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OPTIMAL ORDER COLLOCATION
FOR THE MIXED BOUNDARY VALUE PROBLEM

ON POLYGONS

PASCAL LAUBIN

Abstract. In usual boundary elements methods, the mixed Dirichlet-Neu-
mann problem in a plane polygonal domain leads to difficulties because of the
transition of spaces in which the problem is well posed. We build collocation
methods based on a mixed single and double layer potential. This indirect
method is constructed in such a way that strong ellipticity is obtained in high
order spaces of Sobolev type. The boundary values of this potential define a
bijective boundary operator if a modified capacity adapted to the problem is
not 1. This condition is analogous to the one met in the use of the single layer
potential, and is not a problem in practical computations. The collocation
methods use smoothest splines and known singular functions generated by the
corners. If splines of order 2m− 1 are used, we get quasi-optimal estimates in
Hm-norm. The order of convergence is optimal in the sense that it is fixed by
the approximation properties of the first missed singular function.

1. Introduction

The resolution of elliptic problems by boundary elements techniques already
has a long history, see for example [20]. If the boundary is smooth and there is
only one boundary condition, stability and convergence have been proved in rather
general settings for Galerkin and collocation methods. Collocation methods are the
most widely spread in practical computations because of their simplicity and their
efficiency. However, stability and convergence are not automatic, and are more
difficult to prove than for Galerkin methods. Recent works are concerned with the
collocation methods for nonsmooth boundaries and use different strategies to deal
with the singularities of the solution generated by the irregularities of the boundary.
In [7] and [14], optimal rates of convergence have been obtained for the Dirichlet
problem in a plane polygonal domain.

In this paper, we build collocation methods for the mixed Dirichlet-Neumann
problem, which is a widespread model in several domains of mathematical physics.
A classical reference for numerical methods in this problem is [3]. In that paper,
Costabel and Stephan use the direct Fix method to build Galerkin procedures.
The boundary unknowns are the parts of the Dirichlet and Neumann data which
are not given. The main point is to prove the strong ellipticity of the numerical
schemes. The difficulty comes essentially from the transition of the spaces where
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the problem is well-posed, H1/2 on the Dirichlet part of the boundary and H−1/2

on the Neumann part.
The pseudodifferential calculus which reduces this condition to the positivity

of a symbol cannot be used, since the boundary is not smooth and since there
are changes in the boundary conditions. The Mellin transform leads to a complex
symbol without a good positivity property. The coerciveness of the bilinear form
defining the energy norm of the variational formulation cannot be used, since it is
not defined on the spaces used by the Galerkin method. To avoid this problem,
the authors perform a Gaussian type elimination procedure near each mixed corner
on the matrix of boundary operators they use. This problem leads to a modified
method involving compositions of boundary operators. Coerciveness is guaranteed
in L2 but not for stronger norms. This limits the orders of convergence indepen-
dently of the choice of the test functions and of the number of singular functions
used at the corners. Some higher orders of convergence can be obtained in Sobolev
spaces with negative indices, see [5].

Another approach is presented in [8]. The authors use the single layer potential
and cosine approximation spaces, and build collocation methods based on a mesh
grading transformation procedure. Using an intricate Mellin analysis, the authors
prove convergence with a rate as high as allowed by the mesh grading. However,
some invertibility in Lp-spaces for any p > 1 is assumed, and stability is proved
only if the possibility is allowed of cutting off by zero the approximate solution in
some intervals near each corner.

Here, we construct an optimal order Fix collocation method without mesh grad-
ing and with full numerical stability. It is based on smoothest splines. One new
tool is an indirect method based on a modified ansatz (3) for the boundary poten-
tial. The main results of [2] show that it defines an H1 function if the data are in
suitable Sobolev spaces and the data on the Dirichlet part of the boundary vanishes
at the mixed corners. It is chosen in such a way that coerciveness holds in spaces
with high regularity. It consists of a single layer potential on the Neumann part
of the boundary and of a double layer potential on the Dirichlet part. Moreover,
in the collocation equations, we use the tangential derivative of the unknown on
the Dirichlet part. This method can be applied to the interior problem and to the
exterior one.

Since our method is not the direct one nor a classical one, we have to prove
the bijectivity of the boundary operator that we obtain. It turns out that the
vanishing condition required on the Dirichlet part in the ansatz is balanced by an
additional singular function appearing at each mixed corner. Contrary to the case
of the pure Dirichlet or Neumann problem, we get boundary unknowns which are
not L2. However, they have the H−1/2 regularity which is the limit allowed by the
variational setting. The study of the invertibility leads to a condition involving a
modified capacity associated to the open set and the decomposition of the boundary.
This condition is similar to the one met in the use of the single layer potential for
solving the Dirichlet problem.

The next section contains the description of the method and the main results.
Section 3 describe the variational setting of the problem and some properties of the
H1/2 spaces. In Section 4, we adapt the notion of capacity to the mixed problem
The local Mellin analysis near the corners is performed in Section 5. In Section 6,
we prove that the boundary operator is bijective when the mixed capacity is not 1.
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Section 7 is devoted to the proofs of the main theorems. The last section presents
numerical tests of the method.

2. Main results and numerical methods

Let us consider a bounded polygonal open subset Ω of R2 with a connected
boundary

Γ = ∂Ω =
M−1⋃
j=0

Γj .

Here Γj, 0 ≤ j < M , is a closed straight line segment. For convenience, we define
Γj+M = Γj for any j. We denote by Pj the corner point where Γj−1 and Γj
meet. The interior angle at Pj is denoted by ωj. It is assumed that this angle
belongs to ]0, 2π[\{π}. Denote by ν the unit inward normal vector and by t the
unit tangent vector on the boundary. They exist outside the corners. We fix the
orientation in such a way that (t, ν) is a positive basis. In the definitions of the
singular exponents and of the associated spaces and operators, we use the index +
for the interior domain and − for the exterior one.

Assume that we have a decomposition Γ = ΓD ∪ ΓN , where ΓD =
⋃
j∈eD Γj ,

ΓN =
⋃
j∈eN Γj , eD ∩ eN = ∅ and eD ∪ eN = {0, 1, . . . ,M − 1}. We assume that

eN 6= ∅ since this simplifies the exposition. The pure Dirichlet problem has already
been considered by a similar method in [14].

We denote by eND the set of indices j ∈ eD such that j − 1 (M − 1 if j = 0)
belongs to eN . Let p be the number of elements of eND. It follows that ΓD has p
connected components ΓD,1, . . . ,ΓD,p.

We consider the interior mixed Dirichlet-Neumann problem{
−∆u = 0 in Ω,
u|ΓD = u0, ∂νu|ΓN = u1,

(1)

and also the exterior problem
−∆u = 0 in R2 \ Ω,
u|ΓD = u0, ∂νu|ΓN = u1,

u(x) = a log |x|+O(1), x→∞,
(2)

with a singularity at infinity. Here u0, u1 and a are given. This formulation of the
exterior problem with a 6= 0 contains the Green’s function with pole at infinity. It
is useful for the presentation of our results below.

If ΓD is not empty, these problems have a unique variational solution u for any
data u0 ∈ H1/2(ΓD), u1 ∈ H−1/2(ΓN ) and a ∈ C. If ΓD = ∅, then the solution
exists and is unique modulo a constant if u1 ∈ H−1/2(ΓN ) has mean value 0 in the
interior case and satisfies

a+
1

2π

∫
Γ

u1 dσ = 0

in the exterior case.
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2.1. The spaces. Let s ≥ 0. With C = Γ,ΓD or ΓN , we consider the usual
Sobolev spaces

Hs(C) = {u|C : u ∈ Hs+1/2(R2)}
and the spaces of functions that have the Hs-regularity on each side without con-
tinuity at the corners

Hs
c (C) = {f ∈ L2(C) : f ◦ γj ∈ Hs(]0, tj [), j ∈ eC}

with eC = {0, 1, . . . ,M − 1}, eD or eN , respectively. Here γj : [0, tj ] → Γj is the
parameterization by arc length. We use the norm

‖f‖2Hsc (C) =
∑
j∈eC

‖f|Γj ◦ γj‖2Hs(]0,tj [).

We also consider

Hs
0(C) = {f ∈ Hs(C) : f|Γj ∈ Hs

0 (Γj), j ∈ eC}
with the induced norms, where

Hs
0(Γj) = {f ∈ L2(Γj) : f ◦ γj ∈ Hs

0 (]0, tj[)}
and Hs

0(]0, tj [) is the closure of C∞0 (]0, tj [) in Hs(]0, tj [).
The case s = 1

2 is of particular use in our constructions, and its special nature
requires some care. See for example [10] for basic properties and some characteri-
zations of H1/2(R).

Following [3], we define H̃1/2(C) as the set of elements of L2(C) whose extensions
by 0 outside C belong to H1/2(Γ). Of course H̃1/2(Γ) = H1/2(Γ). We also need
the dual spaces

H̃−1/2(C) = H1/2(C)′

and

H−1/2(C) = H̃1/2(C)′.

We define H̃−1/2
v (C) as the subspace of H̃−1/2(C) formed by the elements whose

integrals on each connected component of C vanish.
The previous spaces have to be refined to take into account the singularities

generated by the corners. The singular exponents can be defined in the following
way. They are close to the ones described in [10], but some modifications occur
since we are considering singularities of boundary data and not of the solution itself.

For a mixed corner P with interior angle ω, let

e(m)
ω,e = {(2k − 1

2
)
π

ω
− 1 : k ∈ N \ {0}} ∪ {(2k − 1

2
)

π

2π − ω − 1 : k ∈ N \ {0}},

e(m)
ω,o = {(2k +

1
2

)
π

ω
− 1 : k ∈ N} ∪ {(2k +

1
2

)
π

2π − ω − 1 : k ∈ N}

and

e(m)
ω = e(m)

ω,e ∪ e(m)
ω,o .

