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MINIMIZING MULTI-HOMOGENEOUS BÉZOUT NUMBERS
BY A LOCAL SEARCH METHOD

TIEJUN LI AND FENGSHAN BAI

Abstract. Consider the multi-homogeneous homotopy continuation method
for solving a system of polynomial equations. For any partition of variables,
the multi-homogeneous Bézout number bounds the number of isolated solu-
tion curves one has to follow in the method. This paper presents a local search
method for finding a partition of variables with minimal multi-homogeneous
Bézout number. As with any other local search method, it may give a local
minimum rather than the minimum over all possible homogenizations. Nu-
merical examples show the efficiency of this local search method.

1. Introduction

For a polynomial system one may wish to determine the total number of isolated
solutions and then find all of them. This kind of problem is very common in many
fields of science and engineering. Homotopy continuation has been developed to
become an efficient method for approximating the full set of isolated solutions of
polynomial systems. This method has been used to find all solutions of polynomial
systems by Garcia and Zangwill, Chow, Li and Yorke [3, 1, 6, 8, 10, 11], etc.,
since the late 1970’s. The multi-homogeneous homotopy method [7, 17, 13] can
obtain all isolated zeros of a polynomial system with a relatively small amount of
computation, and it is parallel in nature.

Consider a polynomial system

P(x) =


p1(x1, · · · , xn)
p2(x1, · · · , xn)

...
pn(x1, · · · , xn)

 = 0,(1.1)

where x = (x1, · · · , xn) ∈ Cn. The basic principle of the multi-homogeneous homo-
topy algorithm is that a partition of variables with a minimal multi-homogeneous
Bézout number is first obtained so that a smaller number of solution curves is fol-
lowed in the continuation. Wampler [16] gives an exhaustive search method on
finding the optimal partition of variables. It works well for small scale problems.
However, the process of finding that partition is likely an NP hard problem. Hence
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this problem is considered from another point of view in this paper. Notice that
our final goal is to obtain all solutions of a polynomial system as quickly as pos-
sible. All possible partitions of variables form a set. The reason that we spend
time on finding an element with the minimal multi-homogeneous Bézout number
in this set is to reduce the number of paths one has to follow in the continuation.
Hence it is possible to reduce the total computational cost with a partition whose
multi-homogeneous Bézout number is not minimal (but close), if that partition
could be obtained with a fairly low cost. Four kinds of “neighboring” partitions
of variables are defined, which gives a topology for the set. A local search method
for minimizing the multi-homogeneous Bézout numbers is constructed. Since the
number of the neighboring partitions is only O(n2) under such a topology, where
n is as in (1.1), the computational cost of the local search method is much smaller
than that of Wampler’s exhaustive search method. Any local search method may,
of course, fall into local minimum, but the computational cost is fairly low, in par-
ticular for large scale problems. Many numerical examples indicate that one can
obtain satisfactory results for most cases by the local search method.

The plan of this paper is as follows. In the next section, general ideas and basic
concepts for homotopy methods are introduced. Basic problems and the method by
Wampler [16] for minimizing the multi-homogeneous Bézout number are also given.
A local search method for minimizing the multi-homogeneous Bézout numbers is
presented in Section 3. The concept of neighboring partitions is crucial for the
method. Numerical examples are presented in Sections 4 and 5. Finally, some
discussion is given in Section 6.

2. Multi-homogeneous homotopy

A homotopy for solving (1.1) is

H(x, t) = (1− t)Q(x) + tP(x) = 0,(2.1)

where the system Q(x) = (q1(x), · · · , qn(x)) is chosen so that solutions for Q(x) = 0
are known or easy to get. The solution set of (1.1) can be obtained by following
solution curves of (2.1) in the real variable t. The construction of Q(x) is crucial
in the homotopy method. If the system Q(x) is not good enough, solution curves
of (2.1) may have turning points or bifurcations, which may be difficult to handle.
If the initial system Q(x) is chosen correctly, the following three properties (known
collectively as TSA) hold [7]:

Property 0 (Triviality). The solutions of Q(x) = 0 are known.

Property 1 (Smoothness). The solution set of H(x, t) = 0 for 0 ≤ t ≤ 1 consists
of a finite number of smooth paths, each parameterized by t in [0, 1).

Property 2 (Accessibility). Every isolated solution of H(x, 1) = P(x) = 0 can be
reached by some path originating at t = 0. It follows that this path starts at a
solution of H(x, 0) = Q(x) = 0.

Under the conditions above, the solution curves of (2.1) will be easy to follow,
and any solution curve x(t) of H(x, t) = 0 must fall into one of the following two
cases:

Case (1). One isolated solution of P(x) = 0 is obtained at the point where t = 1.
Case (2). The solution curve goes to infinity as t tends to 1.
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Obviously, computation spent on following the solution curves of case (2) is a waste
of time. Hence we wish to construct Q(x) so that Q(x) = 0 has as few solutions
as possible while the homotopy H(x, t) satisfies the TSA conditions above.

It is well known that the number of the isolated solutions of a polynomial system
is bounded above by the Bézout number D =

∏n
i=1 di , where di is the degree of the

ith equation in the system. The initial system Q(x) based on this bound has been
constructed successfully [1, 3, 12, 6]. But the problem is that the Bézout number
is often far larger than the number of isolated solutions that the system actually
has. A well-known example is the eigenvalue problem. Let

Ax = λx, x ∈ Cn, λ ∈ C.(2.2)

We can view it as a polynomial system in the following way:{
Ax = λx, x ∈ Cn, λ ∈ C,
ηTx = 1,(2.3)

where η ∈ Cn is a known vector. Clearly, the Bézout number of this system is 2n.
But we all know that the eigensystem only has n solutions, counting multiplicities.
Since 2n � n, the homotopy method may waste too much time.

With the help of algebraic geometry, great progress has been made on homotopy
methods recently. The multi-homogeneous Bézout numbers, which rely on the
partition of the variables, are also upper bounds for the number of the isolated
zeros of a polynomial system. They are normally less (some times even far less)
than the Bézout number. In general, different ways of partitioning the variables
produce different multi-homogeneous Bézout numbers. One certainly hopes to find
a partition whose multi-homogeneous Bézout number is the smallest among all
possible partitions of variables. With this partition, the full set of solutions can be
obtained by following a smaller number of paths.

