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UNIFORM CONVERGENCE OF THE MULTIGRID V-CYCLE
FOR AN ANISOTROPIC PROBLEM

JAMES H. BRAMBLE AND XUEJUN ZHANG

Abstract. In this paper, we consider the linear systems arising from the stan-
dard finite element discretizations of certain second order anisotropic problems
with variable coefficients on a rectangle. We study the performance of a V-
cycle multigrid method applied to the finite element equations. Since the usual
“regularity and approximation” assumption does not hold for the anisotropic
finite element problems, the standard multigrid convergence theory cannot be
applied directly. In this paper, a modification of the theory of Braess and
Hackbusch will be presented. We show that the V-cycle multigrid iteration
with a line smoother is a uniform contraction in the energy norm. In the ver-
ification of the hypotheses in our theory, we use a weighted L2-norm estimate
for the error in the Galerkin finite element approximation and a smoothing
property of the line smoothers which is proved in this paper.

1. Introduction

The purpose of this paper is to study the V-cycle multigrid methods for cer-
tain second order anisotropic finite element problems with variable coefficients on a
rectangle. The convergence properties of the V-cycle multigrid method for second
order selfadjoint elliptic finite element equations are well understood in the cases
in which the differential operators are uniformly bounded and elliptic; cf. Braess
and Hackbusch [3], Bramble and Pasciak [5, 6], Bramble, Pasciak, Wang and Xu [7]
and the references in these papers. The common ingredient in the analysis is the
so-called “regularity and approximation” condition. The success of the multigrid
methods in these cases is due to the fact that the smoothers are effective in re-
ducing the nonsmooth components of the error and the coarse grid corrections are
effective in reducing the smooth components. In this paper, we shall establish a
convergence theory for the standard V-cycle multigrid algorithm for anisotropic
equations with variable coefficients on the unit square. We shall consider finite
element approximations to this problem. For the anisotropic problem considered in
this paper, the standard finite element solution has a “poor” approximation prop-
erty and hence the coarse grid solves in the multigrid algorithm are not effective in
reducing the smooth components of the errors. This is in contrast to the cases in
which the differential operators are uniformly bounded and elliptic. When a Jacobi
or a Gauss-Seidel smoother is used, the multigrid algorithm does not provide a
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uniform reduction in the error. The remedy is to use a smoother, such as a line
Jacobi or a line Gauss-Seidel smoother, that is effective in reducing components of
the error in a larger part of the spectrum.

Since the usual “regularity and approximation” condition does not hold in this
case, the V-cycle multigrid theory of Braess and Hackbusch [3] and Bramble and
Pasciak [5] cannot be applied directly. In the case of constant coefficients, uniform
convergence results for the V-cycle multigrid were established recently by Steven-
son [12, 15] using the multigrid theory of Hackbusch [9] and Mandel, McCormick
and Bank [2], and by Neuss [11] using the multigrid theory of Bramble and Pas-
ciak [5, 6], Xu [19] and Yserentant [20]. The main ingredient in these papers is an
approximation property of the finite element spaces. This property is established
in Stevenson [13] using the error estimate of Babuška and Aziz [1], and this is done
by transforming the anisotropic problem to an isotropic problem by a scaling of the
domain. Optimal multilevel additive preconditioners for anisotropic equations with
constant coefficients were developed by Griebel and Oswald using tensor product
type subspace splittings [8]. The subspace splitting is obtained by a semi-coarsening
technique. Other recent related work can be found, for example, in Wittum [17, 18],
Stevenson [14, 16], and Hemker [10].

In this paper, we consider some anisotropic equations with variable coefficients
on a rectangle. The scaling techniques which have been used for the constant
coefficients case do not seem applicable to the variable coefficients problem consid-
ered here. We shall establish a uniform convergence result for multigrid V-cycle
algorithms using a variant of the theory of Braess and Hackbusch. To verify the
hypotheses of the theory, we shall give a direct proof of the weighted L2-norm error
estimate for the finite element approximation and a smoothing property of the line
Jacobi and the line Gauss-Seidel smoothers.

Let Ω = (0, 1)2 be the unit square, and consider the equation{
Lu = −[(aux)x + (buy)y] = f in Ω,

u = 0 on ∂Ω,
(1.1)

where, a(x, y) and b(x, y) are positive functions.
We are interested in the cases in which a(x, y) is of unit size and b(x, y) is possibly

small. More precisely, we assume that a(x, y) is uniformly bounded from above and
below and b(x, y) is bounded uniformly from above with

0 < amin ≤ a(x, y) ≤ amax,(1.2)

and

0 < b(x, y) ≤ bmax.(1.3)

We do not assume, however, that b(x, y) has a uniform positive lower bound.
To carry out our analysis for the multigrid algorithm, however, we shall also make

the following technical assumptions on the coefficients. We assume that certain first
derivatives of a(x, y) and b(x, y) are uniformly bounded in the following sense:

|∇a|
a
≤ |∇a|
amin

≤ Ca, and
|by|
b
≤ Cb.(1.4)

Throughout this paper, we shall restrict our consideration to (1.1) and we shall
assume that the coefficients a(x, y) and b(x, y) in (1.1) satisfy conditions (1.2)–
(1.4).
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Since a(x, y) is assumed to be uniformly bounded above and below in (1.2), the
first inequality in (1.4) is the same as

|∇a| ≤ C.
On the other hand, since b(x, y) is not assumed to have a uniform positive lower
bound, the second inequality in (1.4) states that that b(x, y) does not change very
much in the y direction relative to its magnitude. This condition can also be written
as {

b(x, y) = ε(x)b̃(x, y) with

c̃1 ≤ b̃(x, y) ≤ c̃2 and |b̃y(x, y)| ≤ c̃3.
(1.5)

Clearly, (1.5) implies the second inequality in (1.4). Conversely, if we set ε(x) =
maxy b(x, y) and b̃(x, y) = b(x, y)/ε(x), then the second inequality in (1.4) implies
that (1.5) holds with e−Cb ≤ b̃(x, y) ≤ 1 and |b̃y(x, y)| ≤ Cb. In our subsequent
analysis, the estimate for the rate of convergence of the V-cycle multigrid algorithm
will depend on the constants in (1.2), (1.3) and (1.4), but not on a positive lower
bound for b(x, y). We will often use (1.5) instead of the second inequality in (1.4).
Without loss of generality, we can assume ε(x) ≤ 1 in (1.5).

