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THE EIGHT DIMENSIONAL OVOIDS OVER GF(5)

C. CHARNES AND U. DEMPWOLFF

Abstract. In this article we outline a computer assisted classification of the
ovoids in an orthogonal space of the type Ω+(8, 5).

1. Introduction

Let V be a nondegenerate orthogonal vector space over GF (q). An ovoid O is
a set of isotropic points having precisely one point in common with each maximal,
totally singular r-space (here r is the Witt index of V ). If V has dimension 2n, we
denote V by Ω+(2n, q) if r = n and by Ω−(2n, q) if r = n−1. Therefore an ovoid in
Ω+(2n, q) is a set of qn−1 + 1 pairwise nonperpendicular isotropic points. Various
families of ovoids in orthogonal spaces are known. Blokhuis and Moorhouse [1]
proved nonexistence results for ovoids in certain orthogonal spaces; see also Thas
[17].

An important unsolved conjecture in Galois geometries states that there are no
ovoids on hyperbolic quadrics in ten or more dimensions. This was known to be
true for q = 2, and for q = 3 it was verified by Shult [16]. The first open case
is q = 5. By projecting a (2n + 2)-dimensional ovoid in an isotropic point not
belonging to it, a 2n-dimensional ovoid, called a section, is obtained. Shult showed
that none of the ovoids in Ω+(8, 3) could occur as sections of a putative ovoid in
ten dimensions. Similarly, a classification of the ovoids in Ω+(8, 5) could play a role
in resolving this conjecture for q = 5.

Ovoids in V = Ω+(6, q) are mapped via the Klein correspondence onto transla-
tion planes of order q2; see for example [10], [13]. The translation planes of order
q2, and thus ovoids in Ω+(6, q), have been classified for q = 2, 3, 4, 5, 7; in [3], [5],
[8], and [14]. However, the ovoids in Ω+(8, q) have only been classified for q = 2, 3
(see [10]), and for q = 4 by Gunawardena [9].

In this paper we describe a computer-aided classification of the ovoids in Ω+(8, 5).
We find that there are only three ovoids in Ω+(8, 5) up to equivalence. These ovoids
have been known ever since the E8 root lattice construction of Conway, Kleidman
and Wilson [4] appeared.

In what follows, V denotes an orthogonal space of type Ω+(8, q), and if necessary
we specify q = 5.

2. The ovoids in Ω+(8, 5)

Two ovoids O and O′ are considered to be equivalent if and only if there is a
semisimilarity γ in ΓO(V ) with O′ = Oγ. Note that GO(V ) = ΓO(V ) if q is a
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Table I. The ovoids in Ω+(8, 5).

Ovoid Automorphism group
OE W (E7) = 2× Sp(6, 2)
OU Aut(U3(5)) ' PGU3(5) · 2
OS S10

prime, as in our case. A semisimilarity is defined as a semilinear map f which
acts as (uf, vf) = s(u, v)σ, where σ is a fixed field automorphism and s 6= 0 is
a fixed field element. If σ is the identity, f is a similarity. The automorphism
group Aut(O) of an ovoid O is the group of all the equivalence maps of O. Three
equivalence classes of ovoids in the orthogonal space Ω+(8, 5) have been known for
some time. Their representatives, OE ,OU ,OS , and their automorphism groups are
listed in Table I. Cooperstein’s ovoid OS , and the ovoid OE are instances of the
E8 root lattice constructions of [4], and OU is the unitary ovoid studied by Kantor
in [10, 11].

In the remainder of this paper we outline the proof of the following theorem.

Theorem 1. Any ovoid in the orthogonal space Ω+(8, 5) is equivalent to either
OE, OU , or OS.

We will follow a similar strategy which we used in our previous classifications of
the translation planes of order 27 and 49. This is described in detail in [3] and [7].
Thus we have to solve two problems:

1. Determine all the starter sets, i.e., find partial ovoids S1, . . . ,Sk such that
any ovoid in Ω+(8, 5) contains up to equivalence one of the Si’s. On the other
hand, the sizes of the starter sets have to be large enough so that it is feasible
to compute their completions to full ovoids.

2. Once all completions O1, . . . ,On of S1, . . . ,Sk have been computed, an effec-
tive equivalence test is required to sort the completed ovoids into equivalence
classes.

3. Invariants and equivalence

We use the fingerprint (see [2]) and related invariants to distinguish the equiva-
lence classes of ovoids.