Let variables in a polynomial system be x = (x1, · · · , xn) ∈ Cn, and a partition
of it be T = (x(1), · · · ,x(m)), where

x(j) = (xj1, · · · , xjkj ), j = 1, 2, · · · ,m.

Here K = [k1, · · · , km] is called the partitioning vector. The subscripts above
clearly satisfy

∑m
j=1 kj = n, and m ≤ n.

Example 2.1. Let x = (x1, · · · , x8) ∈ C8. We partition them into four groups as
x = (x(1), · · · ,x(4)) where

x(1) = {x1, x2, x3, x4}, x(2) = {x5, x6}, x(3) = {x7}, x(4) = {x8}.

The partitioning vector here is K = [4, 2, 1, 1]. For simplicity, we denote the parti-
tion as

{1, 2, 3, 4}, {5, 6}, {7}, {8}.

Clearly, the partition above is identical to

{1, 4, 3, 2}, {6, 5}, {8}, {7}.

Assume that the degree of the polynomial pi(x) with respect to x(k) in (1.1)
is dik, where k = 1, 2, · · · ,m. Then the corresponding degree matrix under this
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partition of variables is defined as

D =


d11 . . . d1m

d21 . . . d2m

...
dn1 . . . dnm

 .

The multi-homogeneous Bézout number of the system (1.1) with respect to this
partition of variables, denoted by Bm, is defined as the coefficient of αk1

1 · · ·αkmm in
the following polynomial of α1, · · · , αm:

ϕ(α1, · · · , αm) = (d11α1 + · · ·+ d1mαm) · · · (dn1α1 + · · ·+ dnmαm),

where dij (i = 1, 2, · · · , n, j = 1, 2, · · · ,m) are elements of the degree matrix D.
Alternatively, the multi-homogeneous Bézout number Bm under this partition could
also be computed through

Bm =
∑

(i1,··· ,in)

d1i1 · · · dnin ,

where ij (1 ≤ j ≤ n) is chosen from the set {1, 2, · · · ,m}, and the number i is
chosen exactly ki times (1 ≤ i ≤ m). Consider a simple example by Wampler [16].

Example 2.2. Let a polynomial system

P(x) = (p1(x), p2(x), p3(x)), x ∈ C3,

where
p1(x) = x2

1 + x2 + 1,
p2(x) = x1x3 + x2 + 2,
p3(x) = x2x3 + x3 + 3.

The total degree, i.e., the Bézout number, is 8. There are five ways to multi-
homogenize this system. It is easy to list all five partitions of the variables for
this problem, together with the partitioning vectors K, degree matrices D, and the
corresponding multi-homogeneous Bézout number. The first partition of variables
is x(1) = {x1, x2, x3}. It gives nothing but the classic Bézout number. We list all
the others below.

x(1) = {x1, x2},x(2) = {x3}, x(1) = {x1, x3},x(2) = {x2},
K = [2, 1], K = [2, 1],

D =

 2 0
1 1
1 1

 , D =

 2 1
2 1
1 1

 ,

B2 = 4, B2 = 8,

x(1) = {x1},x(2) = {x2, x3}, x(1) = {x1},x(2) = {x2},x3 = {x3},
K = [1, 2], K = [1, 1, 1],

D =

 2 1
1 1
0 2

 , D =

 2 1 0
1 1 1
0 1 1

 ,

B2 = 6, B3 = 5.
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Example 2.3. Consider the eigenvalue problem (2.2) again. We know that the
Bézout number of (2.3) is 2n. Let the partition of the variables be {x1, · · · , xn}, {λ}.
Then the corresponding multi-homogeneous Bézout number is exactly n. Hence the
multi-homogeneous homotopy method can be used to solve the eigenvalue problem
(2.2) efficiently with this partition. See [17, 13, 10, 11, 12] for details.

In order to obtain the minimal Bézout number, Wampler’s method has to go
through all possible partitions. The total number of all possible partitions of vari-
ables is denoted by B(n), which is called the Bell number. The combinatorics
model for the Bell number is: All possible ways of putting n distinct balls into n
identical boxes, where some of the boxes could be empty. We can easily conclude
the following.

Proposition 2.1. B(n) > (n/2)(n/2) and B(n) < n!.

This means that the Bell number B(n), hence the number of all possible par-
titions of variables, is not very big when n is small. But it increases very quickly
as n grows. For example, B(4) = 15, B(5) = 32. But B(10) = 115, 975 and
B(15) = 1, 382, 958, 545.

Before the local search method for finding the partition of variables with minimal
multi-homogeneous Bézout number is presented, let us briefly mention the compu-
tation of multi-homogeneous Bézout number for a fixed partition of variables. A
recursive algorithm is established by Wampler. The basic idea is as follows. Multi-
homogeneous Bézout number Bm is determined uniquely by the partitioning vector
K = [k1, · · · , km] and the degree matrix D. In order to use a row expansion al-
gorithm, we denote Bm as b(D,K, 1), and define ej = (0, · · · , 0, 1, 0, · · · , 0) ∈ Zn.
Then b(D,K, i) has the recursive property [16]

b(D,K, i) =

{
1, if i = n+ 1,∑m
j=1,kj 6=0 dij × b(D,K − ej , i+ 1), otherwise,

where b(D,K, j) represents the multi-homogeneous Bézout number while the par-
titioning vector is K and the degree matrix, which is formed by deleting the first
j − 1 rows from the matrix D. See details in [16].

From the analysis above, we can clearly see that the computational cost of both
multi-homogeneous Bézout number for a fixed partition of variables and exhaustive
searching for all the possible partitions is exponentially increasing as n grows. This
kind of algorithm is unacceptable for large scale problems.

3. Local search method

A multi-homogeneous Bézout number is a function defined over the set of all
possible partitions of variables. To search locally, the concept of neighborhood of
a partition has to be defined first, which gives rise to a topology on this set.

Let x = (x1, · · · , xn) ∈ Cn, and a partition of it T = (x(1), · · · ,x(m)), where

x(j) = (xj1, · · · , xjkj ), j = 1, 2, · · · ,m.