If s− 1
2 /∈ e(m)

ω , denote by L(m)
ω,s,± the linear hull in L2(Γ) of the functions

•
(
xα

±xα
)

if α ∈ e(m)
ω,e , −1 < α < s− 1

2 ,
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•
(
xα

±xα
)

ln(x) if α ∈ e(m)
ω,e , −1 < α < s− 1

2 and α ∈ 1
2 + N,

•
(
xα

∓xα
)

if α ∈ e(m)
ω,o , −1 < α < s− 1

2 ,

•
(
xα

∓xα
)

ln(x) if α ∈ e(m)
ω,o , −1 < α < s− 1

2 and α ∈ 1
2 + N,

where x is the distance to P . Here, the vector notation means that the first com-
ponent is the value of the function on the segment preceding P in the direction of
the tangent vector t and the second one is the value on the segment following P .
The function is equal to zero on the other sides.

Note also that if n is an integer and n− 1/2 /∈ e(m)
ω , then dimL(m)

ω,n,± = 2n+ 1.

If Pj is a mixed corner, the set of singular exponents is eωj = e
(m)
ωj . The associated

singular functions space is L±j,s = L(m)
ωj ,s,± if j − 1 ∈ eN and j ∈ eD. In the other

case, j − 1 ∈ eD and j ∈ eN , we have to use L±j,s = L(m)
ωj ,s,∓. We remind the reader

that the + (resp. −) corresponds to the interior (resp. exterior) problem.
We proceed in the same way for the pure Dirichlet and Neumann corners. Let

e(p)
ω,e = {2kπ

ω
− 1 : k ∈ N} ∪ { (2k + 1)π

2π − ω − 1 : k ∈ N},

e(p)
ω,o = { (2k + 1)π

ω
− 1 : k ∈ N} ∪ { 2kπ

2π − ω − 1 : k ∈ N}

and e
(p)
ω = e

(p)
ω,e ∪ e(p)

ω,o. If s− 1
2 /∈ e(p)

ω , denote by L(p)
ω,s,± the linear hull in L2(Γ) of

the functions

•
(
xα

±xα
)

if α ∈ e(p)
ω,e, − 1

2 < α < s− 1
2 ,

•
(
xα

±xα
)

ln(x) if α ∈ e(p)
ω,e, 0 < α < s− 1

2 and α ∈ 1
2 + N,

•
(
xα

∓xα
)

if α ∈ e(p)
ω,o, − 1

2 < α < s− 1
2 ,

•
(
xα

∓xα
)

ln(x) if α ∈ e(p)
ω,o, 0 < α < s− 1

2 and α ∈ 1
2 + N

with the same notations as above.
Clearly −1/2 /∈ e(m)

ω if ω ∈ ]0, 2π[\{π}. Hence dimL(m)
ω,0,± = 1. This one dimen-

sional space is not included in L2(Γ). However it is included in H−1/2(Γ), since
xα ∈ H−1/2(R+) if −1 < α < −1/2.

Note that if n is an integer and n− 1
2 /∈ e(p)

ω , then dimL(p)
ω,n,± = 2n. Hence there

is a shift in the dimension of the spaces of singular functions between the two types
of corners.

If Pj is a pure Dirichlet or Neumann corner, then the set of singular exponents
is eωj = e

(p)
ωj and the associated singular functions space is L±j,s = L(p)

ωj ,s,±.
For each j, choose a function χj on Γ which is the restriction of an element of

C∞0 (R2) and equal to δjk near Pk for every k. Denote by Hs±(ΓD,ΓN ) the subspace
of

Hs
0(ΓD)×Hs

0(ΓN ) +
M−1∑
j=0

χjL±j,s
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formed by the elements (f, g) such that the integral of f on each connected com-
ponent of ΓD is 0. This space does not depend on the choice of the functions
χj .

Note that Hs±(ΓD,ΓN ) is not a subspace L2(ΓD)×L2(ΓN ) if there is at least one
mixed corner Pj . Indeed, −1/2 /∈ e(m)

ω if ω ∈ ]0, 2π[\{π}. Hence dimL±j,0 = 1. The
one dimensional space χjL±j,0 = 1 is not included in L2(Γ). However it is included
in H−1/2(Γ), since xα belongs to H−1/2(R+) if −1 < α < −1/2. This additional
degree of freedom in the unknown function at the mixed corners is balanced by the
requirement that the integral of f vanishes on each connected component of ΓD.

We can of course see the elements of Hs±(ΓD,ΓN ) as a pair of functions, one on
ΓD and one on ΓN , or as a single function on Γ. For every j, let ujk, 0 ≤ k < Kj,
be a basis of L±j,s. If

u = v +
M−1∑
j=0

χj

Kj−1∑
k=0

cjkujk

with v ∈ Hs
0 (ΓD)×Hs

0(ΓN ), then Hs±(ΓD,ΓN ) is a Hilbert space for the norm

‖u‖2Hs±(ΓD ,ΓN ) =
M−1∑
j=0

Kj−1∑
k=0

|cjk|2 + ‖v‖2Hs0(ΓD)×Hs0 (ΓN ).

The choice of the basis of singular functions does not matter for the asymptotic
estimates, since the space is finite dimensional. However, a well designed basis close
to orthogonality is important for the condition number in practical computations.

2.2. The boundary operators. To solve (1), we use the following ansatz:

K(g, h)(x) =
1

2π

∫
ΓN

g(y) log |x− y| dσ(y) +
1

2π

∫
ΓD

(x− y).νy
|x− y|2 h(y) dσ(y)(3)

for x ∈ R2 \ Γ. It is quite different from the one used in the direct method. In this
case the two previous integrals contain the known boundary data u1 and u0, and
the boundary unknowns appear in the single layer potential on ΓD and the double
layer potential on ΓN .

To solve (2), we use the similar ansatz

K(g, h, c)(x) = c+
1

2π

∫
ΓN

g(y) log |x− y| dσ(y) +
1

2π

∫
ΓD

(x− y).νy
|x− y|2 h(y) dσ(y)

(4)

for x ∈ R2 \ Γ. The constant c is required to get surjectivity of the boundary
operators defined below.

Let (f, g) ∈ H̃
−1/2
v (ΓD) × H̃−1/2(ΓN ). By Corollary 5, there is a unique h ∈

H̃1/2(ΓD) such that ∂th = f . By Theorem 1 of [2], the function (3) defined by g
and h belongs to H1(Ω). In the same way, the function (4) is H1 in any bounded
open subset of R2 \ Ω and has the asymptotic behavior required in (2).

We consider the operators

T± : H̃−1/2
v (ΓD)× H̃−1/2(ΓN ) → H−1/2(ΓD)×H−1/2(ΓN ),

(f, g) → (∂tu|ΓD , ∂νu|ΓN ),
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where u is defined by (3) for the interior problem, by (4) for the exterior one, and
h ∈ H̃1/2(ΓD) satisfies ∂th = f . The subscript + (resp. −) means that we consider
the interior (resp. exterior) problem and that the boundary values are taken from
inside (resp. outside).

The existence of the boundary values and of the normal derivative in the space
H1/2(ΓD) ×H−1/2(ΓN ) is a consequence of Lemmas 3.2 and 3.6 of [2], since u is
in the maximal domain of ∆. This shows that the operators T± make sense, since
the tangential derivative maps H1/2(ΓD) into H−1/2(ΓD) (see for example [10]).

If (f, g) ∈ L2(ΓD)× L2(ΓN ), it follows from the results of [12] and [13] that the
function u defined by (3) belongs to H3/2(Ω) and that the one defined by (4) is
H3/2 in any bounded open subset of R2 \ Ω. Hence the traces are continuous on
the closure of each side Γj . This remains true if (f, g) ∈ H0

±(ΓD,ΓN), but then it
is a consequence of these results and of Proposition 7.

For each j = 1, . . . , p, we fix a point Qj on ΓD,j . We can for example take the
points Pj with j ∈ eND. We use the finite rank operators

S+ : H0
+(ΓD,ΓN )→ Cp : (f, g) 7→ (u(Q1), . . . , u(Qp)),

S− : H0
−(ΓD,ΓN)× C→ Cp : (f, g) 7→ (u(Q1), . . . , u(Qp)),

where u is defined as above by (3) and (4) respectively.

2.3. The mapping properties. If ΓD = ∅, our ansatz (3) is the single layer
potential. It defines a one to one boundary operator if and only if the capacity of
Ω is not one, see for example [9]. In the general case, denote by G the solution of
the mixed problem 

∆G = 0 in R2 \ Ω,

G|ΓN = 0, ∂νG|ΓD = 0,

G(x) = log |x|+O(1), x→ +∞.
(5)

The existence and some properties of this function are presented in Section 4. We
define the mixed capacity γ of Ω with respect to the decomposition (ΓD,ΓN ) of the
boundary Γ by the limit

log γ = lim
x→∞

G(x) − log |x|.

The central mapping properties of the boundary operator defined by (3) are
summed up in the following result.

Theorem 1. If s ≥ 0, then the operator T± maps Hs±(ΓD,ΓN ) into Hs
c (ΓD) ×

Hs
c (ΓN ).
Assume that s ≥ 0 and s− 1

2 /∈ eωj for every j. It follows that :
• If ΓD 6= ∅ and the mixed capacity of Ω with respect to the decomposition

(ΓD,ΓN) is not 1, then the operator

T+ : Hs+(ΓD,ΓN )→ Hs
c (ΓD)×Hs

c (ΓN )× Cp : (f, g) 7→ (T+(f, g), S+(f, g))

is bijective.
• If ΓD 6= ∅, then the operator

T− : Hs−(ΓD,ΓN)× C→ Hs
c (ΓD)×Hs

c (ΓN )× Cp+1 :

(f, g, c) 7→ (T−(f, g), S−(f, g),
∫

ΓN

g dσ)

is bijective.
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• If ΓD = ∅, then T± are Fredholm operators with index 0 and one dimensional
kernel; T+ has the same property if ΓD 6= ∅ and the mixed capacity is 1.

