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SPECIAL PRIME NUMBERS
AND DISCRETE LOGS IN FINITE PRIME FIELDS

IGOR A. SEMAEV

Abstract. A set A of primes p involving numbers such as abt + c, where
|a|, |b|, |c| = O(1) and t → ∞, is defined. An algorithm for computing dis-
crete logs in the finite field of order p with p ∈ A is suggested. Its heuris-
tic expected running time is Lp[ 1

3
; ( 32

9
)1/3] for ( 32

9
)1/3 = 1.526 · · · , where

Lp[α;β] = exp((β + o(1)) lnα p(ln ln p)1−α) as p → ∞, 0 < α < 1, and
0 < β. At present, the most efficient algorithm for computing discrete logs
in the finite field of order p for general p is Schirokauer’s adaptation of the
Number Field Sieve. Its heuristic expected running time is Lp[ 1

3
; ( 64

9
)1/3] for

( 64
9

)1/3 = 1.9229 · · · . Using p ∈ A rather than general p does not enhance the
performance of Schirokauer’s algorithm. The definition of the set A and the
algorithm suggested in this paper are based on a more general congruence than
that of the Number Field Sieve. The congruence is related to the resultant of
integer polynomials. We also give a number of useful identities for resultants
that allow us to specify this congruence for some p.

Let Fp be a finite field of prime order p, and a ∈ Fp its primitive element. The
discrete log problem in Fp is as follows: given a nonzero b ∈ Fp, find the residue
y(mod p− 1) for y such that ay = b in Fp.

The security of several cryptographic systems depends on the difficulty of com-
puting discrete logs [1, 2]. The best known algorithm for computing discrete logs in
Fp with an arbitrary prime p is that suggested by Schirokauer in [3]. Its heuristic
expected running time is L[1

3 ; (64
9 )1/3] for (64

9 )1/3 = 1.9229 · · · . Here, as usual,

L[α;β] = Lp[α;β] = exp((β + o(1)) lnα p ln ln1−α p)

as p → ∞, 0 < α < 1, and 0 < β. This method is an adaptation of the popular
Number Field Sieve algorithm (NFS), which has been used previously for factor-
ization. It comes from the Gaussian integers method derived in [4] for computing
discrete logs in Fp. The NFS algorithm is based on the congruence

f(m) ≡ 0(mod p),(1)

where f(x) is an irreducible polynomial in Z[x] and m ∈ Z. The main parameter
of the method is k = deg f(x); the other parameters, such as m and the coefficients
of f(x), are bounded by p1/k in absolute value. There exists p for which the
coefficients of f(x) are no larger than po(1/k) in absolute value. For example, let
abt + c ≡ 0(mod p) for |a|, |b|, |c| = O(1) as t → ∞. Then we have (1) with
f(x) = axk + cbt0 , and m = b(t+t0)/k, where t ≡ −t0(mod k) and 0 ≤ t0 < k.
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364 I. A. SEMAEV

If k = o(
√

ln p), then p is as required. Such p are called special prime numbers
in [5]. K. McCurley offers a $100 reward for breaking the Diffie-Hellman scheme
with the prime p = 2 · 739 · q + 1, where q = (7149 − 1)/6 [6]. This requires
solving the discrete log problem in Fp. The algorithms for solving the discrete log
problem in Fp suggested by Gordon [5] and Schirokauer [3] give no advantage to
special primes over general primes. There is yet another algorithm in Gordon’s work
designed specifically for special p, but its expected running time is Lp[2

5 ; 1, 004]. In
other words, it is asymptotically slower than the algorithms for general p. In [7]
McCurley’s challenging problem was solved.

In this paper, we define a set A of primes p that includes numbers of the form
abt + c or their prime factors. We suggest an algorithm for solving the discrete log
problem in Fp for p ∈ A in heuristic expected running time Lp[1

3 ; (32
9 )1/3], (32

9 )1/3 =
1.526 · · · .

The definition of the set A and the algorithm are based on a more general
congruence than (1), namely,

Res(f, g) ≡ 0(mod p),(2)

where Res is the resultant of the polynomials

f(x) = a0x
n1 + · · ·+ an1−1x+ an1 and g(x) = b0x

n2 + · · ·+ bn2−1x+ bn2

over Z. By definition [8]

Res(f, g) = an2
0 bn1

0

∏
α,β

(α− β) = an2
0

∏
α

g(α) = (−1)n2n1bn1
0

∏
β

f(β),

where α and β range over the roots of f(x) and g(x), respectively, with multiplic-
ities taken into account. Obviously, (1) is the special case of (2) corresponding to
deg g(x) = 1.