The partitioning vector is K = [k1, · · · , km]. For simplicity, we often denote the
partition above as {G1, · · · , Gm}, where

Gj = {j1, j2, · · · , jkj}, j = 1, 2, · · · ,m.
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See Example 2.1 for details. To eliminate the nonuniqueness indicated by Example
2.1, we always assume

ij < il for all j < l;

i1 < j1 for all i < j.

That means the variables inside a group are arranged in an increasing order of
their subscripts, and the groups in a partition are also in an increasing order of the
subscripts of their first variables.

To give the concept of neighborhood for a partition, four kinds of operations on
partitions are defined first. Such operations give motion between different partitions
of variables. We will describe those operations using the partitions in Example 2.1,
where n = 8. Assume the partition we start with is

{1, 2, 3, 4}, {5, 6}, {7}, {8}.
Operations on partitions are defined as follows.

1) Splitting. Factor out one element (i.e., one variable) from a group which has
more than one element to form a new group by itself. For example,

{1, 2, 3, 4}, {5, 6}, {7}, {8}
‖
‖ splitting
⇓

{1, 2, 4}, {3}, {5, 6}, {7}, {8}
or

{1, 2, 3, 4}, {5, 6}, {7}, {8}

‖
‖ splitting
⇓

{1, 2, 3, 4}, {5}, {6}, {7}, {8}.
2) Merging. Combine one group which has only one element with another group

to form a new group. For example,
{1, 2, 3, 4}, {5, 6}, {7}, {8}

‖
‖ merging
⇓

{1, 2, 3, 4, 8}, {5, 6}, {7}.
3) Interchanging. Exchange two elements in two different groups to form a new

partition. For example,
{1, 2, 3, 4}, {5, 6}, {7}, {8}

‖
‖ interchanging
⇓

{1, 2, 3, 5}, {4, 6}, {7}, {8}.
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4) Transporting. Move one element from one group which has more than one
element to another group. For example,

{1, 2, 3, 4}, {5, 6}, {7}, {8}
‖
‖ transporting
⇓

{1, 2, 3}, {4, 5, 6}, {7}, {8}.

Definition 3.1. A partition T = (x(1), · · · ,x(m)) of the variable x is said to be
connected with another partition T1 = (x̃(1), · · · , x̃(l)) if T1 can be obtained by
applying one of the four kinds operations defined above to the partition T.

Note that operations 1) and 2) above establish relations between partitions which
have a different number of groups, whereas 3) and 4) establish relations between
partitions which have the same number of groups. They are all elementary oper-
ations connecting different partitions. All the other connections between different
partitions can be obtained by compositing some of those elementary operations. Of
course, there are many more options to define elementary operations. For example,
it is not necessary to restrict the elementary operations moving only one element
each time. The reason for doing so here is to reduce the number of neighboring
partitions for any single partition. That makes our local search method easier.

Let the partitioning vector be K = [k1, k2, · · · , km], where

ki

 > 2, for 1 ≤ i ≤ t,
= 2, for t+ 1 ≤ i ≤ s,
= 1, for s+ 1 ≤ i ≤ m.

The following results give the number of partitions connected by each of the oper-
ations defined above.

Proposition 3.1. Assume a partition T = (x(1), · · · ,x(m)) of variable x is given.
(1) The number of partitions connected with the partition T through the splitting

operation is

k1 + k2 + · · ·+ kt + s− t = n− (m− t) ≤ n ∼ O(n).

(2) The number of partitions connected with the partition T through the merging
operation is

s(m− s) + C2
m−s =

(m− s)(m+ s− 1)
2

≤ C2
n ∼ O(n2).

(3) The number of partitions connected with the partition T through the inter-
changing operation is

k1(k2 + · · ·+ ks +m− s) + k2(k3 + · · ·+ ks +m− s)
+ · · ·+ ks(m− s) < n2 ∼ O(n2).

(4) The number of partitions connected with the partition T through the trans-
porting operation is

k1(m− 1) + k2(m− 1) + · · ·+ ks(m− 1)

= (n−m+ s)(m− 1) ≤ C2
n ∼ O(n2).
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Remark 3.1. The proof of these results is straightforward. Take result (1) as an
example. The ways of splitting a group which has more than three elements are
the same as the number of elements the group actually has. For a group with only
two elements, it makes no difference which element is split out. Hence the result
follows.

With the neighboring partitions defined above, a local search method can be
constructed:

1) Generate a partition randomly. Search its neighboring partitions in a fixed
order by applying one of the operations, which is chosen in the order of
splitting first, then merging, interchanging, and finally transporting.

2) If one obtains a partition whose multi-homogeneous Bézout number is less
than that of the present partition, set it as the initial partition. Restart the
local search procedure above again until a partition whose multi-homogeneous
Bézout number is less than any of its neighboring partition is obtained.

3) In order to improve the result, our local search method is performed k times,
starting from k different randomly chosen initial partitions.

Algorithm 3.1.
Step 0: Input k the number of times that the local search is performed.

Set a counter nt := 1.
Step 1: If nt ≤ k, then an initial partition T0 of variables is randomly

generated or chosen by the user, the multi-homogeneous
Bézout number B0 of the initial partition is computed;

else goto step 5.
Step 2: All the neighboring partitions of partition T0 are ordered as a sequence

{T1, T2, · · · , TN}, where N is the total number of the neighboring
partitions of T0. Partitions in the sequence all result by applying
one of the elementary operations, where the order of them are those by
splitting first, then merging, interchanging, and finally transporting.

Step 3: Compute the multi-homogeneous Bézout number B1 of the partition T1.
i := 1,
While i ≤ N and Bi ≥ B0

i := i+ 1;
If i ≤ N compute the multi-homogeneous Bézout

number Bi of the partition Ti;
else break;

end;
If i ≤ N , then

T0 := Ti, B0 := Bi,
goto step 2;

else goto step 4;
Step 4: Store the local minimal multi-homogeneous Bézout number and the

corresponding partition. Set nt := nt+ 1, and go to Step 1.
Step 5: Find the smallest multi-homogeneous Bézout number over all k local

minima obtained, which is taken as an approximation of the global
minimal multi-homogeneous Bézout number, and the corresponding
partition is used in further continuation.
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Remark 3.2. The strategy of the local search method could be altered in various
ways. For example, one could search the neighborhoods of a given partition at
random rather than using a fixed order as above.