The proof is given in Section 6.
The condition on the capacity is analogous to the one met in the use of the single

layer potential for the pure Dirichlet problem and should not be a real problem.
Any dilation by a factor r multiplies the capacity by r. Hence, for any open subset
Ω of R2, there is one and only one r > 0 such that rΩ has capacity 1. Moreover,
in this case, the addition of a good operator of rank one gives a bijective boundary
operator. For example, if the mixed capacity is 1, we can replace (3) by

K(g, h)(x) =
1

2π

∫
ΓN

g(y) log |x− y| dσ(y)

+
1

2π

∫
ΓD

(x− y).νy
|x− y|2 h(y) dσ(y) +

1
2π

∫
ΓN

g dσ.

It follows from Proposition 6 that the corresponding boundary operator is bijective.
To avoid lengthy discussions, we describe the numerical methods only in the cases
where T+ or T− is bijective. Hence, we assume in what follows that ΓD 6= ∅.

2.4. The numerical methods. Let us describe the collocation methods. They
are built using splines of odd degree. For simplicity, we only consider meshes that
are uniform on each side. This is natural in our framework, since the singularities
occurring near the corners are already taken into account by the method. We are
looking for a Galerkin method which reduces to collocation equations, and adapt
the trial and test spaces to the results obtained in Theorem 1.

For any j such that 0 ≤ j < M , let nj > 0 be the number of subdivisions of the
sides Γj and consider the points

Pj = P
(0)
j = γj(0), P (1)

j = γj(hj), . . . , P
(nj)
j = γj(njhj) = Pj+1

with hj = tj/nj . The set of these points is called a mesh ∆ with meshwidth
δ∆ = supj<M hj .

Fix a strictly positive integer m and a mesh ∆. Assume that

nj ≥ 2m and 2m− 3
2
/∈ eωj

for every j. Denote by S(m)
∆,j,0 the set of smoothest splines of degree 2m− 1 on Γj

subordinated to the mesh ∆ that vanish to order 2m − 1 at the corners Pj and
Pj+1. Extend these functions by 0 on the other sides. The dimension of this space
is nj − (2m− 1). Define

S
(m)
∆,0 (Γ) =

M−1∑
j=0

S
(m)
∆,j,0

and

V
(m)

∆,±(Γ) = S
(m)
∆,0 (Γ) +

M−1∑
j=0

χjL±j,2m−1,

where the functions χj are chosen as in the definition of the spaces Hs(ΓD,ΓN ).
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Denote by V
(m)

∆,v,±(Γ) the subspace of V (m)
∆,±(Γ) formed by the elements whose

integral on each connected component of ΓD is 0. By construction, we have

V
(m)

∆,v,±(Γ) ⊂ H2m−1
± (ΓD,ΓN)

and

dimV
(m)

∆,v,±(Γ) =
M−1∑
j=0

(
nj − (2m− 1) + 2(2m− 1)

)
+ p

=
M−1∑
j=0

nj +M(2m− 1) + p.

Indeed, in a nonmixed corner we have 2(2m−1) singular functions. For each compo-
nent ΓD,j of ΓD, we have to add the two additional singular functions generated by
the mixed corners, and subtract one because the integral of the boundary unknown
has to vanish on ΓD,j .

Our space of trial functions for (3) or (4) is the space W (m)
∆,±(Γ) of functions

(g, h) ∈ H̃−1/2(ΓN )× H̃1/2(ΓD)

such that (∂th, g) ∈ V (m)
∆,v,±(Γ). This means that we take an approximation of g in

the linear hull of the singular functions and of the splines of order 2m− 1, whereas
we use the linear hull of the antiderivatives of the same singular functions and of the
splines of order 2m for the approximation of h. This shift of regularity corresponds
exactly to the shift of spaces in the variational setting.

Assume that u0 ∈ Hm+1(ΓD) and u1 ∈ Hm
c (ΓN ), and denote by v the function

equal to ∂tu0 on ΓD and u1 on ΓN . If f is a smooth function on Γj , denote by
∂k+,jf (resp. ∂k−,jf) the derivative of order k of f at Pj (resp. Pj+1) in the direction
of the unit tangent vector of Γj . To solve (1), we consider the following collocation
equations.

Find (g, h) ∈ W (m)
∆,+(Γ) such that

∂tK(g, h)(P (k)
j ) = v(P (k)

j ), j ∈ eD, 0 ≤ k ≤ nj ,

∂νK(g, h)(P (k)
j ) = v(P (k)

j ), j ∈ eN , 0 ≤ k ≤ nj ,
K(g, h)(Qj) = u0(Qj), 1 ≤ j ≤ p,
∂`+1
±,j K(g, h) = ∂`±,jv, j ∈ eD, 0 < ` < m,

∂`±,j∂νK(g, h) = ∂`±,jv, j ∈ eN , 0 < ` < m.

(6)

By construction, the number of equalities in (6) is equal to the dimension of
W

(m)
∆,±(Γ). The derivatives that are used at the corners are exactly the ones that

make sense for the boundary values of K(g, h) in view of Theorem 1 if u0 ∈
Hm+1(ΓD) and u1 ∈ Hm

c (ΓN ).
As explained in Section 6 and 7 (see (13), (14) and also (16), (17)), all the

derivatives that occur in these collocation equations can be performed analytically
on the formula giving K and hence can be easily computed.

To solve (2), we use essentially the same method. Let a ∈ C, u0 ∈ Hm+1(ΓD),
u1 ∈ Hm

c (ΓN ), and denote as above by v the function equal to ∂tu0 on ΓD and
u1 on ΓN . We consider the solution (g, h, c) ∈ W

(m)
∆,−(Γ) × C of the collocation
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equations 

∂tK(g, h, c)(P (k)
j ) = v(P (k)

j ), j ∈ eD, 0 ≤ k ≤ nj ,

∂νK(g, h, c)(P (k)
j ) = v(P (k)

j ), j ∈ eN , 0 ≤ k ≤ nj ,
K(g, h, c)(Qj) = u0(Qj), 1 ≤ j ≤ p,
∂`+1
±,j K(g, h, c) = ∂`±,jv, j ∈ eD, 0 < ` < m,

∂`±,j∂νK(g, h, c) = ∂`±,jv, j ∈ eN , 0 < ` < m,

1
2π

∫
ΓN

g dσ = a.

(7)

Here again, we get a square linear system.
Our main convergence result is the following quasi-optimal estimate.

Theorem 2. Let Ω be a bounded polygonal open subset of R2 and (ΓD,ΓN ) a de-
composition of the boundary defining a mixed capacity γ 6= 1. If m is a strictly
positive integer such that m − 1

2 /∈ eωj and 2m − 3
2 /∈ eωj for every j, then there

are C, δ > 0 such that, for every mesh ∆ with meshwidth δ∆ less than δ and every
functions (u0, u1) ∈ Hm+1(ΓD)×Hm(ΓN ), the solution (g∆, h∆) of the collocation
equations (6) is unique and satisfies

‖(∂th, g)− (∂th∆, g∆)‖Hm+ (ΓD ,ΓN )

≤ C inf
(g̃,h̃)∈W (m)

∆,+(Γ)

‖(∂th, g)− (∂th̃, g̃)‖Hm+ (ΓD ,ΓN ),

where (g, h) ∈ H̃−1/2(ΓN ) × H̃1/2(ΓD) satisfies (∂th, g) ∈ Hm+ (ΓD,ΓN ) and is the
solution of

K(g, h)|ΓD = u0, ∂νK(g, h)|ΓN = u1.

The same result holds for the exterior problem with data

(u0, u1, a) ∈ Hm+1(ΓD)×Hm(ΓN )× C

and approximation (g∆, h∆, c∆) ∈W (m)
∆,−(Γ)× C.

As a consequence of this result and of the approximation properties of splines,
we obtain the following orders of convergence. We state it for the interior problem.

Theorem 3. Under the conditions of Theorem 2, there are constants C(s) > 0
such that

‖(∂th, g)− (∂th∆, g∆)‖Hk+(ΓD,ΓN ) ≤ C(s)δs−k∆ ‖(u0, u1)‖Hs+1(ΓD)×Hs(ΓN )

if k is an integer, k − 1
2 /∈ eωj for every j, 0 ≤ k ≤ m ≤ s < α+ 1

2 , where α is the
smallest element of

⋃N−1
j=0 eωj such that α > 2m− 3

2 , s − 1
2 /∈ eωj for every j and

(u0, u1) ∈ Hs+1(ΓD)×Hs(ΓN ).

The exact value of the first missed singular exponent depends on the polygon.
However, we always have 2m− 3

2 < α ≤ 2m− 1.
Theorems 2 and 3 are proved in Section 7.
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3. The variational framework

We fix the general functional framework of our problem and give some references
for the convenience of the reader. The notations are the same as in Section 2.

Denote by C
∞

(Ω) the set of restrictions to Ω of the C∞ functions in R2, and let

E(∆, L2(Ω)) = {u ∈ H1(Ω) : ∆u ∈ L2(Ω)}
be the maximal domain for the Laplacian. Any element u ∈ E(∆, L2(Ω)) has a
boundary value γ0u ∈ H1/2(Γ). The set C

∞
(Ω) is dense E(∆, Lp(Ω)), and the

trace map

γ1u = (∂νu)|∂Ω

defined on C
∞

(Ω) extends as a continuous linear operator from E(∆, L2(Ω)) into
H−1/2(∂Ω). Moreover, if u ∈ E(∆, L2(Ω)) and v ∈ H1(Ω), we have∫

Ω

∆u v dλ +
∫

Ω

2∑
j=1

DxjuDxjv dλ = −〈γ1u, γ0v〉 .(8)

These results are proved in [10] or [6] for any bounded Lipschitz domain. It follows
that, if u ∈ H1(Ω) and ∆u = 0, then u defines an element γ1u ∈ H−1/2(Γ), hence
an element of H−1/2(ΓN ).

