)*/* -
e

+ 6.44 \/loglogz + 0.5 z (log z)>/* exp (—%@) .
Let us first suppose that
(log z)*/?loglogz < ¢ < (log z)*.
Let logy = v/log zlog q. We then have for z > 10'8
|Bi(z,a)] < 1.192 log z(log z + log 3) + 2 3 log z(log y + log 3)

+ 0.64 exp(y/log xlog q) log z log 4q 4 0.96 qlog x log 5¢

1
3.68 /loglogz + 0.5 z (log z)*/* \/g

IN

Now let us suppose that

(log)* < q < !

(logz)>/2loglogz

We choose

y =z (logz)~Y/? exp(—\/logz),
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|Bi(z,0)] < 3.95x (logx)*? exp(—+/logz) + 2 g(log r)?
+ 20 (log)?/2 exp(~/log ) + 2 g logrlog5q
< 5.59z (1og:c)3/2 exp(—\/@) +0.45 z (log x)3/4 \/g
+0.112 (loga)¥/4 /410844
e
< 0567 (logz)®/* 1,2 dloed

3 T

+ 4.59 z (log )3/? exp(—+/log ).

Hence for all ¢ we have

3 T

1
+ 0.01 y/loglogxz + 0.5 x (logx)5/4 exp (—§\/logx> .

1 2 log4
|Bi(z,a)] < 3.684/loglogz + 0.5  (log z)*/* R
q

Finally we have

[1]
2]
[3]
[4]
[5]
[6]
[7]
(8]
[9)
(10]
(11]

(12]

[S(z, )| < [Si(z, @) + |Bi(z, )| + [Ba(z, o)
< 14.86 /loglogz + 0.5 = (log z)*/* % + % . %
+ 6.45 \/loglogz + 0.5  (log z)*/* exp <—%\/@> .
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