Remark 3.3. Assume the probability of finding the global optimal partition through
a single time of local search is p. Then the probability of finding the optimal
partition with minimal multi-homogeneous Bézout number through k times of local
search is 1−(1−p)k, when the scale of the polynomial system n is sufficiently large.
Hence it is reasonable to choose a suitable number k to make the probability of
success larger. We will take k = n in our computations later.

4. Numerical examples

Our local search method has been implemented successfully. All of our compu-
tations in this paper were performed on 486/DX/66, with C as the programming
language. Computational results of our algorithm on several well-known polyno-
mial systems are given in this section. These results give a clear picture of how
our method works. More numerical results will be given in the next section. The
efficiency of the local search method is quite evident from these computations.

Example 4.1. Let us consider the well-known eigenvalue problem first. We view
it as a polynomial system as in (2.3) again, where A ∈ C7×7 and λ = x8. Compu-
tational results are as follows.

A partition is randomly generated at step 1 of Algorithm 3.1. The partition and
the corresponding multi-homogeneous Bézout number are

{1, 2, 3, 8}, {4, 6, 7}, {5}, B3 = 900.

For simplicity here and throughout this section, we will not list out all partitions
obtained by the local search method, but only those whose multi-homogeneous
Bézout numbers decrease. They are

{1, 2, 3, 8}, {4, 5, 6, 7}, B2 = 225,
{1, 4, 5, 6, 7}, {2, 3, 8}, B2 = 104,
{1, 2, 4, 5, 6, 7}, {3, 8}, B2 = 35,
{1, 2, 3, 4, 5, 6, 7}, {8}, B2 = 7.

The multi-homogeneous Bézout number of the final partition equals 7, which is the
global minimum over all possible partitions.

Next we generate another partition randomly. The partition and the correspond-
ing multi-homogeneous Bézout number are

{1, 5, 6}, {2, 3, 7, 8}, {4}, B3 = 900.

Partition sequence and the corresponding multi-homogeneous Bézout numbers ob-
tained by the local search method are

{1, 4, 5, 6}, {2, 3, 7, 8}, B2 = 225,
{1, 2, 4, 5, 6}, {3, 7, 8}, B2 = 104,
{1, 2, 3, 4, 5, 6}, {7, 8}, B2 = 35,
{1, 2, 3, 4, 5, 6, 7}, {8}, B2 = 7.

The multi-homogeneous Bézout number of the final partition is again 7.
For this eigenvalue problem, we start from any partition, our local search method

always ends up with the partition whose multi-homogeneous Bézout number is 7.
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Running local search method eight times (here k = n, the size of the system) only
costs 1.65 seconds CPU time.

Example 4.2. Consider the Cassou-Nouges System, Equation 18 in the Appendix.
A partition is generated randomly at step 1. The partition and the corresponding

multi-homogeneous Bézout number are

{1, 3}, {4}, {2}, B3 = 1511.

Partition sequence and the corresponding multi-homogeneous Bézout numbers ob-
tained by the local search method are

{1}, {2}, {3}, {4}, B4 = 752,
{1}, {2, 3}, {4}, B3 = 440,
{1}, {2, 3, 4}, B2 = 368.

The multi-homogeneous Bézout number of the final partition is 368, which is, in
fact, the global minimum.

Another partition is generated randomly. The partition and the corresponding
multi-homogeneous Bézout number are

{1, 3}, {2, 4}, B2 = 1760.

Partition sequence and the corresponding multi-homogeneous Bézout numbers ob-
tained by the local search method are

{1}, {2, 4}, {3}, B3 = 876,
{1}, {2}, {3}, {4}, B4 = 752,
{1}, {2, 3}, {4}, B3 = 440,
{1}, {2, 3, 4}, B2 = 368.

The multi-homogeneous Bézout number of the final partition is 368 again.
For this system, we also tried to start from some other partitions. Our lo-

cal search method always leads to the partition whose multi-homogeneous Bézout
number is the global minimum. Running the local search method four times for
this system only costs 0.05 seconds CPU time.

Example 4.3. Consider the Moeller-4 System, Equation 7 in the Appendix.
The partition is generated randomly at step 1. The partition and the corre-

sponding multi-homogeneous Bézout number are

{1, 6}, {2, 4}, {3}, {5}, B4 = 135.

Partition sequence and the corresponding multi-homogeneous Bézout numbers ob-
tained by the local search method are

{1}, {2, 4}, {3}, {5}, {6}, B5 = 87,
{1}, {2}, {3}, {4}, {5}, {6}, B6 = 80,
{1}, {2}, {3}, {4, 6}, {5}, B5 = 64,
{1}, {2}, {3}, {4, 5, 6}, B4 = 41,
{1}, {2}, {3, 4, 5, 6}, B3 = 31,
{1, 3, 4, 5, 6}, {2}, B2 = 30,
{1, 2, 3, 4, 5, 6}, B1 = 8.

The multi-homogeneous Bézout number of the final partition is 8, which is again
the global minimum.

For this system, we tried to start from some other partitions. Our local search
method always gives the partition whose multi-homogeneous Bézout number is the
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global minimum. Running the local search method six times for this system only
costs 0.22 seconds CPU time.

5. Further numerical results

To illustrate the efficiency of our local search algorithm, a large amount of com-
putation has been done. Some remarks are given by comparing the computational
results with those of Wampler’s method.

The local search method is tested with twenty polynomial systems, which are
chosen from concrete problems in science and engineering. They could be considered
as the benchmark of the polynomial system solver. Some symbols used below are
listed:

Eq(i) —— The ith Equation in the Appendix.
TD —— Total Degree, i.e., the classical Bézout number.
MB —— Minimal multi-homogeneous Bézout number.
SMV —— Stable Mixed Volume, which also gives an upper bound

for the number of isolated solutions, and is normally
smaller than the minimal multi-homogeneous Bézout
number. See details in [2].

BRE —— Time for Basic Row Expansion method, the basic approach
used by Wampler for computing minimal multi-homogeneous
Bézout number. See details in [16].

EC —— Time for Early Cutoff algorithm, an improved method by
Wampler for computing the minimal multi-homogeneous
Bézout number. See details in [16].

DMC —— Time for early cutoff with Degree Matrix Condensation, a
further improved method by Wampler for computing the
minimal multi-homogeneous Bézout number. See [16].