The weak form of (1.1) is the following: Find u ∈ H1
0 (Ω) such that

A(u, φ) = (f, φ), for all φ ∈ H1
0 (Ω),(1.6)

where

A(u, v) =
∫

Ω

[
a(x, y)uxvx + b(x, y)uyvy

]
dxdy.

Here (·, ·) is the L2 inner product. We set ‖ · ‖A = A(·, ·)1/2, the “energy norm”.
We shall prove a uniform convergence estimate for the V-cycle multigrid algorithm
for solving the finite element equations approximating (1.6).

The remainder of the paper is organized as follows. In §2 we introduce the
standard V-cycle multigrid algorithm and provide a modification of the convergence
theory of Braess and Hackbusch [3]. In §3, we prove an a priori estimate for
the solutions of the anisotropic problem. Standard finite element approximations
to the anisotropic problem are considered in §4. An approximation property of
the Galerkin projection is proved. A weighted L2-norm error estimate is then
established by using the regularity result proved in §3 and the duality argument of
Aubin and Nitsche. The smoothing properties of the line Jacobi and the line Gauss-
Seidel smoothers are formulated and proved in §5. In §6 we apply the theory of §2
to the anisotropic finite element problem. It is shown that the V-cycle multigrid
method with a line smoother is a uniform contraction in the energy norm ‖·‖A. This
convergence result is based on the approximation property of Galerkin projection
and the smoothing property of the line Jacobi and the line Gauss-Seidel methods.
Finally, in §7, we formulate the multigrid algorithm in terms of vectors and matrices.

2. Multigrid algorithm and theory

In this section, we consider the standard V-cycle multigrid algorithm and provide
a modification of the multigrid convergence theory of Braess and Hackbusch [3]. To
this end, we consider a sequence of nested finite element spaces

M1 ⊂M2 ⊂ · · · ⊂MJ .
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The finite element problem on Mk is the following: Find uk ∈Mk such that

A(uk, φ) = (f, φ), for all φ ∈Mk.

The L2 projection Qk : L2 → Mk and the Galerkin projection Pk : H1
0 → Mk are

defined by

(Qkw, φ) = (w, φ), for all φ ∈Mk,

and

A(Pkw, φ) = A(w, φ), for all φ ∈Mk.

Let Ak : Mk →Mk be defined by

(Akw, φ) = A(w, φ), for all φ ∈Mk.

Then the finite element equations can be rewritten in the form

Akuk = fk := Qkf.

To define the multigrid algorithm, we need smoothing operators Rk : Mk →Mk.
We shall denote by Rtk the adjoint of Rk with respect to the inner product (·, ·).
Properties required of the smoothers will be stated later when needed.

Given an initial iterate u0 ∈ Mk, a linear multigrid algorithm produces a se-
quence of approximations to uk = A−1

k fk as

um+1 = Mgk(um, fk) ≡ um +Bk(fk −Akum), m = 0, 1, . . . .(2.1)

The multigrid process Mgk(·, ·) (or equivalently Bk) is defined recursively as follows.

Algorithm 2.1. With u0 and g ∈ M1, set Mg1(u0, g) = A−1
1 g (or equivalently

B1 = A−1
1 ). For k > 1 and u0 and g ∈Mk, u1 = Mgk(u0, g) is defined as follows :

(1) Pre-smoothing: u1/3 = u0 + Rtk(g −Aku0).
(2) Coarse grid correction:

u2/3 = u1/3 + Mgk−1(0, Qk−1(g −Aku1/3))

= u1/3 +Bk−1Qk−1(g −Aku1/3).

(3) Post-smoothing: u1 = u2/3 + Rk(g −Aku2/3).

To understand the multigrid algorithm, we first discuss briefly the smoothing
operator, Rk. Given a smoother, Rk, the solution of Aku = fk can be computed
iteratively by the linear iteration

xm+1 = xm +Rk(fk −Akxm), m = 0, 1, 2, . . . .(2.2)

The error propagation operator is Kk = I−RkAk and the error, em ≡ A−1
k fk−xm,

satisfies

em+1 = Kke
m.

We assume that the above linear iteration is a contraction in the norm ‖ · ‖A, i.e.,

‖Kk‖A = sup
‖v‖A=‖w‖A=1

A(Kkv, w) < 1.

Set K∗k = (I − RtkAk). Then K∗k is the adjoint of Kk with respect to the inner
product A(·, ·) and K∗kKk is self-adjoint with respect to the inner product A(·, ·).
Consequently

‖K∗kKk‖A = ‖K∗k‖2A = ‖Kk‖2A < 1.
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A simple manipulation shows that

A(Kkv,Kkv) = A(v, v) − (R̄kAkv,Akv),

with

R̄k = Rk +Rtk −RtkAkRk.
Thus, the above assumption on the smoother is equivalent to assuming that R̄k is
positive definite. Note that R̄kAk = I −K∗kKk.

To estimate the rate of convergence of iteration (2.1), with Mgk(·, ·) defined by
Algorithm 2.1, we first derive, as in Bramble and Pasciak [4], a two-level recurrence
relation for the error operator of the V-cycle multigrid algorithm. Let u = A−1

k g.
Define e0 = u − u0, e1/3 = u − u1/3, e2/3 = u − u2/3 and e1 = u − u1. Then by
the definition of the multigrid algorithm and the above discussion concerning the
linear iteration (2.2), we have

e1/3 = (I −RtkAk)e0,

e2/3 = (I −Bk−1Qk−1Ak)e1/3 = (I −Bk−1Ak−1Pk−1)e1/3,

e1 = (I −RkAk)e2/3 = (I −RkAk)(I −Bk−1Ak−1Pk−1)(I −RtkAk)e0.