Let O = {〈v1〉 , . . . , 〈vk〉} be a partial ovoid in V. For q an odd prime and
x ∈ GF (q), define

[x] =
{

0 if x = 0;(
x
p

)
(the Legendre symbol) otherwise.

The sign matrix S ∈ Zk×k has entries sij = [(vi, vj)] and the quadratic matrix
Q ∈ Zk×k is defined as Q = SST . (ST is the transpose of S.) Let Q be the multiset
of the absolute values of the entries in Q. The elements in Q are integers in the
range [0 . . . k]. Let aj be the multiplicity of j in Q. Then the fingerprint f(O) of
O is defined to be

f(O) = (a0, . . . , ak) ∈ Zk.

It is easy to see (cf. [2] or [7]) that f(O) is independent of the particular set of
isotropic points used to represent O, and that f(O) is an invariant of equivalence.
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Suppose that γ is a similarity with multiplier s, i.e., (vγ, wγ) = s(v, w) for
v, w ∈ V . Clearly the map x 7→ sx is a similarity with multiplier s2 which fixes
every ovoid. Thus if two (partial) ovoids O and O′ are equivalent, then there is an
orthogonal map γ ∈ O(V ) with O′ = Oγ or O′ = Oγ0γ, where γ0 is a similarity
whose multiplier is a nonsquare. If O′ = Oγ, we say that the ovoids are orthogonally
equivalent.

Suppose that O = {〈v1〉 , . . . , 〈vk〉} and O′ = {〈w1〉 , . . . , 〈wk〉} are orthogonally
equivalent. If {v1, . . . , vm} are linearly independent, γ ∈ O(V ) with O′ = Oγ and
〈vi〉 γ = 〈wi〉 for 1 ≤ i ≤ k, then the following properties hold:

1. f(O − {〈v1〉 , . . . , 〈vm〉}) = f( O′ − {〈w1〉 , . . . , 〈wm〉}).
2. There exist scalars α1, . . . , αm in GF (q) such that Gr(v1, . . . , vm) =

Gr(α1w1, . . . , αmwm), where Gr(. . . ) denotes the Gram matrix of the re-
spective m-tuples of vectors.

If however γ is a similarity with multiplier s and 〈vi〉 γ = 〈wi〉 for 1 ≤ i ≤ k, then
the first property still holds but the second may fail. For instance if 〈v1, . . . , vm〉 is
nondegenerate, m is odd, and s is a nonsquare, then 〈v1, . . . , vm〉 and 〈w1, . . . , wm〉
have different discriminants. However in such a case we know that O− = Oγ0 and
O′ are orthogonally equivalent. So that for the pair (O−,O′) we can find a γ ∈ O(V )
satisfying both properties.

Finally if 〈v1, v2, v3〉 and 〈w1, w2, w3〉 have the same discriminant, then there
are scalars α1, α2, α3, which are unique up to sign, so that Gr(v1, v2, v3) =
Gr(α1w1, α2w2, α3w3). We shall see later that the ovoids in Ω+(8, 5) always contain
a basis, i.e., they generate the 8-dimensional space V . Collecting these observations,
we obtain the following algorithm for equivalence.

EQUIVALENCE TEST
INPUT: Ovoids O+ = {〈v1〉 , . . . , 〈v126〉}, O− = {〈u1〉 , . . . , 〈u126〉}, O′ = {〈w1〉 ,
. . . , 〈w126〉} such that {v1, . . . , v8} is a basis of Ω+(8, 5) and ui = viγ0 for 1 ≤ i ≤
126, where γ0 is a fixed similarity whose multiplier is a nonsquare.
OUTPUT: NO, if O′ is not equivalent to O±.
YES, if O′ is equivalent to O±; a map γ ∈ O(V ); a selection of points 〈wk1 〉 , . . . ,
〈wk8〉 with 〈vi〉 γ = 〈wki〉 for 1 ≤ i ≤ 8 if O+ = Oγ, and 〈ui〉 γ = 〈wki〉 if O− = Oγ.

Step 1. Compute f(O+) and f(O′). If f(O+) 6= f(O′), then go to END, the
OUTPUT is NO. Otherwise go to Step 2.

Step 2. Compute the 8-tuple of fingerprints: fi = f(O − {〈v1〉 , . . . , 〈vi〉}) for
1 ≤ i ≤ 8.

