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COMPUTATION OF SEVERAL
CYCLOTOMIC SWAN SUBGROUPS

TIMOTHY KOHL AND DANIEL R. REPLOGLE

Abstract. Let Cl(OK [G]) denote the locally free class group, that is the
group of stable isomorphism classes of locally free OK [G]-modules, where OK
is the ring of algebraic integers in the number field K and G is a finite group.
We show how to compute the Swan subgroup, T (OK [G]), of Cl(OK [G]) when
K = Q(ζp), ζp a primitive p-th root of unity, G = C2, where p is an odd
(rational) prime so that h+

p = 1 and 2 is inert in K/Q. We show that, under
these hypotheses, this calculation reduces to computing a quotient ring of a
polynomial ring; we do the computations obtaining for several primes p a
nontrivial divisor of Cl(Z[ζp]C2). These calculations give an alternative proof
that the fields Q(ζp) for p=11, 13, 19, 29, 37, 53, 59, and 61 are not Hilbert-
Speiser.

1. Introduction and background on Swan modules

For an algebraic number field K we denote by OK its ring of algebraic integers.
Let K = Q(ζp) where p is an odd prime and ζp is a primitive pth root of unity. It
is well known that OK is Z[ζp]. Consider the group ring Z[ζp]C2, where C2 is the
group of order 2. In this paper we indicate how to compute the Swan subgroup,
T (Z[ζp]C2), of the locally free classgroup Cl(Z[ζp]C2) when 2 is inert in K over
Q and h+

p = 1, (that is, when the class number of the maximal real subfield is
one—see the beginning of Section 2 for a definition). We will explicitly compute
the Swan subgroup T (Z[ζp]C2) for those primes p such that 3 ≤ p ≤ 66 satisfying
our conditions.

In the rest of this introduction we provide background on Swan subgroups, out-
line their application to the question of Hilbert-Speiser number fields, and state
our main results. The rest of this article is divided into two parts. In Section
2 we reduce the question to one suitable for the computer. In Section 3 we give
the result of the computation for several primes p applying this to the question of
Hilbert-Speiser number fields. Section 2 is based on parts of the second chapter of
the thesis of the second author [5]. The calculations in Section 3 are derived from
[3] of the first author.

Let Λ denote the order OK [G] in the group algebra K[G] for G a finite group
of order n. For each r ∈ OK such that (r, n) = 1 we may define the Swan module
〈r,Σ〉 = rΛ + ΛΣ where Σ =

∑
g∈G g. It can be shown (see [1] or [9], for example)

that Swan modules are locally free, rank one, Λ-modules and hence determine
classes in the locally free classgroup Cl(Λ). For the Swan module 〈r,Σ〉 we denote
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its class by [r,Σ] ∈ Cl(Λ). The set of Swan classes, T (Λ), is a subgroup of Cl(Λ)
called the Swan subgroup (that T (Λ) is a subgroup follows from the exact sequence
of Reiner-Ullom discussed below).

Let D(Λ) denote the kernel group which is the subgroup of Cl(Λ) determined
by those classes that become trivial upon extension of scalars to the maximal order
of K[G] containing OK [G]. Let ε and ε denote the augmentation and induced aug-
mentation maps, respectively, and let φ and φ denote the canonical quotient maps.
With this, consider the fiber product:

OKG
φ→ Γ = OK [G]/OKΣ

ε ↓ ε ↓

OK
φ→ OK = OK/nOK .

The result in [4], applied to the case when G is abelian of order n, is that there is
an exact Mayer-Vietoris sequence

O∗K × Γ∗ h→ OK
∗ δ→ D(Λ)→ D(Γ)⊕D(OK)→ 0,

where for any ring S we denote its group of multiplicative units by S∗. We define
the two maps h and δ. If (u, v) ∈ OK∗ × Γ∗, then h[(u, v)] = u · v−1 = φ(u)ε(v)−1.

For s ∈ OK
∗

it is shown in [9], for instance, that δ(s) is the Swan class [s,Σ]. This
gives that T (Λ) ⊆ D(Λ) and that T (Λ) ∼= OK

∗
/Im(O∗K × Γ∗), where Im denotes

the image under the map h.
This description of the Swan subgroup is both powerful and limited at the same

time. It is powerful because it does describe the Swan subgroup in terms of ring
theoretic information. However, it is limited as OK , OK∗, and Γ∗ are rarely com-
putable. More precisely, the computation of these objects is in itself a separate
algebraic number theoretic question. For the group of order two, the following re-
sult from [8], which we state as a lemma, removes the Γ∗ term. This result follows
from the fact that, for the group of order two, Γ∗ ∼= OK∗.

Lemma (cf [8, Proposition 2]). For |G| = 2 one has T (Λ) ∼= OK
∗
/Im(OK∗).