In the second equation, we have used the identity Qk−1Ak = Ak−1Pk−1. Combining
these three equations, we obtain the following recurrence relation:

A((I −BkAk)v, v) = A((I −Bk−1Ak−1Pk−1)K∗kv,K
∗
kv), for all v ∈Mk.(2.3)

Here Kk = (I − RkAk) and K∗k = (I −RtkAk) are the error propagation operators
corresponding to the smoothers Rk and Rtk, respectively.

Denote by λk the largest eigenvalue of Ak. In the standard multigrid convergence
theory, the smoother, Rk, is assumed to satisfy the smoothing property

ω

λk
(v, v) ≤ (R̄kv, v), for all v ∈Mk.

In addition, the following type of “regularity and approximation” condition is used:
there exist α ∈ (0, 1] and C > 0, independent of k, such that

(A1−α
k (I − Pk−1)v, (I − Pk−1)v) ≤ Cλ−αk A((I − Pk−1)v, v), for all v ∈Mk.

This type of regularity and approximation condition, however, does not hold
for the anisotropic problem, and therefore, we cannot directly apply the theory
of Braess and Hackbusch [3] and Bramble and Pasciak [4, 5]. We shall provide a
modification of the theory of Braess and Hackbusch.

The next two lemmas are generalizations of the standard “regularity and ap-
proximation” condition for α = 1. We first consider symmetric smoothers.

Lemma 2.1. Assume that Rk is symmetric and that there is a constant θ < 1 such
that the spectrum σ(Kk) ⊂ [−θ, 1) for all k. Assume further that there is a constant
CM independent of k such that

(R−1
k (I − Pk−1)v, (I − Pk−1)v) ≤ CMA((I − Pk−1)v, v), for all v ∈Mk.(2.4)

Then the multigrid algorithm defined in Algorithm 2.1 satisfies

0 ≤ A((I −BkAk)v, v) ≤ δA(v, v), for all v ∈Mk,

with δ = γCM/(1 + γCM ), where γ = max{ 1
2 ,

θ2

1−θ}.
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Proof. We will prove by induction that this estimate holds. Clearly the assertion
holds for k = 1. Suppose now that the assertion holds for k − 1, i.e.,

0 ≤ A((I −Bk−1Ak−1)v, v) ≤ δA(v, v).(2.5)

Using the recurrence relation (2.3), we have, for v ∈Mk,

A((I −BkAk)v, v) = A((I − Pk−1)K∗kv,K
∗
kv)

+A((I −Bk−1Ak−1)Pk−1K
∗
kv, Pk−1K

∗
kv).

It is straightforward to show that the induction hypothesis (2.5) implies that

0 ≤ A((I −BkAk)v, v) ≤ (1 − δ)A((I − Pk−1)K∗kv,K
∗
kv) + δA(K∗kv,K

∗
kv).(2.6)

We now estimate the first term on the right hand side of (2.6). By the Cauchy-
Schwarz inequality and the hypothesis (2.4), we have, for w ∈Mk,

A((I − Pk−1)w,w) ≤ (R−1
k (I − Pk−1)w, (I − Pk−1)w)1/2(RkAkw,Akw)1/2

≤ C1/2
M A((I − Pk−1)w,w)1/2(RkAkw,Akw)1/2.

Cancelling the common factor, we get

A((I − Pk−1)w,w) ≤ CM (RkAkw,Akw), for all w ∈Mk.

Since Rk is symmetric, K∗k = Kk. Applying the above inequality with w = Kkv
and recalling that RkAk = I −Kk and that σ(Kk) ⊂ [−θ, 1), we obtain

A((I − Pk−1)Kkv,Kkv) ≤ CM (RkAkKkv,AkKkv)

= CM ((I −Kk)Kkv,AkKkv)

≤ (γCM )[A(v, v) −A(Kkv,Kkv)].
(2.7)

Combining (2.6) and (2.7), we obtain

A((I −BkAk)v, v) ≤ (1 − δ)A((I − Pk−1)Kkv,Kkv) + δA(Kkv,Kkv)

≤ (γCM )(1 − δ)[A(v, v) −A(Kkv,Kkv)] + δA(Kkv,Kkv)

≤ δA(v, v),

with δ = γCM/(1 + γCM ).

Lemma 2.1 can be modified to allow the use of nonsymmetric smoothing opera-
tors such as the line Gauss-Seidel smoother. Recall that R̄k = Rk +Rtk −RtkAkRk.

Lemma 2.2. Assume that ‖Kk‖A ≡ ‖I−RkAk‖A < 1 and that there is a constant
CM independent of k such that

(R̄−1
k (I − Pk−1)v, (I − Pk−1)v) ≤ CMA((I − Pk−1)v, v), for all v ∈Mk.(2.8)

Then the multigrid algorithm defined in Algorithm 2.1 satisfies

0 ≤ A((I −BkAk)v, v) ≤ δA(v, v), for all v ∈Mk,

with δ = CM/(1 + CM ).

Proof. The proof is similar to that of Lemma 2.1. We only give an outline here.
As in the proof of Lemma 2.1, the assumption in (2.8) implies that

A((I − Pk−1)w,w) ≤ CM (R̄kAkw,Akw), for all w ∈Mk.
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Applying the above inequality with w = K∗kv and recalling that R̄kAk = I−K∗kKk

and that σ(K∗kKk) ⊂ [0, 1), we obtain

A((I − Pk−1)K∗kv,K
∗
kv) ≤ CM (R̄kAkK∗kv,AkK

∗
kv)

= CM ((I −K∗kKk)K∗kv,AkK
∗
kv)

≤ CM [A(v, v) −A(K∗kv,K
∗
kv)].

The rest of the proof is identical to that of Lemma 2.1

Remark 2.1. It is not necessary to solve the coarsest grid problem exactly. If the
approximate coarsest grid solution satisfies 0 ≤ A((I −B1A1)φ, φ) ≤ δ0 < 1, for all
φ ∈M1, then Lemma 2.1 holds with δ = max(δ0, γCM/(1 +γCM )) and Lemma 2.2
holds with δ = max(δ0, CM/(1 + CM )).