Step 3. Set k1 = 1 if Step 3 is reached from Step 2. Otherwise k1 is predefined.
Compute f ′k1

= f(O′ − {〈wk1 〉}). If f1 = f ′k1
, go to Step 4. If f1 6= f ′k1

,
increment k1 := k1 + 1, or if k1 = 126 go to END and the OUTPUT is NO.
(However in practice the last alternative never occurs as fingerprints already
characterize the equivalence classes.)

Step 4. Choose a minimal k2 ∈ {1, 2, . . . , 126}−{k1} if Step 4 is reached from Step
3. Otherwise k2 is predefined. Compute f ′k2

= f(O′ − {〈wk1 〉 , 〈wk2〉}). If
f2 = f ′k2

go to Step 5. If f2 6= f ′k2
increment k2 := k2 + 1, or if k2 = 126 go

to Step 3 and increment k1.
Step 5. Choose a minimal k3 ∈ {1, 2, . . . , 126} − {k1, k2} if Step 5 is

reached from Step 4. Otherwise k3 is predefined. Compute f ′k3
=

f(O′ − {〈wk1〉 , 〈wk2〉 , 〈wk3〉}). If f3 = f ′k3
, then select scalars α1, α2, α3 so
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that either Gr(v1, v2, v3) = Gr(α1wk1 , α2wk2 , α3wk3), or Gr(u1, u2, u3) =
Gr(α1wk1 , α2wk2 , α3wk3). Define a label ε := 1 or −1 according to whether
the first or second case occurs. This label is never changed in higher level
steps of the algorithm. Proceed with Step 6. If f3 6= f ′k3

, increment k3 or
return to Step 4 and proceed similarly as before.

Step 6. Choose a minimal k4 ∈ {1, 2, . . . , 126} − {k1, k2, k3} if Step 5 is
reached from Step 4. Otherwise k4 is predefined. Compute f ′k4

=
f(O′ − {〈wk1 〉 , . . . , 〈wk4〉}). If f4 = f ′k4

choose a scalar α4 if possible, so
that Gr(v1, . . . , v4) = Gr(α1wk1 , . . . , α4wk4) if ε = 1, or Gr(u1, . . . , u4) =
Gr(α1wk1 , . . . , α4wk4) if ε = −1. If such a scalar α4 can be found go to Step 7.
If this is not possible, or if f4 6= f ′k4

, increment k4 or go back to Step 5.
Step 7 to Step 10 are analogous to Step 6. Suppose we reach:

Step 10. And all the previous tests have succeeded. Then we have selected points
{〈wk1〉 , . . . , 〈wk8〉} from O′; a label ε = ±1, and scalars α1, . . . , α8. Next,
we define an orthogonal map γ by viγ = αiwki if ε = 1, and uiγ = αiwki if
ε = −1 for 1 ≤ i ≤ 8. Check whether O+γ = O′ or O−γ = O′, respectively.
In either case the OUTPUT is YES together with ε, γ, and wk1 , . . . , wk8 .
Otherwise increment k8, or go to Step 9. (It was found that once Step 10 is
reached the test is always positive).

END.
To summarize: The fingerprint and the Gram matrix are used to sieve out those

8-tuples from O′ which are suitable for the construction of an equivalence map.
The equivalence test can be modified in an obvious way to compute a set of gener-
ators for the automorphism group of an ovoid—which can be represented either as
permutations on 126 points, or as elements of GO(V )—and to compute its order
(see [3, 7]).

4. Starter sets

LetO be an ovoid in V and P an isotropic point in V not belonging toO. Set P =
P⊥/P and OP = {X |X ∈ O ∩ P⊥}, where X = (X + P )/P. Then OP is an ovoid
in P , which is an orthogonal space of type Ω+(6, q). As we mentioned previously,
ovoids in Ω+(6, q) correspond via the Klein correspondence to the translation planes
of order q2. For q = 5, there are according to Czerwinski and Oakden [5] precisely
21 equivalence classes of such ovoids. We denote these as P1, . . . ,P21 (cf. [2]). The
linear span of each of the P1, . . . , P 20 is always the 6-dimensional space Ω+(6, 5),
while the ovoid P21 corresponds to the desarguesian plane. Thus 〈P21〉 is a subspace
of type Ω−(4, 5) in Ω+(6, 5), and P21 is the set of isotropic points of this subspace.