Let |f | = maxi |ai| and |g| = maxj |bj|. Consider the set A′ of the primes p for
which congruence (2) is valid. The degrees of the polynomials are related to the
coefficients as

lnδ p ≤ k = n1 + n2 ≤ ((3/2)1/3 + o(1))(ln p/ ln ln p)1/3,

n2 = o(n1), |f | ≤ po(1/k), |g| ≈ p1/k
(3)

for any fixed positive δ < 1/3. For two positive real-valued functions a(x) and b(x)
we write a(x) ≈ b(x) if ln a(x)/ ln b(x)→ 1 as x→∞. We estimate the complexity
of the discrete log problem in Fp with p ∈ A′ by ≈ p2/k2

operations. In the set A,
we include those primes p ∈ A′ for which k = ((3/2)1/3 + o(1))(ln p/ ln ln p)1/3 in
(3). It is easy to see that p2/k2 ≈ Lp[1

3 ; (32
9 )1/3] for p ∈ A. The algorithm has two

parts. The first is computing the discrete logs to some base; this only must be done
once for a given p and requires ≈ p2/k2

operations. The second finds the logarithm
of an individual b ∈ Fp. It is asymptotically faster and takes ≈ p(1+

√
2)/2k2

for
(1 +

√
2)/2 = 1.914 · · · . We believe that our algorithm would solve McCurley’s

challenging problem faster than those suggested in [3, 5, 7].
Let AX be a set of primes p < X from A. The definition suggests that |AX | ≥ Xε

for any ε = ε(X) such that ε(X) → 0 as X → ∞. Note that recognizing p ∈ A
requires generally more calculations than solving the discrete log problem in Fp.
We note also that the prime numbers p, p→∞, such as abt + c or their big prime
factors, are in the set A for ln(max{|a|, |b|, |c|}) = o(ln1/3 p ln ln2/3 p).
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We stress that our method differs from those of [3, 5]. Indeed, evaluating an
individual logarithm by the methods of [3, 5] involves finding an integer l such that

alb ≡ q1q2 · · · qr(mod p)

for prime integers qi ≤ p1/k. Next the logarithm of each qi must be evaluated. For
this purpose, authors of [3, 5] sieve the values of polynomials f(x) = fqi(x) depen-
dent on qi for which (1) holds. The advantage of our method is that congruence (2)
or (1) does not depend on qi (see Section 5). This allows us to apply relations (3)
or use a polynomial f(x) with small coefficients. In other words, we make extensive
use of the structure of special primes.

This author has already used congruence (2) for factoring purposes [9]; simi-
lar but more special results are obtained in [10]. Section 7 contains some useful
identities for resultants derived in [9].

The author is grateful to MacCentre, Moscow, for technical assistance in prepa-
ration of this paper and to Olga Sipacheva for her transformations of my English
prose.

1. Algebraic numbers

In this section, we recall some results from algebraic number theory that are
used in what follows. We assume that the polynomials f(x) and g(x) in (2) are
irreducible over Q. Let α and β be roots of f(x) and g(x), respectively. Then
K1 = Q(α) and K2 = Q(β) are fields of algebraic numbers of degrees n1 and n2.
Let Oi be the ring of integers in Ki. Generally, α and β are not integers over Q.
But α1 = a0α, β1 = b0β are integers. They are roots of the polynomials

f1(x) = xn1 + a1x
n1−1 + · · ·+ an1−1

0 an1 ,

g1(x) = xn2 + b1x
n2−1 + · · ·+ bn2−1

0 bn2 ,

respectively.

Proposition 1. Let gcd(a0, an1) = 1, and let R denote the ideal that is the gcd of
the ideals α1O1 and a0O1 in O1. Then

Norm R = |a0|n1−1.

Proposition 1 is proved in [9]. Put

h(x) = c0x
k + c1x

k−1 + · · ·+ ck ∈ Z[x].

Proposition 2. Let gcd(a0, an1) = 1 and R1 = (a0O1)R−1. Then h(α)O1 =
QR

−k
1 , where Q is an integer ideal in K1 with

Norm Q = |ak0 Normh(α)| ≤ (k + 1)n1(n1 + 1)k/2|f |k|h|n1 .

Proof. We have

h(α) = (c0αk1 + c1a0α
k−1
1 + · · ·+ cka

k
0)/ak0 .