Lemmas 2.1 and 2.2 are “soft”. To apply these lemmas to Problem (1.1), we need
to establish (2.4) or (2.8) with CM independent of k. For example, (2.4) can be
proved, as we will see in Theorem 6.1 in Section 6, by combining the approximation
property (cf. Lemma 4.3)

(b(I − Pk−1)v, (I − Pk−1)v) ≤ Ch2
kA((I − Pk−1)v, v)

and the following smoothing property of the line Jacobi smoother (cf. Lemma 5.1):

(R−1
k v, v) ≤ C[A(v, v) + h−2

k (bv, v)].

Here hk is the mesh parameter. To establish (2.8) for a nonsymmetric smoother
such as the line Gauss-Seidel smoother, we replace Rk in the above inequality by
R̄k. These properties will be proved later.

3. A regularity estimate

In this section, we derive an a priori estimate for the solutions of the anisotropic
equation (1.1). This result will be used in the next section to derive error estimates
of the Galerkin finite element approximation in the energy norm and a weighted
L2-norm.

We first note that if a(x, y) = 1 and b(x, y) = ε is a constant, then, by integration
by parts, we have for u ∈ H1

0 (Ω) ∩H2(Ω)∫
Ω

(u2
xx + 2u2

xy + εu2
yy) dxdy =

∫
Ω

(u2
xx + 2uxxuyy + εu2

yy) dxdy

≤
∫

Ω

1
ε
|Lu|2 dxdy.

The following lemma is a generalization of this fact to some variable coefficient
cases.

Lemma 3.1. Let the coefficients a(x, y) and b(x, y) satisfy (1.2)–(1.4). Then the
following a priori estimate holds:∫

Ω

(u2
xx + 2u2

xy + bu2
yy) dxdy ≤ C

∫
Ω

1
b
|Lu|2 dxdy.
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Proof. Integrating by parts gives

2
∫

Ω

1
b

(aux)x(buy)y dxdy

= 2
∫

Ω

(
(aux)xuyy + (aux)x

by
b
uy

)
dxdy

= 2
∫

Ω

(
(aux)yuxy + (aux)x

by
b
uy

)
dxdy

= 2
∫

Ω

(
au2

xy + (ayux)uxy + (aux)x
by
b
uy

)
dxdy

≥
∫

Ω

{
2au2

xy −
(
αau2

xy +
a2
y

αa
u2
x

)
−
[
β

b
(aux)2

x +
b

β

(
by
b
uy

)2]}
dxdy

=
∫

Ω

(
− β

b
(aux)2

x + (2− α)au2
xy −

a2
y

αa
u2
x −

b2y
βb
u2
y

)
dxdy,

where α and β are arbitrary positive constants. As a consequence, we have∫
Ω

1
b
|Lu|2 dxdy =

∫
Ω

(
1
b

(aux)2
x +

2
b

(aux)x(buy)y +
1
b

(buy)2
y

)
dxdy

≥
∫

Ω

(
1− β
b

(aux)2
x + (2− α)au2

xy +
1
b

(buy)2
y −

a2
y

αa
u2
x −

b2y
βb
u2
y

)
dxdy.

Let γ = min(1, 1/bmax) ≤ 1. Then∫
Ω

1
b

(aux)2
x dxdy ≥ γ

∫
Ω

(aux)2
x dxdy

= γ

∫
Ω

(auxx + axux)2 dxdy

≥ γ
∫

Ω

(
1
2
a2u2

xx − a2
xu

2
x

)
dxdy

and ∫
Ω

1
b

(buy)2
y dxdy =

∫
Ω

1
b

(buyy + byuy)2 dxdy

≥
∫

Ω

(
b

2
u2
yy −

b2y
b
u2
y

)
dxdy.

Combining the above estimates, we obtain∫
Ω

1
b

(Lu)2 dxdy ≥ (1 − β)γ
∫

Ω

(
1
2
a2u2

xx − a2
xu

2
x

)
dxdy + (2− α)

∫
Ω

au2
xy dxdy

+
∫

Ω

(
b

2
u2
yy −

b2y
b
u2
y

)
dxdy −

∫
Ω

(
a2
y

αa
u2
x +

b2y
βb
u2
y

)
dxdy

=
∫

Ω

(
1
2

(1 − β)γa2u2
xx + (2− α)au2

xy +
(
b

2
u2
yy

))
dxdy

−
∫

Ω

(
(1− β)γa2

x +
a2
y

αa

)
u2
x dxdy −

∫
Ω

(
b2y
b

+
b2y
βb

)
u2
y dxdy.
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Therefore∫
Ω

(u2
xx + 2u2

xy + bu2
yy) dxdy

≤ C
∫

Ω

[
1
2

(1− β)γa2u2
xx + (2− α)au2

xy +
(
b

2
u2
yy

)]
dxdy

≤ C
∫

Ω

1
b

(Lu)2 dxdy

+ C

∫
Ω

[(
(1− β)γa2

x +
a2
y

αa

)
u2
x +

(
b2y
b

+
b2y
βb

)
u2
y

]
dxdy

≤ C
∫

Ω

1
b

(Lu)2 dxdy + C

∫
Ω

(au2
x + bu2

y) dxdy.

(3.1)

Using the elementary inequality∫
Ω

u2 dxdy ≤
∫

Ω

u2
x dxdy ≤ C

∫
Ω

(au2
x + bu2

y) dxdy

the second integral in (3.1) can be bounded as follows:∫
Ω

(au2
x + bu2

y) dxdy =
∫

Ω

u(Lu) dxdy ≤
(∫

Ω

u2 dxdy
)1/2(∫

Ω

(Lu)2 dxdy
)1/2

≤ C
(∫

Ω

(au2
x + bu2

y) dxdy
)1/2(∫

Ω

(Lu)2 dxdy
)1/2

.