By [5] we know that OP must be equivalent to one of the Pi. Choose a set of
m maximaly linearly independent points: X1, . . . , Xm ∈ OP ; i.e. m = 6 for Pi
if i < 21 and m = 4 for P21. Choose any preimages X1, . . . , Xm or X ′1, . . . , X ′m
in P⊥. Clearly 〈X1, . . . , Xm〉 and 〈X ′1, . . . , X ′m〉 can be mapped onto each other
by an isometry which fixes P and takes Xi 7→ X ′i. Thus we can choose generators
X1 = 〈x1〉 , . . . , Xm = 〈xm〉 and work with these.

If X ∈ OP −
{
X1, . . . , Xm

}
and P = 〈p〉 , then the preimage of X in O is

〈x+ αp〉 for some α ∈ GF (5); x ∈ R = 〈x1, . . . , xm〉 where the x are chosen in some
canonical way—say by normalizing the first nonzero coefficient for the xi’s to 1.
Note that if α 6= 0, there is an isometry which fixesR element-wise and takes αp onto
p. Thus we may write the preimage Xm+1 of Xm+1 ∈ OP−

{
X1, . . . , Xm

}
as either
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〈xm+1〉, or 〈xm+1 + p〉 with xm+1 ∈ R. Similarly, Xm+2 ∈ OP −
{
X1, . . . , Xm+1

}
has preimages 〈xm+2〉, or 〈xm+2 + p〉 if Xm+1 ⊂ R. If however Xm+1 = 〈xm+1 + p〉
we have no choice but to consider all the cases of Xm+2 = 〈xm+2 + αp〉, where
α ∈ GF (5) as possible candidates of a preimage. We use these observations to
produce starter sets of size m + 3, which have the property that every ovoid in V
contains up to equivalence starter sets of the given types.

Let R denote a subspace either of type Ω+(6, 5) or Ω−(4, 5), and P = 〈p〉 ⊂ R⊥
an isotropic point. Let Pk = {Xi = 〈xi〉 | 1 ≤ i ≤ 26} be an ovoid as described
above. Define R to be 〈x1, . . . , x6〉 if k < 21, and R = 〈x1, . . . , x4〉 (of type Ω−(4, 5))
if k = 21.

Then each Pk gives rise to 32 starter sets of the form {X1, . . . , Xm, Ym+1,
Ym+2, Ym+3}. Norming from the left and setting Xα

k = 〈xk + αp〉 for α ∈ GF (5)
(i.e. Xk = X0

k), we see that (Ym+1, Ym+2, Ym+3) ranges over the following 32 triples:
(i) (X0

m+1, X
0
m+2, X

a
m+3), a = 0, 1,

(ii) (X0
m+1, X

1
m+2, X

a
m+3), a ∈ GF (5), and

(iii) (X1
m+1, X

a
m+2, X

b
m+3), a, b ∈ GF (5).

Thus each Pk, for k < 21 gives 32 starter sets of length 9, while P21 gives 32
starter sets of length 7.

Lemma 2. Up to equivalence any ovoid in V contains one of the 672 starter sets
of the type (i), (ii), or (iii) defined above.

We first compute all the completions of the 640 starter sets of length 9. The
completion algorithm is described in Section 5. In the remaining case of the 32
starter sets of length 7 further reductions are possible, as we shall now explain.

An ovoid O not found in the first 640 cases has the property that for every
isotropic point P /∈ O the projectionOP is of type P21.Thus if L = {〈v1〉 , . . . , 〈vm〉}
is the list of all isotropic points and if S = {〈y1〉 , . . . , 〈y7〉} is a starter set belong-
ing to P21, we can remove all the candidates 〈vi〉 from the list L which satisfy the
following condition.

(∗): There is a 4-set {yi1 , . . . , yi4} such that Gr(yi1 , . . . , yi4 , vi) is nonsingular.

Otherwise, for an isotropic point Q in 〈yi1 , . . . , yi4〉
⊥, the ovoid OQ is not of

type P21. In fact we can make even further reductions in this case. The details are
given in Section 6.

5. Completions

We identify V with GF (5)8 and choose a symplectic basis for V , i.e., the inner
product is given by

((a1, . . . , a8), (b1, . . . , b8)) =
4∑
i=1

(aibi+4 + ai+4bi).