Basic properties of those twenty problems are given in Table 5.1. To compare
with Wampler’s methods, some of the numerical results by Wampler’s methods are
also given in Table 5.1.

Remark 5.1. From Table 5.1, it is very obvious that BRE < EC < DMC, which
clearly shows that the DMC algorithm is the best among all three methods by
Wampler. When n, the size of the problem, is less then 8, time spent for the com-
putations with Wampler’s methods is acceptable. But when n ≥ 8, the computer
time for Wampler’s methods increases very quickly. Hence they are no longer effi-
cient. The next table shows the results of our local search method with notations
given below.

MBLS —— Optimal Multi-homogeneous Bézout number
found by our Local Search method.

TMLS —— Time spent for obtaining the optimal Multi-homogeneous
Bézout number above with our Local Search method.

NLS —— Number of the Local Search performed, i.e., the number k
in Step 0 of Algorithm 3.1.

Best? —— Does the numerical result obtained by the local search method
equal the minimal multi-homogeneous Bézout number?
(Y=Yes, N=No)
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Table 5.1. Basic Properties and Results by Wampler’s Methods
(Note that < 0.01” shown in the table below means that the time
spent for such computation cannot be measured by the computer
we used.)

Eq(#) n TD MB SMV BRE EC DMC

Eq(1) 2 16 10 6 <0.01” <0.01” <0.01”

Eq(2) 4 625 384 97 0.05” 0.05” 0.05”

Eq(3) 4 256 96 96 0.05” 0.05” 0.05”

Eq(4) 4 144 62 56 0.05” <0.01” <0.01”

Eq(5) 4 900 450 150 0.05” 0.05” 0.05”

Eq(6) 5 16 16 16 0.05” 0.05” 0.05”

Eq(7) 6 8 8 8 0.17” 0.11” 0.11”

Eq(8) 8 5764801 645120 – 18.56” 15.76” 10.0”

Eq(9) 8 128 16 – 9.60” 5.71” 5.16”

Eq(10) 6 64 20 – 0.30” 0.22” 0.15”

Eq(11) 11 2048 320 – 2o47’20.16” 39’36.68” 31’32.30”

Eq(12) 8 576 193 – 10.89” 2.58” 1.76”

Eq(13) 7 4608 1361 – 1.59” 1.32” 0.99”

Eq(14) 10 3628800 3628800 – 17’51.43” 15’52.63” 13’59.37”

Eq(15) 9 362880 362880 – 1’53.26” 1’44.58” 1’30.52”

Eq(16) 6 1024 216 – 0.16” 0.16” 0.16”

Eq(17) 5 108 56 – 0.05” 0.05” 0.05”

Eq(18) 4 1344 368 – <0.01” <0.01” <0.01”

Eq(19) 10 64 56 – 15’45.32” 10’25.49” 9’53.69”

Eq(20) 8 256 160 – 13.01” 6.48” 4.70”

Remark 5.2. Comparing the results of Table 5.1 and those of Table 5.2, it is clear
that the time spent for the local search method (the maximal time is less than
1 minute) is always acceptable, and is far less than those of Wampler’s methods
for large scale problems. Using our local search method, global minimal multi-
homogeneous Bézout numbers are missed only three times out of twenty. Even
for those three whose global minima are missed, the results obtained by our local
search method are not far away from the global minima. In other words, we obtain
satisfactory results for those three problems.

In order to exploit the general behavior of the local search method, we choose
several problems with larger dimension n. Starting from all possible partitions of
variables, our local search method is applied. Table 5.3 was compiled from the
results obtained, with more notations given below.

nP —— Number of all possible Partitions for the polynomial system,
i.e., the Bell number B(n).

nPLSM —— Total number of Partitions used as initial points, our
Local Search method obtains a partition with minimal
Multi-homogeneous Bézout number.

LSR —— Percentage of nPLSM over nP.
nPM —— Total number of Partitions with Minimal multi-homogeneous

Bézout number.
MBR —— Percentage of nPM over nP.
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Table 5.2. Results by the Local Search Method

Eq(#) n MBLS TMLS NLS Best?
Eq(1) 2 10 0.11” 2 Y
Eq(2) 4 384 0.11” 4 Y
Eq(3) 4 96 0.22” 4 Y
Eq(4) 4 62 0.17” 4 Y
Eq(5) 4 450 0.17” 4 Y
Eq(6) 5 16 0.22” 5 Y
Eq(7) 6 8 0.33” 6 Y
Eq(8) 8 645120 5.55” 8 Y
Eq(9) 8 16 4.50” 8 Y
Eq(10) 6 20 0.55” 6 Y
Eq(11) 11 576 51.41” 11 N
Eq(12) 8 193 2.25” 8 Y
Eq(13) 7 1361 1.98” 7 Y
Eq(14) 10 3628800 30.53” 10 Y
Eq(15) 9 362880 9.51” 9 Y
Eq(16) 6 344 0.55” 6 N
Eq(17) 5 56 0.22” 5 Y
Eq(18) 4 368 0.16” 4 Y
Eq(19) 10 64 18.95” 10 N
Eq(20) 8 160 2.20” 8 Y

Table 5.3. Efficiency of Local Search Method

Eq(#) Eq(9) Eq(10) Eq(12) Eq(13) Eq(16) Eq(17)
n 8 6 8 7 6 5

nP 4140 203 4140 877 203 52
nPLSM 3938 178 3163 869 190 46

LSR 95% 88% 76% 99% 94% 89%
nPM 8 1 1 1 1 1
MBR 0.19% 0.49% 0.024% 0.11% 0.49% 1.92%

Remark 5.3. The results of Table 5.3 show that among all possible partitions of
variables, the ratio of partitions with the minimal multi-homogeneous Bézout num-
ber is usually very low (normally less than 1%, shown by MBR in Table 5.3).
However our local search method can obtain the partitions with the global mini-
mal multi-homogeneous Bézout number by taking most of the partitions as initial
points (around 90% as shown by LSR in Table 5.3). This shows that the local
search method performs very well.