Cancelling the common factor and then squaring, we obtain∫
Ω

(au2
x + bu2

y) dxdy ≤ C
∫

Ω

(Lu)2 dxdy ≤ C
∫

Ω

1
b

(Lu)2 dxdy.(3.2)

The lemma now follows from (3.1) and (3.2).

4. Finite element approximation

Let the domain Ω = (0, 1)2 be partitioned into squares with vertices (ih, jh), h =
1/n. We consider the linear or the bilinear finite element space Mh associated with
this partition. The Galerkin finite element projection Ph : H1

0 (Ω)→Mh is defined
by

A(Phv, φ) = A(v, φ), for all φ ∈Mh.

We need the following results in proving an approximation property of the finite
element solutions.

Lemma 4.1. Let D = (0, h1)×(0, h2), and let E be a side of the rectangular region
D. If v ∈ H1(D) and

∫
E v ds = 0, then

‖v‖2L2(D) ≤ (h2
1‖vx‖2L2(D) + h2

2‖vy‖2L2(D)).

Suppose that b(x, y) = ε(x)b̃(x, y) with c̃1 ≤ b̃(x, y) ≤ c̃2, and ε(x) ≤ 1. Denote by
E a vertical edge of D. If v ∈ H1(D) and

∫
E v ds = 0, then∫

D

bv2 dxdy ≤ c̃2
(
h2

1

∫
D

v2
x dxdy + c̃−1

1 h2
2

∫
D

bv2
y dxdy

)
.
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Proof. Without loss of generality, we assume
∫ h2

0 v(0, y) dy = 0. Then

v(x, y) = v(0, y0) +
∫ x

0

vx(s, y0) ds+
∫ y

y0

vy(x, t) dt.

Integrating y0 from 0 to h2 and using
∫ h2

0
v(0, y0)dy0 = 0, we obtain

v(x, y) =
1
h2

∫ h2

0

dy0

∫ x

0

vx(s, y0) ds+
1
h2

∫ h2

0

dy0

∫ y

y0

vy(x, t) dt.

Squaring and then using the Cauchy-Schwarz inequality, we have

|v(x, y)|2 ≤ 2
h2

2

(∫ h2

0

dy0

∫ x

0

|vx(s, y0)| ds
)2

+
2
h2

2

(∫ h2

0

dy0

∫ y

0

|vy(x, t)| dt
)2

≤ 2
h2

2

h2x

∫ h2

0

dy0

∫ h1

0

v2
x(s, y0) ds+

2
h2

2

h2
2y

∫ y

0

v2
y(x, t) dt

≤ 2x
h2

∫
D

v2
x dxdy + 2y

∫ h2

0

v2
y(x, t) dt.

(4.1)

Integrating over D, we obtain∫
D

|v(x, y)|2 dxdy ≤ h2
1

∫
D

v2
x dxdy + h2

2

∫
D

v2
y dxdy.

This is the first part of the lemma.
We now prove the second part. Using ε(x) ≤ 1, we obtain from (4.1)

ε(x)|v(x, y)|2 ≤ 2x
h2

∫
D

v2
x dxdy + 2y

∫ h2

0

ε(x)v2
y(x, t) dt.

Integrating the above inequality over D gives∫
D

ε(x)v2 dxdy ≤
(
h2

1

∫
D

v2
x dxdy + h2

2

∫
D

ε(x)v2
y dxdy

)
.

Since c̃1ε(x) ≤ b(x, y) ≤ c̃2ε(x), the second part of the lemma follows from the last
inequality.

Using this lemma, we can prove the following error estimate for the nodal value
interpolant.

Lemma 4.2. Let πh : C(Ω̄)→Mh be the nodal value interpolation operator. Then

‖(I − πh)v‖2A ≤ Ch2

∫
Ω

(
v2
xx + v2

xy + bv2
yy

)
dxdy, for all v ∈ H2(Ω).

Proof. Let (xi, yj) = (ih, jh), and let τ = [xi−1, xi]× [yj−1, yj] be an arbitrary mesh
rectangle. Let Ex and Ey be edges in the x and y directions, respectively. For the
bilinear element, we have∫

Ex

(v − πhv)x dx =
∫
Ey

(v − πhv)y dy = 0.

Applying the first part of Lemma 4.1 to (v−πhv)x and the second part of Lemma 4.1
to (v − πhv)y on each element τ , we have∫

τ

a|(v − πhv)x|2 dxdy ≤ amaxh
2

∫
τ

(
|(v − πhv)xx|2 + |(v − πhv)xy|2

)
dxdy,
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and ∫
τ

b|(v − πhv)y|2 dxdy ≤ Ch2

∫
τ

(
|(v − πhv)xy|2 + b|(v − πhv)yy|2

)
dxdy.

In the bilinear case, (πhv)xx = (πhv)yy = 0 in τ and

‖(πhv)xy‖2L2(τ) = h−2|[v(xi, yj)− v(xi−1, yj)]− [v(xi, yj−1)− v(xi−1, yj−1)]|2

≤ ‖vxy‖2L2(τ).

Therefore,∫
τ

[a|(v − πhv)x|2 + b|(v − πhv)y|2] dxdy

≤ Ch2

∫
τ

(
|(v − πhv)xx|2 + 2|(v − πhv)xy|2 + b|(v − πhv)yy |2

)
dxdy

≤ Ch2

∫
τ

(
|vxx|2 + 2|vxy|2 + b|vyy|2

)
dxdy.

The result for bilinear elements follows by summing over τ .
In the case of linear elements, we write τ = τ+ ∪ τ−, where τ+ and τ− are the

two triangles on which πhv is linear. Let `+ be the linear function on τ which is
equal to πhv on τ+, with `− similarly defined. Applying the first part of Lemma 4.1
to (v − `±)x and the second part of Lemma 4.1 to (v − `±)y on τ , we obtain∫

τ

a|(v − `±)x|2 dxdy ≤ amaxh
2

∫
τ

(
|(v − `±)xx|2 + |(v − `±)xy|2

)
dxdy

and ∫
τ

b|(v − `±)y |2 dxdy ≤ Ch2

∫
τ

(
|(v − `±)xy|2 + b|(v − `±)yy|2

)
dxdy.