By abuse of notation we represent points by a generating vector. Clearly we
may assume that an ovoid always contains P0 = (0, 0, 0, 0, 0, 0, 0, 1). Thus any other
point P = (x1, . . . , x8) of this ovoid has x4 6= 0, so that we can normalize this vector
so that x4 = 1. Let L be the set of 15625 isotropic points (b1, b2, b3, 1, b4, b5, b6, c) of
this form, where c = −(b1b4 + b2b5 + b3b6). For a 3-tuple (b1, b2, b3) ∈ GF (5)3, let
L(b1, b2, b3) be the subset of L whose first 3 coordinates are (b1, b2, b3). Then L is
partitioned into 125 subsets of this form. Observe that for any P, P ′ ∈ L(b1, b2, b3),
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it is always the case that the inner product (P, P ′) is zero. Thus an ovoid which
contains P0 intersects each of these subsets in precisely one point. Rename the
sets L(b1, b2, b3) as L1, . . . ,L125. Assume that S = {P0, P1, . . . , Pk} is a starter
set such that Pi ∈ Li for 1 ≤ i ≤ k. To complete S to an ovoid we have to pick a
Pj ∈ Lj for k + 1 ≤ j ≤ 125 such that (Pi, Pj) 6= 0 for all 0 ≤ i < j ≤ 125. This is
accomplished by the following three steps.
Step 1. Reduce Lk+1, . . . ,L125 to subsets L′k+1, . . . ,L′125 such that (Pi, P ) 6= 0 for

1 ≤ i ≤ k, P ∈ L′k+1 ∪ · · · ∪ L′125.
Step 2. Form a (125− k)-partite graph Γ whose vertices correspond to the points

of L′k+1 ∪ · · · ∪ L′125. Two vertices X ∈ L′i and Y ∈ L′j , i 6= j are joined by
an edge in Γ, if and only if (X,Y ) 6= 0.

Step 3. Enumerate all the complete subgraphs of Γ of size 125− k.
The complete subgraphs of Γ together with S are all the completions of S. For

the enumeration in Step 3, we used the same straightforward algorithm which we
previously used in [3] and [7]. For the reader’s convenience we outline this algorithm
as follows.

If a partial completion of S has reached stage m, i.e., it has the form {P0, . . . , Pk,
. . . , Pm} with Pi ∈ L′i, then the sets L′m, . . . ,L′125 have the reduced form Lmm, . . . ,
Lm125. Now reduce Lmj to Lm+1

j for j ≥ m+ 1, such that Lm+1
j contains only those

points P with (P, Pm) 6= 0. If all the Lm+1
j are nonempty, choose Pm+1 as the first

element in Lm+1
m+1 and proceed to level m + 1. Otherwise replace Pm ∈ Lmm by its

successor, or if this is not possible go back to level m− 1.

6. Computations

Again let L be the list of 15625 isotropic points of type (∗, ∗, ∗, 1, ∗, ∗, ∗, ∗) and
assume that the starter sets always contain the point P0. The starter sets of size
9 originating from the ovoids P1, . . . ,P20 are reduced in Step 1 to a sublist L0 of
size 2300 − 3000 of compatible points. So that for L0 all the complete subgraphs
of size 117 have to be found. The completions of the 32 starter sets belonging to
Pi consumed between 2 and 18 hours. Not unexpectedly, the starter sets with |L0|
close to 3000 consumed the bulk of the computing time and produced most of the
completions. The 640 cases produced a list C of 262 completions. The equivalence
test then reduced C to a sublist C0 of three ovoids in a few minutes.

Computing the automorphism groups gave the orders 756000, 2903040, and
36228800, establishing that C contained 220 ovoids of the unitary type, 30 ovoids of
the symplectic type and 12 ovoids of the symmetric type. For each type of ovoid,
we determined (cf. Section 3) the matrix generators of the groups which left the
ovoid invariant. Using these generators we performed various computations with
GAP [15]. This established independently that the groups listed in Table I did
indeed have the given structure.

In the remaining case of the desarguesian ovoid P21, it was inconvenient to use
starter sets of length 7 as indicated in Section 4. Instead we proceeded as follows.
Let R ⊂ V be of type Ω−(4, 5), P = 〈p〉 ⊂ R⊥ isotropic, and P21 = {Xi = 〈xi〉 |1 ≤
i ≤ 26} the isotropic points in R such that R = 〈x1, . . . , x4〉.

First, in accordance with condition (∗) of Section 4, all the 〈vi〉 ∈ L with
Gr(x1, . . . , x4, vi) 6= 0 were removed, producing a sublist L0 of size 2625.