If ΓD is not empty, u0 ∈ H1/2(ΓD) and u1 ∈ H−1/2(ΓN ), then there is one and
only one u ∈ H1(Ω) such that γ0u|ΓD = u0 and∫

Ω

gradu.gradv dλ = u1(γ0v|ΓN )

for every v ∈ H1(Ω) satisfying γ0v|ΓD = 0. If ΓD is empty and u1 ∈ H−1/2(Γ)
satisfies ∫

Γ

u1 dσ = 0,

then there is a unique solution to the same problem in H1(Ω)/R. This is the
variational solution of the mixed problem{

∆u = 0 in Ω,
u|ΓD = u0, ∂νu|ΓN = u1.

The exterior problem is solved in the same way.
Let us consider the boundary potentials. It follows from Theorem 1 of [2] that

if h ∈ H̃1/2(ΓD) and g ∈ H̃−1/2(ΓN ), then the function u defined by (3) belongs
to E(∆, L2(Ω)). Hence, it has a boundary value γ0u ∈ H1/2(Γ) and a normal
derivative γ1u = ∂νu ∈ H−1/2(Γ). However, the functions g and h do not belong to
the same spaces and the transition leads to problems in the collocation methods.
We shift to other spaces.

As above, we define H̃−1/2(]0, 1[) as the dual of H1/2(]0, 1[) and H−1/2(]0, 1[) as
the dual of H̃1/2(]0, 1[). It is known, [10] pp. 31-32, that the derivative defines a
continuous operator from H1/2(]0, 1[) into H−1/2(]0, 1[) but not into H̃−1/2(]0, 1[).
We also have the following dual result. We give a proof for the sake of completeness.

Lemma 4. The derivative D defines a bijective continuous operator from the space
H̃1/2(]0, 1[) onto the subspace of H̃−1/2(]0, 1[) formed by the elements whose integral
is 0.
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Proof. Let f ∈ H̃1/2(]0, 1[). By definition, the zero extension f̃ belongs to H1/2(R).
Hence g = Df̃ ∈ H−1/2(R). If ϕ ∈ H1/2(]0, 1[), then h(ϕ) = g(ϕ̃) is independent of
the extension ϕ̃ of ϕ as an element of H1/2(R). Indeed, g vanishes on C∞0 (R\ [0, 1])
since its support is included in [0, 1]. Moreover the difference of two extensions
belongs to H̃1/2(R \ [0, 1]) and C∞0 (R \ [0, 1]) is dense in this space, [10], p. 24.
Since there is a continuous linear extension operator from H1/2(]0, 1[) to H1/2(R),
h belongs to H̃−1/2(]0, 1[). It coincides with g in ]0, 1[. Hence

Df = g|]0,1[ = h ∈ H̃−1/2(]0, 1[).

Moreover, if χ ∈ C∞0 (R) is equal to 1 near [0, 1], we have

〈Df, 1〉 = 〈h, 1〉 = 〈g, χ〉 =
〈
Df̃, χ

〉
= −

〈
f̃ , Dχ

〉
= 0.

The operator is one to one since the nonvanishing constants do not belong to
H̃1/2(]0, 1[).

Let us prove that it is onto. Let f ∈ H̃−1/2(]0, 1[) be such that 〈f, 1〉 = 0. Define
u = H−1/2(R) by

u(ϕ) = f(ϕ|]0,1[), ϕ ∈ H1/2(R).

The Fourier transform û of u is an entire function vanishing at 0. By the Paley-
Wiener theorem, there is v ∈ H1/2(R) such that v̂(ξ) = û(ξ)/iξ and suppv ⊂ [0, 1].
The restriction of v to ]0, 1[ belongs to H̃1/2(]0, 1[), and its derivative is f .

Let σj : [0, Lj] → ΓD,j be the parameterization by arc length of the j-th con-
nected component of ΓD. For each j, the space H1/2(ΓD,j) is formed by the func-
tions u such that u ◦ σj ∈ H1/2(]0, Lj[). Hence, as a corollary of Lemma 4, we
obtain the following result.

Corollary 5. The derivative with respect to the unit tangent vector maps the space
H̃1/2(ΓD) onto the space H̃−1/2

v (ΓD).

4. The mixed capacity

As in Section 2, let Ω be a bounded polygonal open subset of R2. We fix a
partition Γ = ΓD ∪ ΓN of its boundary.We assume that ΓN 6= ∅. There is a unique
harmonic function in R2 \ Ω such that

G ∈ H1((R2 \ Ω) ∩ {x ∈ R2 : |x| < R})

for any R > 0 and 
∆G = 0 in R2 \ Ω,

G|ΓN = 0, ∂νG|ΓD = 0,

G(x) = log |x|+O(1), x→ +∞.
(9)

This is the Green function G with pole at infinity. By a classical theorem of
Riemann, the function G(x) − log |x| is harmonic at infinity. We define the mixed
capacity γ of Ω with respect to the decomposition (ΓD,ΓN ) by the limit

log γ = lim
x→∞

G(x) − log |x|.
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Proposition 6. Let G be the Green function of Ω associated to a decomposition
(ΓD,ΓN ) of the boundary of Ω, and let γ be the mixed capacity of Ω. If x ∈ R2 \Ω,
then

G(x) = log γ − 1
2π

∫
ΓD

(x− y).νy
|x− y|2 G(y) dσ(y)− 1

2π

∫
ΓN

∂νG(y) log |x− y| dσ(y).

If x ∈ Ω, then

1
2π

∫
ΓD

(x− y).νy
|x− y|2 G(y) dσ(y) +

1
2π

∫
ΓN

∂νG(y) log |x− y| dσ(y) = log γ.

Moreover, if g ∈ H̃−1/2(ΓN ), h ∈ H̃1/2(ΓD) and

1
2π

∫
ΓN

g(y) log |x− y| dσ(y) +
1

2π

∫
ΓD

(x− y).νy
|x− y|2 h(y) dσ(y)

is constant in Ω, then

g = −∂νG
2π

∫
ΓN

g dσ, h = − G
2π

∫
ΓN

g dσ.

Proof. Assume that Ω is included in the open ball with center 0 and radius R. If
x ∈ R2 \ Ω and |x| < R, the Green formula gives

G(x) =
1

2π

∫
|y|=R

(x− y).νy
|x− y|2 G(y) dσ(y) +

1
2π

∫
|y|=R

∂νG(y) log |x− y| dσ(y)

− 1
2π

∫
ΓD

(x− y).νy
|x− y|2 G(y) dσ(y)− 1

2π

∫
ΓN

∂νG(y) log |x− y| dσ(y)

with νy = −y/|y| on |y| = R. By construction of G, we have

G(x) = log r + log γ +O(
1
r

), ∂rG(x) =
1
r

+O(
1
r2

)

with r = |x|. Using this asymptotic behavior in the first integrals and considering
the limit for R→ +∞, we get

G(x) = log γ − 1
2π

∫
ΓD

(x− y).νy
|x− y|2 G(y) dσ(y) − 1

2π

∫
ΓN

∂νG(y) log |x− y| dσ(y)

in R2 \ Ω. The right hand side defines a harmonic function in Ω. On ΓD, its
normal derivative vanishes since the normal derivative of the double layer potential
is continuous across ΓD; see Lemma 4.1 of [2]. On ΓN , it vanishes since the single
layer potential is continuous across ΓN . The mixed problem in Ω has a unique
solution hence the right hand side vanishes in Ω.

Assume that g ∈ H̃−1/2(ΓN ), h ∈ H̃1/2(ΓD) and that the function

u(x) =
1

2π

∫
ΓN

g(y) log |x− y| dσ(y) +
1

2π

∫
ΓD

(x− y).νy
|x− y|2 h(y) dσ(y), x ∈ R2 \ ∂Ω,

is equal to a constant c in Ω. If x ∈ R2 \ Ω, let

v(x) = u(x)− G(x)
2π

∫
ΓN

g dσ.

By construction

v(x) = − log γ
2π

∫
ΓN

g dσ +O(
1
r

).
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Using the Green formula (8), we obtain∫
R2\Ω

|gradv|2 dλ =
〈
∂νv|Γ, v|Γ − c

〉
.

This expression is 0. Indeed, on ΓN we have u− c = G = 0, since the single layer
potential is continuous across the boundary. On ΓD, we have ∂νu = ∂νG = 0,
since the normal derivative of the double layer potential is continuous across the
boundary. It follows that v is a constant. Since it is equal to c on ΓN , we obtain

c = − log γ
2π

∫
ΓN

g dσ.

It follows that

u(x) =


c in Ω,

c+
G(x)
2π

∫
ΓN

g dσ in R2 \ ∂Ω.

Computing the jump on ΓD and the jump of the normal derivative on ΓN of this
expression of u, we obtain

g = −∂νG
2π

∫
ΓN

g dσ, h = − G
2π

∫
ΓN

g dσ.

This proves the proposition.

5. Mellin analysis in a corner

We are looking for a bijective boundary operator between spaces of high regu-
larity. This will be a consequence of the previous global properties of the potential
as well as of local properties near each corner. In this section, we perform a Mellin
analysis to obtain the singularities generated by these corners and to prove the
coerciveness of the boundary operator in suitable spaces.

5.1. Mixed corner. Let us consider the unbounded corner

Ω = {reiθ : r > 0, 0 < θ < ω}
with 0 < ω < 2π and ω 6= π. Here again ν denotes the unit inward normal vector.
Assume that ΓD is the real axis and ΓN the other part of the boundary.

Let (g, h) ∈ H̃−1/2(R+) × H̃1/2(R+) and u = K(g, h) with the notations of (3).
Its boundary values are given by(

u|ΓD
∂νu|ΓN

)
=

1
2

(
I V
S I

)(
h
g

)
(10)

with

V g(x) =
1
π

∫ +∞

0

g(y) log
√
x2 + y2 − 2xy cosω dy

and

Sh(x) =
1
π

∫ +∞

0

2xy − (x2 + y2) cosω
(x2 + y2 − 2xy cosω)2

h(y) dy.