The numerator of this fraction belongs to O1 and equals 0 modulo Rk. Therefore,

h(α)O1 = (Ra−1
0 )kQ = R

−k
1 Q,

where Q = (c0αk1 + c1a0α
k−1
1 + · · · + cka

k
0)O1R

−k is an integer ideal. Since
Norm R1 = a0, we have Norm Q = |ak0 Normh(α)|. Let us find an upper bound for
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|Normh(α)|. By definition,

|Normh(α)| =
∏
α

|c0αk + c1α
k−1 + · · ·+ ck| ≤

∏
α

((k + 1)|h|max{1, |α|k}),

where α ranges over the set of roots of f(x). By Landau’s inequality

|a0|
∏
α

max{1, |α|} ≤ (n1 + 1)1/2|f |.

Hence

|Normh(α)| ≤ ((k + 1)|h|)n1

(
|a0|

∏
α

max{1, |α|}
)k

/|a0|k

= ((k + 1)|h|)n1(n1 + 1)k/2|f |k/|a0|k.
This completes the proof of Proposition 2.

The ring Z[α1] is a subring of O1. If a prime rational q does not divide the
index of Z[α1] in O1, then the decomposition of qO1 in O1 is given by the following
well-known statement [5, p. 127].

Proposition 3. If q does not divide [O1 : Z[α1]] and

f1(x) =
∏
i

heii (x)(4)

over Fq[x], where hi(x) are different irreducible polynomials in Fq[x], then qO1 =∏
iQ

ei
i for different prime ideals Qi ⊂ O1 such that Qi = gcd(hi(α1)O1, qO1) and

Norm Qi = qdeghi(x).

Following [5] we say that a prime ideal of O1 or O2 of degree 1 is bad if its norm
divides the index a0[O1 : Z[α1]] or b0[O2 : Z[β1]], respectively. All other prime ideals
of degree 1 are called good.

In [5], prime integers dividing the index are recognized via the following theorem
of Dedekind. Suppose that f1(x) has factorization (4) in the ring Fq[x]. Then the
primes q divides the index if and only if there exists a j such that ej ≥ 2 and hj(x)
divides (f1(x) −

∏
i h

ei
i (x))/q in Fq[x].

The following proposition slightly generalizes Proposition 2 of [5].

Proposition 4. If gcd(a0, an1) = 1 and c, d 6= 0 are coprime integers such that

cn1f(d/c) = a0d
n1 + a1cd

n1−1 + · · ·+ an1c
n1

is coprime to a0[O1 : Z[α1]], then

(cα− d)O1 = Q
l1
1 Q

l2
2 · · ·Qls

s R
−1
1 ,

where Qi, i = [1, s], are different good prime ideals of O1, and Norm Qi = qi for
different qi. Moreover,

cn1f(d/c) =
∏
i

qlii

is the prime factorization of cn1f(d/c).

Consider congruence (2). We assume that p does not divide the ∆f ,∆g-discrim-
inants of the polynomials f(x) and g(x) and their leading coefficients a0 and b0.
Therefore, p does not divide the discriminants of the polynomials f1(x) and g1(x).
Thus p does not divide a0[O1 : Z[α1]] and b0[O2 : Z[β1]].
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Let h(x) ∈ Fp[x] be an irreducible polynomial of degree t ≥ 1 that is a common
factor of the polynomials f(x) and g(x) modulo p. Then h1(x) = at0h(x/a0) is an
irreducible factor of f1(x) in Fp[x]. Similarly, h2(x) = bt0h(x/b0) is an irreducible
factor of g1(x) in Fp[x]. By Proposition 3,

P1 = gcd(h1(α1)O1, pO1) and P2 = gcd(h2(β1)O2, pO2),

are prime ideals of O1 and O2, respectively. Therefore, Norm(Pi) = pt. Thus
Oi/Pi

∼= Fpt . Generally, α 6∈ O1 and β 6∈ O2. Put

O′1 =
∞⋃
j=0

a−j0 O1, O′2 =
∞⋃
j=0

b−j0 O2.

Since p does not divide a0b0, the ideal P′i = PiO′i is a prime ideal in O′i. Consider

ϕi : O′i → O′i/P′i ∼= Fpt , i = 1, 2.

Let ξ denote the image of ξ ∈ O′i under ϕi. We can assume that α = β.
Let Ui be the group of units of Oi, and U∗i ⊆ Ui the group of roots of unity.