6. Conclusions and discussions

A local search method has been developed in this paper. This method, supported
by a large amount of numerical computation, can be seen to be fairly efficient. All
the problems with 11 variables or fewer that we have tried can be solved by this
method within one minute on an out-of-date personal computer. We are able to
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make the size of the problems larger in our computations, but not without limita-
tion. The reason is that the expensive computational cost of multi-homogeneous
homotopy method comes from two aspects. One is finding a partition with the
global minimal multi-homogeneous Bézout number, which is our focus of this pa-
per. Another is the computation of the multi-homogeneous Bézout number for a
given partition of variables. This makes the whole computation still too costly
for large systems at present. Wampler’s algorithm with row expansion recursion
[16], which is the best method so far to our knowledge, is used to compute multi-
homogeneous Bézout number for a given partition in our computations. Hence an
efficient algorithm on computing multi-homogeneous Bézout number for a given
partition remains an open question.

We conjecture that minimizing multi-homogeneous Bézout number is an NP
hard problem. For such problems, it is only possible to get the exact solution
for small scale problems. As the size of the problem becomes larger, we can only
expect to get an approximate solution. Some heuristic approximate algorithms
have been developed for the classical NP hard problems, such as traveling salesman
problem (TSP) and 0-1 packing problem. We formulate the local search method
for minimizing multi-homogeneous Bézout numbers.

Combinatorial geometry has come to play a more and more important role in
homotopy method in the past five years [7, 4, 2, 5, 14, 15]. With some combina-
torial geometric techniques based on algebraic geometry, one can get the so-called
BKK bound (the upper bound of the isolated zeros in (C∗)n) and the stable mixed
volume (the upper bound of the isolated zeros in Cn), where C∗ = C\{0}. They
normally give a tighter bound for the number of the isolated zeros than the multi-
homogeneous Bézout number. That is certainly true for Equations 1 to 7, as shown
in Table 5.1. Huber and Sturmfels [4] constructed the starting system with random
lifting and convex hull techniques. Such a procedure is called polyhedral homo-
topy. It is, however, very expensive to obtain the starting system for the current
polyhedral homotopy method.

Therefore the main point of this paper can be summarized as follows. For some
polynomial systems, particularly large scale problems, we may obtain a partition
with a satisfactory multi-homogeneous Bézout number (i.e., reasonably close to the
global minimal multi-homogeneous Bézout number) within a reasonable amount
of time by our local search method. This number could be larger than the stable
mixed volume which is given by the polyhedral homotopy method. Consequently
we have to follow some more homotopy paths. But the total computational cost
may still be less.

Appendix

Polynomial systems used in our numerical computations are listed below. They
are all concrete problems in applications.

Equation 1 ([2]). The bivariate system.

P(x, y) =
{
ay + by2 + cxy3 = 0,
dx + ex2 + fyx3 = 0,

with generic coefficients a, b, c, d, e, f .

Equation 2 ([2]). System of E. R. Speer.

P(x) = (p1(x), · · · , p4(x)), x ∈ C4,
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where
p1(x) = 4β(n+ 2a1 − 8x1)(a2 − a3)− x2x3x4 + x2 + x4,
p2(x) = 4β(n+ 2a1 − 8x2)(a2 − a3)− x1x3x4 + x1 + x3,
p3(x) = 4β(n+ 2a1 − 8x3)(a2 − a3)− x1x2x4 + x2 + x4,
p4(x) = 4β(n+ 2a1 − 8x4)(a2 − a3)− x1x2x3 + x1 + x3.

The coefficients above satisfy the following:

a1 = x1 + x2 + x3 + x4,

a2 = x1x2x3x4,

a3 = x1x2 + x2x3 + x3x4 + x4x1.

Equation 3 ([2]). Symmetric four-bar mechanism.

P(x) = (p1(x), · · · , p4(x)), x ∈ C4,

where
pl(x) = al1x

2
1x

2
3 + al2x

2
1x3x4 + al3x

2
1x3 + al4x

2
1x

2
4 + al5x

2
1x4

+al6x2
1 + al7x1x2x

2
3 + al8x1x2x3x4 + al9x1x2x3

+al10x1x2x
2
4 + al11x1x2x4 + al12x1x

2
3 + al13x1x3x4

+al14x1x3 + al15x1x
2
4 + al16x1x4 + al17x

2
2x

2
3

+al8x2
2x3x4 + al19x

2
2x3 + al20x

2
2x

2
4 + al21x

2
2x4

+al22x
2
2 + al23x2x

2
3 + al24x2x3x4 + al25x2x3

+al26x2x
2
4 + al27x2x4 + al28x

2
3 + al29x

2
4,

l = 1, · · · , 4.

Equation 4 ([2]). Caprasse system from PoSSo test suite.

P(x) = (p1(x), · · · , p4(x)), x = (x, y, z, t) ∈ C4,

where
p1(x) = y2z + 2xyt− 2x− z,
p2(x) = −x3z + 4xy2z + 4x2yt+ 2y3t+ 4x2

−10y2 + 4xz − 10yt+ 2,
p3(x) = 2yzt+ xt2 − x− 2z,
p4(x) = −xz3 + 4yz2t+ 4xzt2 + 2yt3 + 4xz

+4z2 − 10yt− 10t2 + 2.

Equation 5 ([2]). Cohn-2 system from PoSSo test suite.

P(x) = (p1(x), · · · , p4(x)), x = (x, y, z, t) ∈ C4,

where
p1(x) = x3y2 + 4x2y2z − x2yz2 + 288x2y2 + 207x2yz + 1152xy2z

+156xyz2 + xz3 − 3456x2y + 20736xy2 + 19008xyz
+82944y2z + 432xz2 − 497664xy+ 62208xz + 2895984x,

p2(x) = y3t3 + 4y3t2 − y2zt2 + 4y2t3 − 48y2t2 − 5yzt2 + 108yzt
+z2t+ 144zt− 1728z,

p3(x) = −x2z2t+ 4xz2t2 + z3t2 + x3z + 156x2zt+ 207xz2t
+1152xzt2 + 288z2t2 + 432x2z + 19008xzt− 3456z2t
+82944xt2 + 20736zt2 + 62208xz − 497664zt+ 2985984z,

p4(x) = y3t3 − xy2t2 + 4y3t2 + 4y2t3 − 5xy2t− 48y2t2 + x2y
+108xyt+ 144xy − 1728x.
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Equation 6 ([2]). Katsura-4 system from PoSSo test suite.