Using the direct method, a similar operator is obtained in [3]. It is strongly elliptic
in the energy norm. However, it is not even continuous in the natural space for the
Galerkin procedure. This problem is partially avoided in [3] by using a Gaussian
type elimination near the mixed corners. Here, we perform collocation on the
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tangential derivative of the Dirichlet data and on the normal derivative of the
solution on the Neumann part of the boundary. Moreover, we use f = Dh and g as
unknown. This leads to a strongly elliptic operator in high order Sobolev spaces.

If x > 0, we get

D(V g)(x) =
1
π

∫ +∞

0

x− y cosω
x2 + y2 − 2xy cosω

g(y) dy.

On the other hand,

2xy − (x2 + y2) cosω
(x2 + y2 − 2xy cosω)2

= −Dy(
x− y cosω

x2 + y2 − 2xy cosω
).

It follows that

Sh(x) =
1
π

∫ +∞

0

x− y cosω
x2 + y2 − 2xy cosω

Dh(y) dy,

since this is true for h ∈ C∞0 (R+) and this space is dense in H̃1/2(R+). Of course,
in the general case the integrals are taken in the sense of duality.

This means that

Wω

(
f
g

)
:= T+(f, g) =

(
∂tu|ΓD
∂νu|ΓN

)
=

1
2

(
I W
W I

)(
f
g

)
with

Wf(x) =
1
π

∫ +∞

0

x− y cosω
x2 + y2 − 2xy cosω

f(y) dy.

If ΓN is the real axis and ΓD the other part of the boundary, we have to replace
W by −W . If we consider the exterior case, we have to replace I by −I. Since
these modifications are only sign changes and the definition of L±j,s takes care of
this, we can restrict ourselves to Wω in the next result.

Proposition 7. If ω ∈ ]0, 2π[\{π}, s ≥ 0 and χ ∈ C∞0 (R) is equal to 1 in a
neighborhood of 0, then the operator

Wω : Hs
0(R+)2 + χL(m)

ω,s,+ → Hs(R+)2

is continuous. Moreover, if s− 1
2 /∈ e(m)

ω , it is onto and its kernel is the linear hull of
the function (xα,−xα), where α is the element of e(m)

ω satisfying −1 < α < −1/2.
If m is an integer and m− 1

2 /∈ e(m)
ω , then there is c > 0 such that

〈DmWωv,D
mv〉L2(R+)2 ≥ c‖Dmv‖2L2(R+)2

for any v ∈ Hm
0 (R+)2.

As usual in the Fix method, we have to avoid that a singular function lies exactly
at the boundary of the Sobolev regularity under consideration. This should not be
a real restriction in practical computations.

Proof. From a classical lemma of Hilbert, see [11], p. 229, it follows that W is
continuous from L2(R+) into itself. To obtain more precise results, we use the
Mellin transform

Mf(z) =
∫ +∞

0

xz−1f(x) dx, f ∈ C∞0 (R+).
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The operator mapping f to t 7→Mf(1
2 +it) extends as an isomorphism from L2(R+)

onto L2(R). Indeed, this is the composition of the operator mapping f ∈ L2(R+)
to s 7→ e−s/2f(e−s) and the Fourier transform in L2(R). Let us prove that if
f ∈ L2(R+) and <z = 1

2 , we have

M(Wf)(z) =
cos((z − 1)(π − ω))

sin(πz)
Mf(z).

By density, we can assume that f ∈ C∞0 (R+). In this case, we can write

M(Wf)(z) =
1
π

∫ +∞

0

xz−1dx

∫ +∞

0

x− y cosω
x2 + y2 − 2xy cosω

f(y) dy

=
1
π

∫ +∞

0

f(y) dy
∫ +∞

0

xz−1(x − y cosω)
x2 + y2 − 2xy cosω

dx.

Using the method of residues to compute the integrals of Euler type, see for exam-
ple [1] p. 157, we get∫ +∞

0

xz−1(x− y cosω)
x2 + y2 − 2xy cosω

dx = iπyz−1 e
iω(z−1) + ei(2π−ω)(z−1)

1− e2iπz

= πyz−1 cos((z − 1)(π − ω))
sin(πz)

if 0 < <z < 1 and y > 0. This proves the required formula.
This shows that, on the Mellin side, the operator Wω is the multiplication by

Sω(z) =

 1
cos((z − 1)(π − ω))

sin(πz)
cos((z − 1)(π − ω))

sin(πz)
1

 .

Since ω 6= π, this matrix is invertible on the line <z = 1
2 and has a bounded inverse.

Hence Wω is an isomorphism from L2 onto itself.
Let us prove the mapping properties in Hs

0(R+)2 + χL(m)
ω,s,+. By construction,

the elements of e(m)
ω are the real numbers α > −1 such that z = −α is a root of

cos((z − 1)(π − ω))2 − sin(πz)2 = 0.

All these roots are real and 1/2 is never a root. Such a root is double if and only
if it can be written z = `/2 with ` ∈ Z. It never has the multiplicity 3.

We first remark that the function (xα,−xα) is in the kernel of Wω if −1 < α <

−1/2 and α ∈ e(m)
ω . Indeed, using again the method of residues, we get in this case

1
π

∫ +∞

0

(x− y cosω)yα

x2 + y2 − 2xy cosω
dy = −xα cos(α+ 1)(π − ω)

sin(πα)
= xα.

If α > −1/2, the previous argument cannot be used since xα does not belong to L2

at infinity. We use the characterization of the Sobolev spaces Hs(R+) by the Mellin
transform (see Theorem 4 in [14] or Theorem 1.1.23 in [17]) and the following fact.
The Mellin transform of xαχ(x) extends as a meromorphic function in C with a
simple pole at −α. Moreover, for every M > 0, there are constants Ck > 0 such
that the estimation

|M(xαχ)(z)| ≤ Ck
(1 + |=z|)k

1
|z + α|
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holds if |<z| ≤M . This follows from the equality

(z + α)(z + α+ 1) . . . (z + α+ k)
∫ +∞

0

xz+α−1χ(x) dx

=
∫ +∞

0

xz+α+k(−D)k+1χ(x) dx.
(11)

Since Dk+1χ vanishes near 0 if k ≥ 0, the right hand side is bounded in any vertical
strip of the complex plane. In the same way

(z + α)
∫ +∞

0

xz+α−1 log(x)χ(x) dx

= −
∫ +∞

0

xz+α−1χ(x) dx −
∫ +∞

0

xz+α log(x)Dχ(x) dx.

Hence, for the function xα log(x)χ(x), we have a pole of order 2 at −α and the
same estimation with |z + α| replaced by |z + α|2.

Let L̃(m)
ω,s,+ be the space L(m)

ω,s,+, where in the linear hull we omit the singular
function defined by α ∈ ] − 1,−1/2[. An easy computation shows that if (f, g) ∈
Hs

0(R+)2 + χL̃(m)
ω,s,+, then

Sω(z)
(
Mf(z)
Mg(z)

)
satisfies the hypothesis of Theorem 4 in [14] and hence is the Mellin transform of
an element of Hs(R+)2. In the same way, if s− 1

2 /∈ e(m)
ω and (f, g) ∈ Hs(R+)2, we

obtain that

Sω(z)−1

(
Mf(z)
Mg(z)

)
is the Mellin transform of an element of Hs

0(R+)2 + χL(m)
ω,s,+.

Let us prove the inequality. By density, we can assume that v = (f, g) ∈
C∞0 (R+)2. We have

〈DmWωv,D
mv〉L2(R+)2

= ‖Dmf‖2L2(R+)2 + ‖Dmg‖2L2(R+)2

+ 〈DmWg,Dmf〉L2(R+) + 〈DmWf,Dmg〉L2(R+) .

Moreover

M(DmWf)(z)
= (1− z)(2− z) · · · (m− z)M(Wf)(z −m)

= (1− z)(2− z) · · · (m− z)
cos((z −m− 1)(π − ω))

sin(π(z −m))
Mf(z −m)

= (−1)m
cos((z −m− 1)(π − ω))

sin(πz)
M(Dmf)(z).

Hence

‖DmWf‖2L2(R+) =
1

2π

∫
R
|
cos((1

2 +m− ix)(π − ω))
sin(π(1

2 + ix))
|2 |M(Dmf)(

1
2

+ ix)|2 dx.
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Let us prove that∣∣ cos((1
2 +m− ix)(π − ω))
sin(π(1

2 + ix))

∣∣ ≤ δ = sup
(
|1− ω

π
|, | sin((m+

1
2

)ω)|
)
.

This is obvious if x = 0 or if x is large enough, since the left hand side converges
to 0 at infinity. We have∣∣ cos((1

2 +m− ix)(π − ω))
sin(π(1

2 + ix))

∣∣2 =
cosh(2x(π − ω))− cos((2m+ 1)ω)

1 + cosh(2πx)
.

At a point where the derivative of this function vanishes, the value is

(1 − ω

π
)

sinh(2(π − ω)x)
sinh(2πx)

≤ (1− ω

π
)2,

since sinh(a)/ sinh(b) ≤ a/b if 0 ≤ a < b.
If m− 1

2 /∈ e(m)
ω , the bound δ is strictly smaller than 1. We get

〈DmWωv,D
mv〉L2(R+)2 ≥ (1− δ)(‖Dmf‖2 + ‖Dmg‖2).

This proves the proposition.

5.2. Dirichlet and Neumann corners. We proceed in the same way in the case
of a pure Dirichlet or Neumann corner. The results and the proofs are similar to
the ones obtained above, but we give the precise results for the sake of completeness
and later use.

We use the same notations as in the previous section, and first consider a pure
Dirichlet corner. In the boundary values of (3), the contribution of the integral on
one side to the value on the other side is

x sinω
π

∫ +∞

0

h(y)
x2 + y2 − 2xy cosω

dy.

Since

Dx

( x sinω
x2 + y2 − 2xy cosω

)
= −Dy

( y sinω
x2 + y2 − 2xy cosω

)
,

we get

Dx

( x sinω
π

∫ +∞

0

h(y)
x2 + y2 − 2xy cosω

dy
)

=
sinω
π

∫ +∞

0

yDh(y)
x2 + y2 − 2xy cosω

dy

for any h ∈ C∞0 (R+), and hence by density for any h ∈ H̃1/2(R+).
Since (t, ν) is a positive basis, we have ∂t = −Dx on Γ2 and ∂t = Dx on Γ1.