Since `± is linear, its second derivatives all vanish in τ , and hence we obtain∫
τ

(
a|(v − `±)x|2 + b|(v − `±)y|2

)
dxdy ≤ Ch2

∫
τ

(
|vxx|2 + 2|vxy|2 + b|vyy|2

)
dxdy.

Consequently,∫
τ

[a|(v − πhv)x|2 + b|(v − πhv)y |2] dxdy

=
∫
τ+

(
a|(v − `+)x|2 + b|(v − `+)y|2

)
dxdy

+
∫
τ−

(
a|(v − `−)x|2 + b|(v − `−)y|2

)
dxdy

≤ Ch2

∫
τ

(
|vxx|2 + 2|vxy|2 + b|vyy|2

)
dxdy.

The result now follows by summing over τ .

The Galerkin projection has the following approximation properties.

Lemma 4.3. There is a constant C1 such that, for v ∈ H1
0 (Ω) ∩H2(Ω),

‖(I − Ph)v‖2A ≤ C1h
2

(
1
b
Lv,Lv

)
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and

(b(I − Ph)v, (I − Ph)v) ≤ C1h
2‖(I − Ph)v‖2A.

Proof. The first inequality is a consequence of Lemma 4.2 and Lemma 3.1, i.e.,

‖v − Phv‖2A ≤ ‖v − πhv‖2A

≤ Ch2

∫
Ω

(
v2
xx + 2v2

xy + bv2
yy

)
dxdy

≤ C1h
2

(
1
b
Lv,Lv

)
.

For the second we use a duality argument. Let Lw = b(I − Ph)v. Then

(b(I − Ph)v, (I − Ph)v) = A(w, v − Phv) = A((I − Ph)w, (I − Ph)v)

≤ ‖(I − Ph)w‖A‖(I − Ph)v‖A

≤
√
C1h

(
1
b
Lw,Lw

)1/2

‖(I − Ph)v‖A

=
√
C1h(b(I − Ph)v, (I − Ph)v)1/2‖(I − Ph)v‖A.

Cancelling the common factor and then squaring, we get the second inequality.

5. The line Jacobi and Gauss-Seidel smoothers

We consider only linear and bilinear elements. The partition of Ω and the fi-
nite element space Mh are defined as in the previous section. To define the line
Jacobi and the line Gauss-Seidel smoothers, we introduce a horizontal stripwise
decomposition of Ω:

Ω =
⋃

Ωj , Ωj = [(x, y) ∈ Ω : (j − 1)h < y < (j + 1)h].

We partition the finite element space Mh accordingly as

Mh =
n−1∑
j=1

Mh,j, where Mh,j = [v ∈Mh : v = 0 in Ω \ Ωj ].

Note that for linear and bilinear elements this is a direct sum, i.e., the decomposition
of v ∈Mh as v =

∑n−1
j=1 vj with vj ∈Mh,j is unique. The operator Ah : Mh →Mh

is defined by

(Ahv, φ) = A(v, φ), for all φ ∈Mh.

The operator Ah,j : Mh,j → Mh,j, the “restriction” of Ah to Mh,j, is defined
similarly, i.e.,

(Ah,jv, φ) = A(v, φ), for all φ ∈Mh,j.

We also need the projection Qh,j : Mh →Mh,j with respect to the L2 inner product
(·, ·) and the projection Ph,j : Mh →Mh,j with respect to the inner product A(·, ·).
Note that the relation Ph,j = A−1

h,jQh,jAh holds.
The line Jacobi smoother Jh is defined by

Jh =
n−1∑
j=1

A−1
h,jQh,j.(5.1)
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The line Gauss-Seidel smoother Gh is defined by

Gh = [I − (I − Ph,n−1) · · · (I − Ph,1)]A−1
h , where Ph,j = A−1

h,jQh,jAh.(5.2)

Given f ∈Mh, Ghf ∈Mh can be computed as follows:
(i) Set v0 = 0.
(ii) For i = 1, . . . , n− 1 define

vi = vi−1 +A−1
h,iQh,i(f −Ahvi−1).

(iii) Set Ghf = vn−1.
To establish the smoothing property of the line Jacobi smoother we use the

following characterization of Jh:

(J−1
h v, v) ≡

n−1∑
j=1

A(vj , vj),(5.3)

where
∑

j vj = v with vj ∈Mh,j (vj is unique). This result is trivial if we interpret
the smoother, Jh, in (5.1) and (5.3) using a matrix-vector notation. A direct proof
of (5.3) is also easy. We first note that (Jhv, v) =

∑
j(A
−1
h,jQh,jv,Qh,jv) = 0 implies

that v = 0. Consequently J−1
h exists. Let v ∈ Mh and v =

∑
j vj with vj ∈ Mh,j.

Since the decomposition is unique, we have vj = A−1
h,jQh,jJ

−1
h v. Equality (5.3) now

follows from a simple calculation using the formula for vj .
A smoothing property of the line Jacobi operator is summarized in the following

lemma.

Lemma 5.1. Let Mh consist of piecewise linear or bilinear functions and let Jh be
the line Jacobi smoother defined by (5.1). Then there is a constant C2 such that

1
2
A(v, v) ≤ (J−1

h v, v) ≤ C2

[
A(v, v) +

1
h2

(bv, v)
]
, for all v ∈Mh.

Proof. In either case, we write v ∈ Mh as v =
∑
j vj , with vj ∈ Mh,j. Recall that

this decomposition of v is unique. Let Sj = [(x, y) ∈ Ω : (j − 1)h ≤ y ≤ jh]. Then
by (5.3)

(J−1
h v, v) ≡

n−1∑
j=1

A(vj , vj) =
n∑
j=1

[ASj (vj−1, vj−1) +ASj (vj , vj)].