P(x) = (p1(x), · · · , p5(x)), x = (x, y, z, t, u) ∈ C5,

where
p1(x) = 2x2 + 2y2 + 2z2 + 2t2 + u2 − u,
p2(x) = xy + 2yz + 2zt+ 2tu− t,
p3(x) = 2xz + 2yt+ t2 + 2zu− z,
p4(x) = 2xt+ 2zt+ 2yu− y,
p5(x) = 2x+ 2y + 2z + 2t+ u− 1.

Equation 7 ([2]). Moeller-4 system from PoSSo test suite.

P(x) = (p1(x), · · · , p6(x)), x = (x, y, z, t, u, v) ∈ C6,

where
p1(x) = y + u+ v − 1,
p2(x) = z + t+ 2u− 3,
p3(x) = y + t+ 2v − 1,
p4(x) = x− y − z − t− u− v,
p5(x) = αyz3 + x2tu,
p6(x) = βyt+ zv,

and

α = − 1569
31250

, β = − 587
15625

.

Equation 8.

P(x) = (p1(x), p2(x), · · · , p8(x)), x ∈ C8,

where

pj(x) = (x2x3x5x8 − x1x4x6x7)

× [(x6x7 − x5x8)(Cj(x2 − x4)C
′

j(x1 − x3))

+ (x1x4 − x2x3)(Cj(x6 − x8) + C
′

j(x5 − x7))],
j = 1, · · · , 8.

Equation 9 ([15]). A PUMA robot.

P(x) = (p1(x), · · · , p8(x)), x ∈ C8,

where
p1(x) = x2

1 + x2
2 − 1,

p2(x) = x2
3 + x2

4 − 1,
p3(x) = x2

5 + x2
6 − 1,

p4(x) = x2
7 + x2

8 − 1,
p5(x) = 0.004731x1x3 − 0.3578x2x3 − 0.1238x1

−0.001637x2 − 0.9338x4 + x7 − 0.3571,
p6(x) = 0.2238x1x3 + 0.7623x2x3 + 0.2638x1

−0.007745x2 − 0.6734x4 − 0.6022,
p7(x) = x6x8 + 0.3578x1 + 0.004731x2,
p8(x) = −0.7623x1 + 0.2238x2 + 0.3461.

This polynomial system models hand position and orientation of a PUMA robot.
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Equation 10 ([15]). Camera motion from point matches.

P(x) = (p1(x), · · · , p6(x)), x = (d1, d2, d3, q1, q2, q3) ∈ C6,

where

p1(x) = −3.6d1q1 + 4.1d1q2 + 2.0d1q3 + 0.1d1 + 4.1d2q1
+1.8d2q2 + 3.7d2q3 − 0.2d2 + 2.0d3q1 + 3.7d3q2
−4.0d3q3 + 0.3d3 + 0.1q1 − 0.2q2 + 0.3q3 + 5.8,

p2(x) = −2.140796d1q1 − 3.998792d1q2 + 3.715992d1q3 − 0.2828d1 − 3.998792d2q1
−1.575196d2q2 − 3.998792d2q3 + 3.715992d3q1 − 3.998792d3q2
−2.140796d3q3 + 0.2828d3 − 0.2828q1 + 0.2828q3 + 5.856788,

p3(x) = 0.3464d1q1 + 0.1732d1q2 − 5.999648d1q3 − 0.1732d1 + 0.1732d2q1
−5.999648d2q2 − 0.1732d2q3 + 0.3464d2 − 5.999648d3q1 − 0.1732d3q2
−0.3464d3q3 − 0.1732d3 − 0.1732q1 + 0.3464q2 − 0.1732q3 + 5.999648,

p4(x) = −5701.3d1q1 − 2.9d1q2 + 3796.7d1q3 − 1902.7d1 − 2.9d2q1
−5698.7d2q2 + 1897.3d2q3 + 3803.3d2 + 3796.7d3q1 + 1897.3d3q2
+5703.1d3q3 + 0.7d3 − 1902.7q1 − 3803.3q2 + 0.7q3 + 5696.9,

p5(x) = −6.8d1q1 − 3.2d1q2 + 1.3d1q3 + 5.1d1 − 3.2d2q1
−4.8d2q2 − 0.7d2q3 − 7.1d2 + 1.3d3q1 − 0.7d3q2
+9.0d3q3 − d3 + 5.1q1 − 7.1q2 − q3 + 2.6,

p6(x) = −d1q1 − d2q2 − d3q3 + 1.

This polynomial system models the displacement of a camera between two posi-
tions.

Equation 11 ([15]). An inverse position problem.

P(x) = (p1(x), · · · , p11(x)),

where
x = (z21, z22, z31, z32, z33, z41, z42, z43, z51, z52, z53) ∈ C11

and

p1(x) = c21 + z2
21 + z2

22 − 1,
p2(x) = z2

31 + z2
32 + z2

33 − 1,
p3(x) = z2

41 + z2
42 + z2

43 − 1,
p4(x) = z2

51 + z2
52 + z2

53 − 1,
p5(x) = c1z33 − c2 + z21z31 + z22z32,
p6(x) = −c3 − c2 + z31z41 + z32z42 + z33z43,
p7(x) = −c4 − c2 + z41z51 + z42z52 + z43z53,
p8(x) = −c1 − c2 + z51z61 + z52z62 + z53z63,
p9(x) = −c1e2z32 + d2z21 + d3z31 + d4z41 + d5z51 − e1z22

+e2z22z33 + e3z32z43 − e3z33z42 + e4z42z53

−e4z43z52 + e5z52z63 − e5z53z62 − p61,
p10(x) = c1e2z31 + d2z22 + d3z32 + d4z42 + d5z52 + e1z21

−e2z21z33 − e3z31z43 + e3z33z41 − e4z41z53

+e4z43z51 − e5z51z63 + e5z53z61 − p62,
p11(x) = c1d2 + d3z33 + d4z43 + d5z53 + e2z21z32

−e2z22z31 + e3z31z42 − e3z32z41 + e4z41z52

−e4z42z51 + e5z51z62 − e5z52z61 − p63.

This system represents an inverse position problem for six-joint robot arms.
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Equation 12 ([15]). A Heart-Dipole problem.