For 2 prime in Z[ζp], one has that Z[ζp] = Z[ζp]/2Z[ζp] is isomorphic to a quo-
tient ring of a polynomial ring. Restricting to when h+

p = 1 allows one to work
with a computationally convenient set of units. We see precisely under these restric-
tions the Swan subgroup T (Z[ζp]C2) is readily computable by computer analysis.
Specifically, letting F2 denote the field of two elements, we state our first main
result.

Theorem 1. For 2 prime in Z[ζp] and h+
p = 1,

T (Z[ζp]C2) ∼= (F2[z]/〈Φp(z)〉)∗/〈z + 1〉〈z〉

is cyclic, where Φp(z) is the pth cyclotomic polynomial and 〈z + 1〉 and 〈z〉 are the
ideals generated by the polynomials z + 1 and z in F2[z]/〈Φp(z)〉.

We note (see Lemma 5) that we will show that the restrictions 2 being prime in
Z[ζp], and h+

p = 1 are satisfied by the primes in the following list.

List 2. p = 3, 5, 11, 13, 19, 29, 37, 53, 59, and 61.
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A number field K will be said to be Hilbert-Speiser if each finite tame abelian
extension N/K has a trivial Galois module structure. That is, K is Hilbert-Speiser
if ON is a free Λ-module whenever N/K is a finite tame abelian Galois extension
of number fields with Galois group Gal(N/K) ∼= G. The classical Hilbert-Speiser
theorem asserts that Q, the rationals, is such a field. In [2] Swan modules and
tame elementary abelian extensions are considered to derive conditions a Hilbert-
Speiser field must satisfy. Let S = OK and for each prime l let S = S/lS and
Vl = S

∗
/Im(S∗).

Theorem ([2, Theorem 1]). Let K be a Hilbert-Speiser number field. Then:
(i) The class number of K is 1;
(ii) For each odd prime l the exponent of the group Vl divides (l − 1)2/2;
(iii) The group T (OK [C2]) ∼= V2 is trivial.

This theorem is used to show that if K is any algebraic number field other than
Q, then K is not Hilbert-Speiser [2, Theorem 2]. This is proved by a Galois theoretic
argument showing for each algebraic number field other than Q that there is an
odd prime l such that condition (ii) is violated. Our interest in this fact is that
upon performing the computation for the primes in List 2 we will obtain a proof of
the following corollary, our second main result, by violating condition (iii).

Corollary 3. For p = 11, 13, 19, 29, 37, 53, 59, and 61, Q(ζp) is not Hilbert-Speiser.

2. Reduction to computation

If K is a CM -field, then one usually denotes by K+ its maximal real subfield.
Of course, cyclotomic fields K = Q(ζn) for any positive integer n > 2 are CM and
K+ = Q(ζn + ζ−1

n ). Denote the class number of K+ by h+
n . Here and throughout

rest of the text, let φ be the usual Euler φ function. It is known that h+
n = 1 when

n is a prime power and φ(n) ≤ 66 or if n is not a prime power and both n ≤ 200
and φ(n) < 162. Stronger statements are possible if one assumes the Generalized
Riemann Hypothesis. For other results see for example the appendix of [10] from
which these remarks were taken. We note that in general to compute cyclotomic
Swan subgroups, it is natural to put restrictions on hp or use p-adic L-functions.
See [6] and [7] for example.

Proposition 4. Z[ζp]/2Z[ζp] ∼= F2p−1 ∼= F2[z]/〈Φp(z)〉, where Φp(z) is the pth
cyclotomic polynomial, whenever 2 is inert in Q(ζp) over Q.

Proof. Since we have assumed 2 is inert, Z[ζp]/2Z[ζp] is a field as 2Z[ζp] is a maximal
ideal. Furthermore, since Z[ζp]/2Z[ζp] is a field extension of Z/2Z of degree p− 1,
we have Z[ζp]/2Z[ζp] ∼= F2p−1 . However, F2p−1 ∼= F2[µ], where µ is the root of a
polynomial of degree p− 1 which is irreducible over F2[z], as Φp(z) is irreducible of
degree p− 1, the result follows.

By the remarks in Section 1 we know we wish to focus on when h+
p = 1 and 2 is

prime in Z[ζp]. We now show why the primes in List 2 satisfy this.

Lemma 5. The primes in List 2 satisfy our conditions.