On the strip Sj we have v = vj−1 + vj (v0 = vn = 0). Thus

ASj (v, v) ≤ 2[ASj (vj−1, vj−1) +ASj (vj , vj)].

The first inequality follows by summing the above inequality from 1 to n.
We now prove the upper estimate for (J−1

h v, v). In the bilinear case, note that

vj(x, yj) = v(x, yj) and vj(x, yj±1) = 0.
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A simple calculation shows that∫
Sj

(|Dxvj−1|2 + |Dxvj |2) dxdy

=
1
3

n−1∑
i=1

[|v(xi, yj−1)− v(xi−1, yj−1)|2 + |v(xi, yj)− v(xi−1, yj)|2]

≤ 2
∫
Sj

|vx|2 dxdy.

Consequently,∫
Sj

a(x, y)(|Dxvj−1|2 + |Dxvj |2) dxdy ≤ 2
amax

amin

∫
Sj

a(x, y)|vx|2 dxdy.(5.4)

On the other hand, for (x, y) ∈ Sj ,

|Dyvj−1(x, y)|2 + |Dyvj(x, y)|2 =
1
h2

(|v(x, yj−1)|2 + |v(x, yj)|2).

Since vyy(x, θ) ≡ 0 for θ between yj−1 and yj, we have

|v(x, yj−1)|2 + |v(x, yj)|2

= |v(x, y) + vy(x, y)(yj−1 − y)|2 + |v(x, y) + vy(x, y)(yj − y)|2

≤ 4|v(x, y)|2 + 2h2|vy(x, y)|2,

for all (x, y) ∈ Sj . Hence∫
Sj

b(|Dyvj−1|2 + |Dyvj |2) dxdy ≤ 4
h2

∫
Sj

b|v|2 dxdy + 2
∫
Sj

b|vy|2 dxdy.(5.5)

Combining (5.4) and (5.5),

ASj (vj−1, vj−1) +ASj (vj , vj)

≤ 4
h2

∫
Sj

bv2 dxdy + 2
amax

amin

∫
Sj

(a|vx|2 + b|vy|2) dxdy.

Summing from 1 to n,

(J−1
h v, v) ≡

n∑
j=1

[ASj (vj−1, vj−1) +ASj (vj , vj)]

≤
[
2
amax

amin
A(v, v) +

4
h2

(bv, v)
]
.

This proves the second inequality for the bilinear case.
The proof for the case of linear elements is similar. We write τ = τ+ ∪ τ−. Then

Dxvj−1 = 0, Dxvj = Dxv on τ+ and Dxvj = 0, Dxvj−1 = Dxv on τ−.

Therefore ∫
τ

a(|Dxvj−1|2 + |Dxvj |2) dxdy =
∫
τ

a|Dxv|2 dxdy.

On the other hand,

|Dyvj−1|2 + |Dyvj |2 =
1
h2

(|v(xi−1, yj−1)|2 + |v(xi−1, yj)|2) in τ+
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and

|Dyvj−1|2 + |Dyvj |2 =
1
h2

(|v(xi, yj−1)|2 + |v(xi, yj)|2) in τ−.

Since all the second derivatives of v vanish on τ±, we have

|v(xi−1, yj−1)|2 + |v(xi−1, yj)|2

= |v(x, y) +∇v(x, y) · (xi−1 − x, yj−1 − y)|2

+ |v(x, y) +∇v(x, y) · (xi−1 − x, yj − y)|2

≤ 4|v(x, y)|2 + 6h2|∇v(x, y)|2, for all (x, y) ∈ τ+.

A similar estimate holds for |v(xi, yj−1)|2 + |v(xi, yj)|2. Hence,∫
τ

b(|Dyvj−1|2 + |Dyvj |2) dxdy

=
1
h2

[ ∫
τ+
b(|v(xi−1, yj−1)|2 + |v(xi−1, yj)|2) dxdy

+
∫
τ−
b(|v(xi, yj−1)|2 + |v(xi, yj)|2) dxdy

]
≤ 4
h2

∫
τ

bv2 dxdy + 6
∫
b|∇v|2 dxdy.

Combining the estimates for
∫
τ a(|Dxvj−1|2+|Dxvj |2) and

∫
τ b(|Dyvj−1|2+|Dyvj |2)

we obtain

ASj (vj−1, vj−1) +ASj (vj , vj) ≤
4
h2

∫
Sj

bv2 dxdy +
∫
Sj

[(1 + 6b)v2
x + 6bv2

y] dxdy.

The rest of the proof is identical to that for the bilinear elements.

We formulate the smoothing property of the line Gauss-Seidel smoother in the
next lemma.

Lemma 5.2. Let Mh consist of piecewise linear or bilinear functions and let Gh be
the line Gauss-Seidel smoother defined in (5.2). Then there is a constant C2 such
that

A(v, v) ≤ (Ḡ−1
h v, v) ≤ C2

[
A(v, v) +

1
h2

(bv, v)
]
, for all v ∈Mh,

where Ḡh ≡ Gh + Gth − GthAhGh is the symmetric line Gauss-Seidel smoother.

Proof. By the definition of Ḡh, we have

0 ≤ A((I − GhAh)v, (I − GhAh)v) = A((I − ḠhAh)v, v) for all v ∈Mh.

This implies the lower estimate. The upper estimate follows from the inequality

A(JhAhv, v) ≤ CA(ḠhAhv, v)

and the upper estimate for the line Jacobi smoother in Lemma 5.1.

Remark 5.1. In the proof of Lemma 5.1, we did not make use of (1.4). With minor
modifications, we can prove that the results in Lemmas 5.1 and 5.2 hold for general
polynomial elements, provided that (1.4) holds.
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6. Multigrid convergence estimate

We now establish a uniform convergence result for the V-cycle multigrid Al-
gorithm 2.1. For simplicity, we only consider linear and bilinear elements. We
introduce an initial triangulation T1 of Ω by partitioning Ω into four smaller equal
squares. For linear elements, each square is further decomposed into two triangles
by linking the lower-left and upper-right vertices. Let {Tk} be a family of trian-
gulations of Ω, where Tk is obtained from Tk−1 by a halving strategy. Let {Mk}
be the corresponding family of linear or bilinear finite element spaces defined with
respect to {Tk}. Denote by Jhk and Ghk respectively the line Jacobi and the line
Gauss-Seidel operators on Mk.