P(x) = (p1(x), · · · , p8(x)), x = (a, b, c, d, t, u, v, w) ∈ C8,

where

p1(x) = a+ b− 0.6325,
p2(x) = c+ d− 0.8465,
p3(x) = ta+ ub− vc− wd− 0.1245,
p4(x) = va+ wb + tc+ ud− 5.3452,
p5(x) = at2 − av2 − 2ctv + bu2 − bw2 − 2duw − 1.4352,
p6(x) = ct2 − cv2 + 2atv + du2 − dw2 + 2buw − 0.9896,
p7(x) = at3 − 3atv2 + cv3 − 3cvt2 + bu3

−3buw2 + dw3 − 3dwu2 − 0.3464,
p8(x) = ct3 − 3ctv2 − av3 + 3avt2 + du3

−3duw2 − bw3 + 3bwu2 − 3.1345.

The numbers in the last terms of each equation are parameters for the model. They
are chosen randomly in our computations.

Equation 13 ([15]). Butcher’s problem.

P(x) = (p1(x), · · · , p7(x)), x = (x, y, z, u, v, w, t) ∈ C7,

where

p1(x) = zu+ yv + tw − w2 − 1
2w −

1
2 ,

p2(x) = zu2 + yv2 − tw2 + w3 + w2 − 1
3 t+ 4

3w,
p3(x) = xzv − tw2 + w3 − 1

2 tw + w2 − 1
6 t+ 2

3w,
p4(x) = zu3 + yv3 + tw3 − w4 − 3

2w
3 + tw − 5

2w
2 − 1

4w −
1
4 ,

p5(x) = xzuv + tw3 − w4 + 1
2 tw

2 − 3
2w

3 + 1
2 tw

− 7
4w

2 − 3
8w −

1
8 ,

p6(x) = xzv2 + tw3 − w4 + tw2 − 3
2w

3 + 2
3 tw

− 7
6w

2 − 1
12w −

1
12 ,

p7(x) = −tw3 + w4 − tw2 − 3
2w

3 − 1
3 tw

− 13
12w

2 + 7
24w + 1

24 .

Equation 14 ([15]). The cyclic n-roots problem where (n = 10).

P(x) = (f1(x), · · · , fn(x)), x ∈ Cn,

where

fk(x) =
n∑
i=1

k∏
j=1

x(i+j) modn, k = 1, · · · , n− 1,

fn(x) =
n∏
j=1

xj − 1.

Equation 15 ([15]). The cyclic n-roots problem where (n = 9).
The equations are exactly the same as above but n = 9 instead of n = 10.
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Equation 16 ([14]). Neurophysiology problem.

P(x) = (p1(x), · · · , p6(x)), x ∈ C6,

where

p1(x) = x2
1 + x2

3 − 1,
p2(x) = x2

2 + x2
4 − 1,

p3(x) = x5x
3
3 + x6x

3
4 − C1,

p4(x) = x5x
3
1 + x6x

3
2 − C2,

p5(x) = x5x
2
3x1 + x6x

2
4x2 − C3,

p6(x) = x5x3x
2
1 + x6x4x

2
2 − C4.

Equation 17 ([14]). Chemical equilibrium problem.

P(x) = (p1(x), · · · , p5(x)), x ∈ C5,

where

p1(x) = x1x2 + x1 − 3x5,
p2(x) = 2x1x2 + x1 + 2R10x

2
2 + x2x

2
3

+R7x2x3 +R9x2x4 +R8x2 −Rx5,
p3(x) = 2x2x

2
3 +R7x2x3 + 2R5x

2
3 +R6x3 − 8x5,

p4(x) = R9x2x4 + 2x2
4 + 4Rx5,

p5(x) = x1x2 + x1 +R10x
2
2 + x2x

2
3 +R7x2x3

+R9x2x4 +R8x2 +R5x
2
3 + R6x3 + x2

4 − 1.

Equation 18 ([14]). Cassou-Nogues system.

P(x) = (p1(x), · · · , p4(x)), x = (a, b, c, d) ∈ C4,

where

p1(x) = 15b4cd2 + 6b4c3 + 21b4c2d− 144b2c
−8b2c2e− 28b2cde− 648b2d
+36b2d2e+ 9b4d3 − 120,

p2(x) = 30b4c3d− 32cde2 − 720b2cd− 24b2c3e− 432b2c2

+576ce− 576de+ 16b2cd2e + 16d2e2 + 16c2e2 + 9b4c4

+39b4c2d2 + 18b4cd3 − 432b2d2 + 24b2d3e
−16b2c2de− 240c+ 5184,

p3(x) = 216b2cd− 162b2d2 − 81b2c2 + 1008ce− 1008de+ 15b2c2de
−15b2c3e− 80cde2 + 40d2e2 + 40c2e2 + 5184,

p4(x) = 4b2cd− 3b2d2 − 4b2c2 + 22ce− 22de+ 261.

Equation 19 ([14]). A combustion chemistry problem.

P(x) = (p1(x), · · · , p11(x)), x ∈ C11,
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where
p1(x) = x2 + 2x6 + x9 + 2x10 − 10−5,
p2(x) = x3 + x8 − 3.0× 10−5,
p3(x) = x1 + x3 + 2x5 + 2x8 + x9 + x10 − 5.0× 10−5,
p4(x) = x4 + 2x7 − 10−5,
p5(x) = 0.5140437× 10−7x5 − x2

1,
p6(x) = 0.1006932× 10−6x6 − x2

2,
p7(x) = −0.7816278× 10−15x7 − x2

4,
p8(x) = 0.1496236× 10−6x8 − x1x3,
p9(x) = 0.6194411× 10−7x9 − x1x2,
p10(x) = 0.2089296× 10−14x10 − x1x

2
2.

Such a sparse system is very typical in a chemical equilibrium system.

Equation 20 ([14]). Inverse position problem.

P(x) = (p1(x), · · · , p8(x)), x ∈ C8,

where

pi(x) = x2
i + x2

i+1 − 1, i = 1, 2, 3, 4,

pi(x) =a1x1x3 + a2x1x4 + a3x2x3 + a4x2x4 + a5x5x7 + a6x5x8

+ a6x5x8 + a7x6x7 + a8x6x8 + a9x1 + a10x2 + a11x3

+ a12x4 + a13x5 + a14x6 + a15x7 + a16x8 + a17,

i = 5, 6, 7, 8.

This system is related to six-revolution-joint problem in mechanics.
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