Hence, the previous computations show that the equality

Dω
(
f1

f2

)
:= T+(f1, f2) =

(
∂tu|Γ1

∂tu|Γ2

)
=

1
2

(
I −N
−N I

)(
f1

f2

)
holds with Γ1 = R, Γ2 = eiωR, u = K(g, h), ∂th = f , fj = f|Γj and

Nf(x) =
sinω
π

∫ +∞

0

yf(y)
x2 + y2 − 2xy cosω

dy.

We get exactly the same operator in a pure Neumann corner. For T−, we just
have to change the sign of the identity.
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Proposition 8. If ω ∈ ]0, 2π[\{π}, s ≥ 0 and χ ∈ C∞0 (R) is equal to 1 in a
neighborhood of 0, then the operator

Dω : Hs
0(R+)2 + χL(p)

ω,s,+ → Hs(R+)2

is continuous. Moreover, if s − 1
2 /∈ e

(p)
ω , it is bijective. If m is an integer and

m− 1
2 /∈ e(p)

ω , then there is a c > 0 such that

〈DmDωv,Dmv〉L2(R+)2 ≥ c‖Dmv‖2L2(R+)2

for any v ∈ Hm
0 (R+)2.

The proof is analogous to that of Theorem 7. For later references, let us compute
the Mellin transform of Nf . Using the same techniques as above, we obtain

M(Nf)(z) =
sinω
π

∫ +∞

0

xz−1dx

∫ +∞

0

yf(y)
x2 + y2 − 2xy cosω

dy

=
sinω
π

∫ +∞

0

yf(y) dy
∫ +∞

0

xz−1

x2 + y2 − 2xy cosω
dx.

Hence

M(Nf)(z) =
sin((z − 1)(π − ω))

sin(π(z − 1))
Mf(z)(12)

if <z = 1
2 .

We also need a commutation property with the multiplication by a smooth func-
tion.

Proposition 9. If ω ∈ ]0, 2π[ \{π}, m ∈ N and χ ∈ C∞0 (R), then the operators
χWω −Wωχ and χDω −Dωχ map Hm

0 (R+)2 continuously into Hm+1(R+)2.

Proof. We treat the case of Wω. The other one is similar. Since W is continuous
from Hm

0 (R+) to Hm(R+), we have to prove that there is C > 0 such that

‖D(χDmWf −DmW (χf))‖L2(R+) ≤ C ‖f‖Hm(R+)

for every f ∈ C∞0 (R+). By definition of W , we get

Dm(Wf)(x) =
1
π
Dm
x

∫ +∞

0

<
( eiω

xeiω − y
)
f(y) dy

=
1
π

∫ +∞

0

<
(

(−Dy)m
ei(m+1)ω

xeiω − y
)
f(y) dy

=
1
π

∫ +∞

0

<
( ei(m+1)ω

xeiω − y
)
Dmf(y) dy.

Hence, we have to estimate the derivative of∫ +∞

0

<
( ei(m+1)ω

xeiω − y
) [

(χ(x) − χ(y))Dmf(y)− (Dm(χf)(y)− χ(y)Dmf(y))
]
dy.

The last two terms involve derivatives of f of order strictly less than m. We can
make a further integration by parts and conclude by a classical lemma concerning
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the continuity of operator with −1-homogeneous kernel ([11], p. 229). For the first
two terms, we notice that, since the function χ is a Lipschitz function,

|
∫ +∞

0

(χ(x) − χ(y))Dx<
( ei(m+1)ω

xeiω − y
)
Dmf(y) dy|

≤ C

∫ +∞

0

| <
( ei(m+2)ω

(xeiω − y)2

)
| |x− y||Dmf(y)| dy,

and we use the same lemma.

6. The Fredholm property of the boundary operator

In the remaining sections, we fix a bounded polygonal open subset Ω of R2 with
a connected boundary Γ and use the notations of Section 2.

If x, y ∈ Γ are not corners and x 6= y, then

∂νx
(x− y).νy
|x− y|2 = ∂ty

(x− y).tx
|x− y|2 .

This follows easily from the fact that if (u1, u2) and (v1, v2) are two positive bases
of R2, then

(u1.v1 + u2.v2)|x|2 = 2(x.u1x.v1 + x.u2x.v2).

It follows that the operator T± maps (f, g) to

±f(x)
2

+
1

2π

∫
ΓD

(x− y).νx
|x− y|2 f(y) dσ(y) +

1
2π

∫
ΓN

(x− y).tx
|x− y|2 g(y) dσ(y)(13)

on ΓD, and to

±g(x)
2

+
1

2π

∫
ΓN

(x− y).νx
|x− y|2 g(y) dσ(y)− 1

2π

∫
ΓD

(x− y).tx
|x− y|2 f(y) dσ(y)(14)

on ΓN . In some sense, we have gotten a symmetry for the contributions of f and
g.

As in Section 2, let us denote by L2
v(ΓD) the subset of L2(ΓD) formed by the

functions whose integrals on each connected component of ΓD vanish.

Proof of Theorem 1. It follows from Propositions 7 and 8 that T± mapsHs±(ΓD,ΓN )
into Hs

c (ΓD)×Hs
c (ΓN ) if s ≥ 0.

Choose functions ψj on the boundary Γ which are restrictions of functions of
C∞0 (R2) and such that ψj is equal to δjk near Pk for every k. We may assume that

supp(ψj) ⊂ Γj ∪ Γj−1,
M−1∑
j=0

ψ2
j = 1.

Let (f, g) ∈ L2
v(ΓD)×L2(ΓN ). We can identify the pair (f, g) to a unique function

F ∈ L2(Γ). Using Proposition 9, we write

〈T±(f, g), (f, g)〉L2(ΓD)×L2(ΓN ) = 〈T±F , F 〉L2(Γ)

=
M−1∑
j,k=0

〈
T±(ψ2

jF ), ψ2
kF
〉
L2(Γ)

=
M−1∑
j,k=0

〈T±(ψjψkF ), ψjψkF 〉L2(Γ) − 〈KF,F 〉L2(Γ) ,
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where K is a continuous operator from L2(Γ) into H1(Γ). Since ωj 6= π for any
j, it follows that − 1

2 /∈
⋃
j eωj . Denote by Wj the matrix of operators of Propo-

sitions 7 or 8 associated to the j-th corner according to the nature of this corner,
see Section 5. In the interior (resp. exterior) case the diagonal blocks are I (resp.
−I). Using the second part of Propositions 7 and 8, we get

±〈T±(f, g), (f, g)〉L2(ΓD)×L2(ΓN )

=
M−1∑
j,k=0

〈±Wj(ψjψkF ), ψjψkF 〉L2(Γ) − 〈KF,F 〉L2(Γ)

≥ c
M−1∑
j,k=0

‖ψjψkF‖2L2(Γ) − 〈KF,F 〉L2(Γ)

≥ c(‖f‖2L2(ΓD) + ‖g‖2L2(ΓN ))− 〈KF,F 〉L2(Γ)

for some c > 0.
The operator K is compact from L2(Γ) into itself. Moreover, L2

v(ΓD)× L2(ΓN )
has codimension 2p in H0

±(ΓD,ΓN ) and also in L2(ΓD) × L2(ΓN ) × Cp. Using
Lemma 10, it follows that

T+ : H0
+(ΓD,ΓN )→ L2(ΓD)× L2(ΓN )× Cp : (f, g) 7→ (T+(f, g), S+(f, g))

and

T− : H0
−(ΓD,ΓN )× C → L2(ΓD)× L2(ΓN )× Cp+1,

(f, g, c) 7→ (T−(f, g), S−(f, g),
∫

ΓN

g dσ),

are Fredholm operators with index 0.
If ΓD = ∅, it is well known, see [18], that the kernel of T+ is one dimensional.

Assume that ΓD 6= ∅ and that (f, g) is in the kernel of this operator. It follows that
the function (3) defined by (f, g) solves the mixed problem with null data. Hence
it vanishes in Ω. By the last part of Proposition 6, we get

g = −∂νG
2π

∫
ΓN

g dσ, h = − G
2π

∫
ΓN

g dσ.

By the first part of the same proposition, it follows that

log γ
∫

ΓN

g dσ = 0.

This shows that T+ is one to one if γ 6= 1, and that the kernel is one dimensional
if γ = 1.

Let us consider the case of T−. If ΓD = ∅, it follows from the results of [18] that
the kernel of T− is {(0, c) : c ∈ C}. Assume that ΓD 6= ∅ and choose (f, g, c) in
the kernel of T−. It follows that the function u defined by (4) vanishes in R2 \ Ω,
since it satisfies the mixed boundary conditions and is bounded at infinity. Let us
consider the same function inside Ω. On ΓD, its normal derivative vanishes, since
it vanishes outside Ω and the normal derivative of the double layer potential is
continuous across ΓD; see Lemma 4.1 of [2]. On ΓN , it vanishes since it vanishes
outside Ω and the single layer potential is continuous across ΓN . Since ΓN 6= ∅,
the mixed problem in Ω has a unique solution; hence (4) also vanishes in Ω. Using
Proposition 6 and the fact that the integral of g is zero, we obtain f = g = c = 0.
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It follows from the local results of Propositions 7 and 8 that the inverse of T+

(resp. T−) maps Hs
c (ΓD) × Hs

c (ΓN ) × Cp (resp. Hs
c (ΓD) × Hs

c (ΓN ) × Cp+1) into
Hs+(ΓD,ΓN ) (resp. Hs−(ΓD,ΓN )× C). This proves the theorem.

We have used the following elementary lemma in Fredholm theory.