Theorem 6.1. Let Rk = ηJhk with 0 < η < 1, or Rk = Ghk . Then there is a
positive number δ with δ < 1, independent of k, such that the multigrid algorithm
defined in Algorithm 2.1 satisfies

0 ≤ A((I −BkAk)v, v) ≤ δA(v, v), for all v ∈Mk.

Proof. We first show the result for Rk = ηJhk . By Lemma 5.1, the spectrum
σ(RkAk) ⊂ (0, 2η]. Thus σ(Kk) = σ(I − RkAk) ⊂ [−θ, 1) with θ = 2η − 1 < 1.
In view of Lemma 2.1, we only need to prove that (2.4) holds for Rk = ηJhk . It
follows from Lemma 4.3 that

1
h2

(b(x, y)(I − Pk−1)v, (I − Pk−1)v) ≤ C1A((I − Pk−1)v, (I − Pk−1)v).

By Lemma 5.1, the weighted line Jacobi smoother, Rk, satisfies

(R−1
k φ, φ) ≤ C2

[
(Akφ, φ) +

1
h2
k

(b(x, y)φ, φ)
]
, for all φ ∈Mk.

Applying the smoothing property of Rk to φ = (I − Pk−1)v and using the approx-
imation property of Pk−1, we obtain, with CM = C2(1 + C1),

(R−1
k (I − Pk−1)v, (I − Pk−1)v) ≤ CM A((I − Pk−1)v, (I − Pk−1)v).

We have thus proved (2.4), and hence the theorem, for the case Rk = ηJhk .
The proof for the case Rk = Ghk is analogous. We use Lemma 2.2 in place of

Lemma 2.1 and use the smoothing property of the line Gauss-Seidel in Lemma 5.2
instead of Lemma 5.1.

Since BkAk is symmetric in the energy inner product A(·, ·), Theorem 6.1 implies
that ‖(I − BkAk)v‖A ≤ δ‖v‖A for all v ∈ Mk. Consequently, the error operator
of the multigrid iteration (2.1) is a uniform contraction in the ‖ · ‖A norm and the
iterates defined in (2.1) satisfy

‖um − u‖A ≤ δm‖um − u‖A.

Remark 6.1. It is desirable to avoid the condition in (1.4) in our theory. However,
it is not clear that this is possible even in the case when b(x, y) is uniformly bounded
from above and below.

Remark 6.2. Note that if b(x, y) ≈ h2
k, then the error operators, I − ηJkAk and

I − Gk, corresponding to the line Jacobi and the line Gauss-Seidel methods, are
already uniform contractions on Mk.
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Remark 6.3. Our analysis remains valid for other polynomial finite elements as well.
The approximation property is a consequence of the fact that the linear elements
are a subspace of these higher order elements and the smoothing property can be
established in a way similar to that of the linear element.

7. Matrix-vector implementation

We now discuss briefly the implementation of the multigrid algorithm using a
matrix-vector notation. Let {φik}, i = 1, . . . , Nk, be the nodal basis of Mk. Then
each function v in Mk is associated with two vectors, its “coefficient vector” ṽ
and its “dual vector” v∼. The components of the coefficient vector ṽ consist of the
coefficients of v with respect to the basis {φik}, and the dual vector, defined by
v∼ = [(v, φik)], represents the action of v on the basis {φik}. Corresponding to the
operator Ak is the stiffness matrix A

≈k
= [A(φik, φ

j
k)]. Using this notation, the finite

element equation Akuk = fk can be written as a linear system of equations:

A
≈k
ũk = f

∼k
.

To define the multigrid algorithm in terms of vectors and matrices, we introduce,
for each smoother Rk, a smoothing matrix

≈
Rk satisfying

R̃kfk =
≈
Rkf∼k

, for all fk ∈Mk.(7.1)

It is easy to check that the smoothing matrices corresponding to Rk = ηJhk and
Rk = Ghk are just the block diagonal and lower block triangular parts of A

≈k
.

Since Mk−1 ⊂ Mk, the basis functions of Mk−1 can be expressed in terms of
those of Mk, i.e.,

φik−1 =
Nk∑
j=1

αkijφ
j
k.

The “interpolation matrix” and the “prolongation matrix” are given respectively
by Πk−1 = [αkij ] and Πt

k−1.
With the above notation, the coefficient vectors, ũm, of the multigrid iterates

um defined in (2.1) can be computed by

ũm+1 = ũm +
≈
Bk(f

∼k
−A
≈k
ũm), m = 0, 1, . . . ,(7.2)

where
≈
Bk is defined recursively by the following algorithm:

Algorithm 7.1 (Matrix-vector form). Set
≈
B1 = A

≈
−1
1 . Assume that

≈
Bk−1 has been

defined. Define
≈
Bk : RNk → RNk as follows.

(1) Pre-smoothing: Set ṽ′ = ṽ +
≈
Rtk (f

∼k
−A
≈k
ṽ).

(2) Correction: Define ṽ′′ = ṽ′ + Πt
k−1q̃ (ṽ = 0), where

q̃ =
≈
Bk−1Πk−1(f

∼k
−A
≈k
ṽ′).

(3) Post-smoothing: Set
≈
Bkf∼k

= ṽ′′ +
≈
Rk(f

∼k
−A
≈k
ṽ′′).

It is straightforward to check that if
≈
Rk and Rk are related by (7.1), then

B̃kfk =
≈
Bkf∼k

, for all f
∼k
∈Mk.
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Therefore, Algorithms 7.1 and 2.1 are the same and ũm defined by (7.2) is the
coefficient vector of um defined by (2.1), provided that f

∼k
is the dual vector of fk

and ũ0 is chosen to be the coefficient vector of u0.
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