Proof. From the appendix in [10] one knows for p prime and 2 ≤ p ≤ 66 that
h+
p = 1. Hence we show that those primes in this interval for which 2 is inert are

those precisely in List 2. Let K = Q(ζm), ζm be a primitive mth root of unity, and
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q ∈ N be prime. Then we have from [10, Theorem 2.13] that if q does not divide m,
then q factors in OK into the product of r distinct prime ideals of degree f , where
rf = φ(m) and f is the least integer such that qf ≡ 1 modm. Thus if qf ≡ 1 mod p
is satisfied only by f = p − 1, then q is inert. Determining that the minimal f
which solves congruence 2f ≡ 1 mod p is p− 1 is exactly the same as determining
which primes (in the interval 3 ≤ p ≤ 66) have 2 as their least primitive roots. The
ones for which this holds are those in List 2.

Our next proposition gives the units we will work with and their images.

Proposition 6. If h+
p = 1 and 2 is inert in Q(ζp) over Q, then the image of the

units of Z[ζp] in (Z[ζp]/2Z[ζp])∗ is generated by the images of ζp + 1 and ζp. The
image of 1 + ζp in Z[ζp]/2Z[ζp] is the same as the image of 1 + z in F2[z]/〈Φp(z)〉,
where Φp is the pth cyclotomic polynomial. Similarly, the image of ζp is given by
z.

Proof. Combining several facts about the units of Z[ζp] that may be found in of
[10, Chapter 8], we have that for p a prime such that h+

p = 1, the units of Z[ζp] are
generated by ±ζ, where ζ is any primitive pth root of unity, and units of the form
ξa = ζ

(1−a)/2
p [(1− ζap )/(1− ζp)]. From this it follows that the image of the units of

Z[ζp] is generated by the images of ζp and [(1 − ζap )/(1 − ζp)], 1 < a < p/2. The
quotient mod 2 is congruent to 1+ζp as 2 is primitive root mod p (2 is inert), we have
that a ≡ 2r mod p. We have Z[ζp]/2Z[ζp] ∼= F2(p−1) ∼= F2[z]/〈Φp(z)〉 by Proposition
4. Therefore, the result follows and the isomorphism is given by ζp → z.

We now can complete the proof of the theorem.

Proof Theorem 1. Let Λ = Z[ζp][C2]. We have T (Λ) ∼= OK
∗
/Im (OK∗). By the

lemmas above, the image of OK∗ in OK
∗

is isomorphic with the image of the sub-
group generated by z + 1 and z ∈ F2(z)/〈Φp(z)〉 under the map ζp → z. T (Λ) is
cyclic, as it is a quotient of the cyclic group (Z[ζp]/2Z[ζp])∗, (the group of multi-
plicative units of a field).

What all the above imply when taken together is that to compute T (Z[ζp]C2)
when 2 is inert and h+

p = 1, it is equivalent to compute (F2[z]/〈Φp(z)〉)∗/〈z + 1〉〈z〉.
This is only effectively computable for small values of p, even using a computer.
The computation is easier if p - |(F2[z]/〈Φp(z)〉)∗/〈z + 1〉| as then the image of ζp
does not have to be considered. (That is, since Im(〈z〉) must either be trivial or of
order p, if p - |(F2[z]/〈Φp(z)〉)∗/〈z + 1〉|, then the image must be trivial.)

3. Computations

As mentioned above, the computation of T (Z[ζp]C2) using these methods in-
volves determining the order of z + 1 inside (F2[z]/〈Φp(z)〉)∗ for each prime p in
List 2. Each of the corresponding unit groups is cyclic of order N = 2p−1 − 1.
Since each of the elements in the group are equivalence classes of polynomials, the
whole problem is suited to being done in a CAS such as Maple since Maple treats
all its basic expressions as polynomials. Moreover, the first author recognized that
the package described in [3], a set of tools to do computations within the group
algebras Q(ζpn)Cpn , could be modified to tackle this problem.

The final results of the order calculations are given in Table 1.
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Table 1.

p N |z + 1| |T |
3 3 3 1
5 15 15 1
11 1023 341 3
13 4095 819 5
19 262143 9709 27
29 268435455 475107 565
37 68719476735 3233097 21255
53 4503599627370495 3556769739 1266205
59 288230376151711743 31675383749 9099507
61 1152921504606846975 65498251203 17602325

Observe now that p - | N
|z+1| | is indeed the case for each prime p and so,

T (Z[ζp]C2) ∼= (F2[z]/Φp(z))∗/(〈z + 1〉〈z〉)
= (F2[z]/Φp(z))∗/〈z + 1〉.

Now observing that for p=11, 13, 19, 29, 37, 53, 59, and 61 we have that V2
∼=

T (Z[ζp]C2) is nontrivial, we have proved Corollary 3.
We note that the proof of this corollary in this manner is in the spirit of [8].

That is, the corollary of [8, Theorem 1] gives V2 is nontrivial for all imaginary
quadratic fields of class number 1 except Q(

√
−1), Q(

√
−3), and Q(

√
−7). Thus

they obtained, in effect, that these three fields were the only possible Hilbert-Speiser
imaginary quadratic fields.
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