Lemma 10. Let E, F be two Hilbert spaces, L a Hilbert space which is a closed
subspace of E and F with finite codimensions, and T ∈ L(E;F ). If there is c > 0
such that

〈Tf, f〉 ≥ c‖f‖2

for any f ∈ L, then T is a Fredholm operator and

ind(T ) = codimEL− codimFL.

7. Convergence of the methods

Proof of Theorem 2. We give the proof for the interior problem. The exterior case
is similar. We apply Lemma 11 to the operator

T+ : Hm+ (ΓD,ΓN )→ Hm
c (ΓD)×Hm

c (ΓN )× Cp : (f, g) 7→ (T+(f, g), S+(f, g)).

By Theorem 1, this is an isomorphism. We use the spaces V (m)
∆,0,±(Γ) as trial spaces.

The test spaces are defined in the following way. On

Ym = Hm
c (ΓD)×Hm

c (ΓN )× Cp,
we consider the norm

‖(u, v, c)‖2Ym = |c|2 +
∑
j∈eD

(m−1∑
k=0

|∂k+u(Pj)|2 + ‖∂mt u‖2L2(Γj)

)
+
∑
j∈eN

(m−1∑
k=0

|∂k+v(Pj)|2 + ‖∂mt v‖2L2(Γj)

)
.

Denote by S
(m)
∆ (Γ) the space of functions which are smoothest splines of degree

2m − 1 subordinated to the mesh ∆ on each side Γj. As test space, we use the
linear hull U (m)

∆ (Γ) of the linear forms

Hm
c (ΓD)×Hm

c (ΓN )× Cp → C : (u, v, c) 7→ 〈(u, v, c), (S1, S2, α)〉Ym
with

(S1, S2, α) ∈ S(m)
∆ (Γ)× S(m)

∆ (Γ)× Cp.
The dimension of this space is

dimU
(m)
∆ (Γ) = p+

M−1∑
j=0

(nj + 1 + 2(m− 1)) = dimV
(m)

∆,0,±(Γ).

The collocation equations (6) are equivalent to

ω(T+(∂th∆, g∆)) = ω(T+(∂th, g)), ω ∈ U (m)
∆ (Γ).(15)

Indeed, a linear form ω involves a scalar product in Ym with a function which is
a smoothest spline on each side. Let us perform m integrations by parts in the
L2 parts of the scalar product to obtain derivatives of order 2m of the splines.
We get sums of multiples of the Dirac masses at the collocation points and also
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of derivatives ∂`±,j of order strictly less than m at the points Pj . The equations
involving the points Qj are generated by the |c| part of the Ym norm. This shows
that the equations (15) are consequences of the equations (6). Since the dimension
of U (m)

∆ (Γ) is the number of equations in (6), we have equivalence.
Let ∆k be a sequence of meshes whose meshwidths converge to 0. It follows from

the approximation properties of splines in Sobolev spaces, see for example [16], that
the orthogonal projections onto U (m)

∆k
(Γ) converge strongly to the identity of Y ′m. It

remains to prove that there are δ > 0 and a compact operator K on Hm+ (ΓD,ΓN )
such that

sup
v∈U(m)

∆k
(Γ), ‖v‖Y ′m=1

| 〈v, T+u〉 | ≥ δ‖u‖Hm+ (ΓD ,ΓN ) − ‖Ku‖Hm+ (ΓD ,ΓN )

for any k and u ∈ V (m)
∆k,0,+

(Γ).
The argument is similar to the one used in the first part of the proof of Theo-

rem 1. Choose functions ψj on the boundary Γ as in that proof. Let u = (f, g) ∈
V

(m)
∆k,0,+

(Γ). Write

u = S + F with S = (SD, SN ) ∈ S(m)
∆,0 (Γ) and F ∈

M−1∑
j=0

χjL+
j,2m−1,

and consider the form

ω : Hm
c (ΓD)×Hm

c (ΓN )× Cp → C : (fD, fN , c) 7→ 〈(fD, fN , c), (SD, SN , 0)〉Ym .

Since the function S vanishes at the corners to order 2m− 1, it follows that

〈ω, T+u〉
= 〈∂mt T+S, ∂

m
t S〉L2(Γ) + 〈∂mt T+F , ∂

m
t S〉L2(Γ)

=
M−1∑
j,k=0

〈
∂mt T+(ψ2

jS), ∂mt (ψ2
kS)
〉
L2(Γ)

+ 〈∂mt T+F, ∂
m
t S〉L2(Γ) .

By Proposition 9, the commutators T+ψj − ψjT+ are continuous operators from
Hm

0 (Γ) into Hm+1
c (Γ). Using the explicit form (13) and (14) of T+, Propositions 7

and 8 and the fact that
∑M−1

j=0 χjL+
j,2m−1 is finite dimensional, we obtain

〈ω, T+u〉

=
M−1∑
j,k=0

〈∂mt T+(ψjψkS), ∂mt (ψjψkS〉L2(Γ)

+ 〈∂mt T+F , ∂
m
t S〉L2(Γ) − ‖K1S‖Hm+ (ΓD,ΓN )‖∂mt S‖L2(Γ)

≥ δ
M−1∑
j,k=1

‖∂mt (ψjψkS)‖2L2(Γ) − ‖K2u‖Hm+ (ΓD ,ΓN )‖∂mt S‖L2(Γ),
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where K1,K2 are compact operators on Hm+ (ΓD,ΓN) and δ > 0. We have

‖∂mt S‖2L2(Γ) = ‖
M−1∑
j=0

∂mt (ψ2
jS)‖2L2(Γ)

≤ M
M−1∑
j=0

‖∂mt (ψ2
jS)‖2L2(Γ),

and

‖ω‖Y ′m ≤ ‖∂
m
t S‖L2(Γ).

It follows that

sup
v∈U(m)

∆k
(Γ), ‖v‖Y ′m=1

| 〈v, T+u〉 | ≥
δ

M
‖∂mt S‖L2(Γ) − ‖K2u‖Hm+ (ΓD ,ΓN )

≥ δ′ ‖u‖Hm+ (ΓD ,ΓN ) − ‖K3u‖Hm+ (ΓD ,ΓN ),

since Hm
0 (ΓD) ×Hm

0 (ΓD) has finite codimension in Hm+ (ΓD,ΓN ) and the norm in
Hm

0 (Γj) is equivalent to ‖∂mt f‖L2(Γj). This proves the theorem.

We have used the following formulation of Céa’s lemma. For the sake of com-
pleteness we give a short proof, see also [4] or [16].

Lemma 11 (Céa). Let X and Y be Banach spaces, let A ∈ L(X ;Y ) be continu-
ous and bijective, and let Vn ⊂ X, Tn ⊂ Y ′ be sequences of subspaces satisfying
dimVn = dimTn < +∞. Assume that

(i) there are linear continuous operators Pn from Y ′ on Tn satisfying Pnf → f
in Y ′ for every f ∈ Y ′, and

(ii) there are δ > 0 and a compact operator K ∈ L(X ;X) such that

sup
v∈Tn,‖v‖Y ′=1

| 〈v,Au〉 | ≥ δ ‖u‖X − ‖Ku‖X

for every u ∈ Vn.
Then, there is n0 > 0 such that, if n ≥ n0, the equation

〈v,Aun〉 = 〈v,Au〉 , v ∈ Tn,
has a unique solution un ∈ Vn for every u ∈ X. Moreover, there is C > 0 such that

‖u− un‖X ≤ C inf
w∈Vn

‖u− w‖X .

Proof. If K = 0, condition (ii) shows that the equation defining un has a unique
solution. Moreover

δ ‖un‖X ≤ sup
v∈Tn,‖v‖Y ′=1

| 〈v,Aun〉 |

= sup
v∈Tn,‖v‖Y ′=1

| 〈v,Au〉 | ≤ ‖A‖ ‖u‖X.

Hence, for every w ∈ Vn, we have

‖u− un‖X = ‖u− w − (u− w)n‖X

≤ (1 +
‖A‖
δ

) ‖u− w‖X .

This proves the lemma if K = 0.
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Let us show that, for large n, the estimation (ii) is valid with K = 0 and a
smaller constant δ. Let u ∈ Vn. There is v ∈ Tn such that ‖v‖Y ′ = 1 and

〈v,Au〉 ≥ δ ‖u‖X − ‖Ku‖X.

By the Hahn-Banach theorem, there is w ∈ X ′ such that ‖w‖X′ ≤ 1 and 〈w,Ku〉 =
‖Ku‖X. Write〈

v + PnA
∗−1K∗w,Au

〉
= 〈v,Au〉+ ‖Ku‖X −

〈
(I − Pn)A∗−1K∗w,Au

〉
.

Since I−Pn converges strongly to 0 and K∗ is compact, it follows that the operators
A∗(I − Pn)A∗−1K∗ converge to 0 in operator norm. If δn is the norm of this
operator, we get

|
〈
v + PnA

∗−1K∗w,Au
〉
| ≥ (δ − δn) ‖u‖X .

Moreover, since the operators Pn are uniformly bounded, we have

‖v + PnA
∗−1K∗w‖Y ′ ≤ 1 + C‖A−1‖‖K‖.

This proves the lemma.

For the proof of Theorem 3, we use an adaptation of the Aubin-Nitsche type
estimates.

Proof of Theorem 3. We keep the same notations as in the proof of Theorem 2 and
consider the interior case.