Next we checked that a 5-starter set of the form S̃k = {X1, . . . , X4, X̃k}, X̃k =
〈xk + p〉, 5 ≤ k ≤ 17, again reduces L0 (by (∗)), to a list L00 of 125 elements.
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And of course no completions were found. Thus any ovoid which projects only onto
P21 must contain up to equivalence a starter set S = {X1, . . . , X17}. However, S
reduces L0 to a list of almost (surprisingly) 1000 candidates and no completions
were found.

7. Final remarks

A. The classification of the 8-dimensional ovoids yields the following

Corollary 3. The ovoids in Ω+(6, 5) listed in Table II (corresponding to only some
of the translation planes of order 25 (cf. [2], [5]), are the only projections of the
8-dimensional ovoids.

The statement that every ovoid in Ω+(8, 5) has a basis is equivalent to the fact
that there are no ovoids in Ω(7, 5). Hence it follows from our enumeration that:

Corollary 4. There are no ovoids in Ω(7, 5).

The projections of the W (E7) and S10 ovoids are given in [2].1 Thus we only
have to consider the PGU3(5) · 2 ovoid. Starting with a set of generating matrices
of PGU3(5) · 2 which leave this ovoid invariant, a GAP calculation established that
PGU3(5) · 2 has 3 orbits on the set of 19656 isotropic points of Ω+(8, 5). These
orbits have lengths 3780, 15750 and 126 (cf. Theorems 4.5 and 4.6 of [10]). The
isotropic vectors belonging to the orbit of length 126 constitute the ovoid, leaving
just two candidate orbits for projection. Isotropic points belonging to the orbit of
length 3780 project on to the ovoid whose fingerprint is Ξ6, while the orbit of length
15750 projects onto the ovoid with fingerprint Ξ9.

A double entry in the last column of Table II, indicates that the 6-dimensional
ovoid is the projection of two 8-dimensional ovoids; i.e. there is an isotropic point
belonging to a W (E7) orbit and a S10 orbit, which projects OE and OS onto
equivalent 6-dimensional ovoids. The fourth column refers to the orbit lengths of
the automorphism groups of the 6-dimensional ovoids (see [2], [6]).

In particular, Corollary 3 gives a negative answer to the question, in odd charac-
teristic, whether or not every ovoid in Ω+(6, q) is a projection of an 8-dimensional
ovoid. (This question was posed by W. M. Kantor.) The ovoids in Ω+(6, 2) and
Ω+(6, 3) have this property (see [10]). In even characteristic, Ω+(6, 4) is a coun-
terexample; this follows from [8, 10, 9]. Corollary 3 also shows that the r-ary variant
Or,5(x) of the E8 root lattice construction of Moorhouse [12] does not produce any
new ovoids for any value of r.

Table II. Projections of ovoids in Ω+(8, 5).

Fingerprints [5, 6] Orbits Ω+(8, 5) Ovoids

Ξ1 : 800, 12480, 2080, 2410, 2526 B5 10, 16 OS , OE
Ξ2 : 4420, 8180, 1220, 2430, 2526 B4 6, 20 OS , OE
Ξ3 : 020, 4360, 8240, 1618, 2412, 2526 S2 6, 20 OE
Ξ5 : 036, 4288, 8180, 1280, 1642, 2024, 2526 S5 8, 18 OS , OE
Ξ6 : 050, 4200, 8100, 12200, 16100, 2526 A3 1, 25 OU
Ξ9 : 0144, 4336, 8168, 242, 2526 A8 1, 1, 24 OU
Ξ11 : 0192, 4432, 824, 242, 2526 A2 2, 24 OE

1The names of the planes in Table 2 of [2] are those used in the preprint versions of [5] and [6].
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B. How reliable is such a computer-aided enumeration? First, we observe that if
any of the 32 starter sets belonging to an ovoid Pi failed to produce a completion,
then none of the 8-dimensional ovoids could be projected onto Pi. Secondly, if our
enumeration had gaps, one would expect, in view of the distribution of the three
types of completions in the list C, that any such omitted ovoid should have a large
automorphism group, say of order ≥ 1000000. However, such a highly symmetric
ovoid would almost certainly have been detected earlier by group theoretic means.
In any case an independent verification of our result is desirable.
C. For the three 8-dimensional ovoids ovoid in Ω+(8, 5) the automorphism group
Aut(O) does not cover GO(V )/O(V ). This raises the following question: Are there
8-dimensional ovoids whose automorphism groups cover this quotient?
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