Let ξ ∈ Hk+(ΓD,ΓN )′. Since m − 1
2 , k −

1
2 /∈ eωj for every j, it follows that the

operator T+ is an isomorphism from Hm+ (ΓD,ΓN ) onto

Ym = Hm
c (ΓD)×Hm

c (ΓN )× Cp

and Hm+ (ΓD,ΓN) ⊂ Hk+(ΓD,ΓN ). Hence T ′−1
+ (ξ|Hm+ (ΓD,ΓN )) ∈ Y ′m. Using (15),

write

〈ξ, (∂th, g)− (∂th∆, g∆)〉

=
〈
T ′+
−1(ξ|Hm+ (ΓD,ΓN )), T+((∂th, g)− (∂th∆, g∆))

〉
=

〈
T ′+
−1(ξ|Hm+ (ΓD,ΓN ))− ω, T+((∂th, g)− (∂th∆, g∆))

〉
for every ω ∈ U (m)

∆ (Γ). It follows from Theorem 2 that

| 〈ξ, (∂th, g)− (∂th∆, g∆)〉 |
≤ ‖T+((∂th, g)− (∂th∆, g∆))‖Ym inf

ω∈U(m)
∆ (Γ)

‖T ′+
−1(ξ|Hm+ (ΓD ,ΓN ))− ω‖Y ′m

≤ C inf
(g̃,h̃)∈W (m)

∆,+(Γ)

‖(∂th, g)− (∂th̃, g̃)‖Hm+ (ΓD,ΓN )

× inf
ω∈U(m)

∆ (Γ)

‖T ′+
−1(ξ|Hm+ (ΓD ,ΓN ))− ω‖Y ′m .

Let us transform the second factor. By the Riesz representation theorem, there
is η ∈ Ym such that〈

T ′+
−1
ξ|Hm+ (ΓD ,ΓN ), ϕ

〉
= 〈η, ϕ〉Ym , ϕ ∈ Ym.
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Since the operator T+ is also an isomorphism fromHk+(ΓD,ΓN ) onto Yk = Hk
c (ΓD)×

Hk
c (ΓN )× Cp, we get

| 〈η, ϕ〉Ym | = |
〈
T ′+
−1
ξ, ϕ
〉
| = |

〈
ξ, T −1

+ ϕ
〉
|

≤ C‖ξ‖Hk+(ΓD,ΓN )′‖ϕ‖Yk
for every ϕ ∈ Ym. Now, for every u ∈ Yk, there is one and only one v ∈ Ym such
that

〈u, ϕ〉Yk = 〈v, ϕ〉Ym , ϕ ∈ Ym.

On each side Γj , we have D2mv = D2ku in the distributional sense. Hence, v ∈
Y2m−k. Moreover, by the closed graph theorem, the operator Yk → Y2m−k : u 7→ v
is continuous. It follows that

η ∈ Y2m−k and ‖η‖Y2m−k ≤ C ‖ξ‖Hk+(ΓD,ΓN )′

where C > 0 is independent of ξ.
The linear forms belonging to U (m)

∆ (Γ) are defined as scalar products in Ym with
spline functions. The norms are preserved. Hence, using the rate of convergence of
smoothest splines in Sobolev spaces, see [14] or [16], we obtain

| 〈ξ, (∂th, g)− (∂th∆, g∆)〉 |
≤ C inf

(g̃,h̃)∈W (m)
∆,+(Γ)

‖(∂th, g)− (∂th̃, g̃)‖Hm+ (ΓD,ΓN )

× inf
(S,c)∈S(m)

∆ (Γ)×Cp
‖η − (S, c)‖Ym

≤ C(s)δs−m∆ ‖(∂th, g)‖Hs+(ΓD,ΓN )δ
m−k
∆ ‖η‖Y2m−k

≤ C C(s)δs−k∆ ‖(u0, u1)‖Hs+1(ΓD)×Hs(ΓN )‖ξ‖Hk+(ΓD,ΓN )′

for every ξ ∈ Hk+(ΓD,ΓN )′. Taking the supremum of the left hand side with respect
to the normed elements of Hk+(ΓD,ΓN)′, we obtain the required estimate.

8. Numerical results

We have performed some numerical computations to test the efficiency of the
methods. We consider an interior mixed Dirichlet-Neumann problem in the L-
shaped region defined in the Figure 1. The sizes of the sides are 1 and 2. The
boundary conditions are also specified in the same figure. This example has been
considered in [3], where Galerkin methods are considered.

Solving the same mixed problem with 0 as Neumann data, 1 as Dirichlet data and
using Proposition 6, we can compute the Green function and the mixed capacity.
Figure 2 represent the functions (∂tG|ΓD , ∂νG|ΓN ) on the boundary. We have taken
100 points on each side, and the origin corresponds to the obtuse angle of the
polygon. This is a typical behavior for the boundary unknowns of the problem.
Of course, the singular terms at the corners are explicitly known. In this case, the
most singular one is x−2/3, where x is the distance to a corner. The value of the
mixed capacity is γ = 1.19761 . . .

The numerical computation of the integrals, which is the most time consum-
ing task, can be performed using high order Gaussian type methods. Indeed, all
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∆u = 0

∂u/∂n = 0

∂u/∂n = 0

∂u/∂n = 0

∂u/∂n = 0

u = 1

u = 0

Figure 1. L-shaped domain

Figure 2. Boundary unknown for the Green function

the derivatives involved in the methods can be reduced explicitly to simple inte-
grals, and the functions that we have to integrate are smooth or present a known
singularity.

For example, we have the following formulas. Let α ∈ e(p)
ω,e ∪ e(p)

ω,o and g(x) =
xαχ(x). With the − sign if α ∈ e(p)

ω,e and the + sign in the other case, we have

1
`!
D`(I ∓N)g(0) =


± sin((`+ 1)ω)

π(α − `)

∫ +∞

0

xα−`Dχ(x) dx if α 6= `,

1∓ π − ω
π

cos((` + 1)ω) if α = `.

(16)
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Let α ∈ e(m)
ω,e ∪ e(m)

ω,o and g(x) = xαχ(x). With the + sign if α ∈ e(m)
ω,e and the −

sign in the other case, we have

1
`!
D`(I ±W )g(0) =


±cos((` + 1)ω)

π(α − `)

∫ +∞

0

xα−`Dχ(x) dx if α 6= `,

1± π − ω
π

sin((`+ 1)ω) if α = `.

(17)

Let us prove (16). The Mellin transform of a function f ∈ C∞0 (R+) extends as
a meromorphic function in C with simple poles at 0,−1,−2, . . . . This follows from
the identity

z(Mf)(z) = −M(Df)(z + 1).

The residue at −` is D`f(0)/`!. By density, this remains true for any f ∈ Hs(R+)
if s > 1/2 + `; see Theorem 4 in [14] or Theorem 1.1.23 in [17]. By Proposition 8,
(I ∓N)g belongs to Hs(R+) for any s ≥ 0. Using (11) and (12), we get

1
`!
D`(I ∓N)g(0)

= Resz=−`(M(I ∓N)g)(z)

= Resz=−`
[
(1∓ sin((z − 1)(π − ω))

sin(π(z − 1))
)Mg(z)

]
= Resz=−`

[
(1∓ sin((z − 1)(π − ω))

sin(π(z − 1))
)

1
z + α

∫ +∞

0

xz+α(−Dχ)(x) dx
]

= ± sin((` + 1)ω)
π(α− `)

∫ +∞

0

xα−`Dχ(x) dx

if α 6= `. If α = `, the denominator has a double root at −`, but the numerator
also vanishes and we still have a simple pole which gives the other expression since
χ(0) = 1. We proceed in the same way for (17).

Tables 1 and 2 present results on the experimental rate of convergence obtained.
The boundary unknowns involve singular functions which belong to H−1/2 but not
to L2. To obtain finite norms of L2 and H1 type, we use weighted spaces. The
weights chosen are of the form (s(L−s))α, where s is the arc length on a side and L
the corresponding length. Of course, the norms depend on α, but the computations
show that the rates of convergence are essentially independent of α.

We present estimates for α = 1/2 in the case of the L2-norm. In the case of the
H1-norm, the derivative leads to even stronger singularities, and we use α = 3/2.
These exponents make the integrals finite, but are strictly smaller than the exponent
which defines the most singular functions occurring in the solution.

The theoretical rates of convergence appear somewhat pessimistic except in the
case of the L2-type norm for the linear splines. Even in this case the H1-type norm
has a very good behavior. A possible explanation for this improvement is that the
theoretical rates of convergence are limited only by the approximation of the first
missed singular function in the corners. This is a small region, and outside the
corners we have a slightly larger order corresponding to approximation of smooth
functions by splines.

Computation of the interior potential is of course one essential goal of the
method. We have tested the convergence of (3) to the solution at the interior
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Table 1. L-shaped polygon, linear splines

n L2-norm eoc H1-norm eoc

4 8.27e-2 3.37e-1
8 2.04e-2 2.02 1.63e-1 1.05
16 5.29e-3 1.94 8.29e-2 0.97
32 1.77e-3 1.58 4.16e-2 0.99
48 1.01e-3 1.38 2.78e-2 1.00
64 6.99e-4 1.29 2.08e-2 1.00
96 4.39e-4 1.15 1.39e-2 1.00
128 3.08e-4 1.23 1.04e-2 1.00

Table 2. L-shaped polygon, cubic splines

n L2-norm eoc H1-norm eoc

4 4.06e-2 1.38e-1
8 1.37e-3 4.89 1.35e-2 3.35
16 4.26e-5 5.01 8.14e-4 4.05
32 2.25e-6 4.24 8.79e-5 3.21
48 4.12e-7 4.19 2.45e-5 3.15
64 1.31e-7 3.98 1.02e-5 3.07
96 2.63e-8 3.96 2.98e-6 3.03
128 8.05e-9 4.12 1.25e-6 3.02

Table 3. Interior potential

n linear spline eoc cubic spline eoc

4 2.92e-3 1.66e-4
8 5.83e-4 2.33 3.64e-6 5.50
12 3.20e-4 1.48 1.90e-7 7.29
16 2.31e-4 1.13 5.62e-8 4.23
24 1.37e-4 1.28 9.66e-9 4.34
32 9.72e-5 1.20 3.15e-9 3.89
48 6.07e-5 1.16 4.79e-10 4.64

point (−0.2, 0.6) when (g, h) is replaced by the numerical approximations. The re-
sults are presented in Table 3, and are also in good agreement with the theoretical
estimations.

Some parts of this work were performed when the author was visiting the WIAS
in Berlin. The author would like to thank Prof. S. Prössdorf and J. Elschner for
this opportunity. He also thanks the referee for valuable remarks and comments.
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6. R. Dautray et J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les
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