Let ni = ri1 + 2ri2, where ri1 is the number of real embeddings of Ki, and 2ri2 is
the number of its complex embeddings. Consider the well-known map Ki → Rri ,
where ri = ri1 + ri2, defined by

ξ ∈ Ki → li(ξ) = (2νi1 ∈ ln |σi1(ξ)|, . . . , 2νiri ln |σiri(ξ)|),

where

νij =

{
1 if σij is a complex embedding,
0 if σij is a real embedding.

The image of Ui under this map is a lattice of dimension ri − 1 in Rri . The map
ξ ∈ Ui → li(ξ) is a homomorphism with kernel U∗i . We define a map

l : U1 × U2 → Rr1+r2

by l(ξ1, ξ2) = (l1(ξ1), l2(ξ2)), ξi ∈ Ui. Obviously, l(U1×U2) is a lattice of dimension
r1 + r2 − 2. We denote it by L(f, g). Thus any t ≥ r1 + r2 − 1 pairs of units
(ξ1j , ξ2j) ∈ U1 × U2, where j ∈ [1, t], are related by

t∏
j=1

ξ
zj
1j =

t∏
j=1

ξ
zj
2j = 1,

where zj with j ∈ [1, t] are integers not all zero. For ξ ∈ Rn, we denote by |ξ| its
Euclidean length. In [11], the following theorem is proved.

Theorem 1. Let L be a lattice in Rn, and λ a positive number such that λ ≤
minξ∈L−0 |ξ| = λ(L), and let ξi ∈ L, with i ∈ [1, t], be vectors such that |ξi| ≤ M .
Suppose that there exist integers zj with j ∈ [1, t] such that not all of them are zero
and

∑t
j=1 zjξj = 0. Then there exist such integers zj with the properties that |zj | ≤

((2n + 3)M/λ)n and their evaluating requires no more than O(n5+ε(lnM/λ)1+ε)
binary operations for any ε > 0.

If L = L(f, g) and n1 ≥ n2, then, by Lemma 1 of [5], we have λ(L) ≥ 1/10n2
1.

It is easy to see that |U∗i | = O(ni ln lnni).
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2. Description of the algorithm

In this section we give a brief description of our algorithm. The details will be
discussed later on. We suppose that all assumptions made in Section 1 concerning
the polynomials f(x) and g(x) in (2) hold. The algorithm parameters k,B, and L

are related by B ≈ L ≈ p1/k2
, where k = n1 + n2 obeys estimates (3).

Our method is based on the efficient solution of the principal ideal problem for
the good ideals in Oi whose norms are bounded by B. In other words, we determine
positive integers u and v and, for the ideas A ⊂ O1 and B ⊂ O2 specified above,
algebraic integers γA ∈ O1 and δB ∈ O2 such that

Av = γAO1,(5)

B
u = δBO2.(6)

The numbers γA and δB are calculated approximately; more precisely, we evaluate
the vectors l1(γA) and l2(δB) with an accuracy of ≈ B1/2 binary digits.

2.1. We sieve through pairs c, d of small integers (|c|, |d| ≤ L) to find coprime c
and d for which

a0 Norm(cα− d) = cn1f(d/c)(7)

and

b0 Norm(cβ − d) = cn2g(d/c)(8)

are both smooth with respect to B (or B-smooth), i.e., do not have prime factors
larger thanB. If integers (7) and (8) are coprime to a0[O1 : Z[α1]] and b0[O2 : Z[β1]],
respectively, then Proposition 4 gives the decompositions

(cα− d)O1 =
∏
A

AlcdAR
−1
1 , (cβ − d)O2 =

∏
B

BmcdBR
−1
2 ,

where A ⊂ O1 and B ⊂ O2 are good ideals with Norm A,NormB ≤ B and

R1 = (a0O1)/ gcd(a0O1, α1O1) ⊂ O1, R2 = (b0O2)/ gcd(b0O2, β1O2) ⊂ O2.

Note that R1 and R2 can be eliminated by considering decompositions of the
ideals (cα−d)

(c1α−d1)O1 and (cβ−d)
(c1β−d1)O2 for some c1 and d1 but this makes the formu-

las more complicated. For simplicity, we assume that a0 = b0 = 1. Then the
decompositions specified above can be represented as

(cα− d)O1 =
∏
A

AlcdA(9)

and

(cβ − d)O2 =
∏
B

BmcdB .(10)

2.2. Let us raise both relations to the power uv. Relations (5) and (6) imply that

(cα− d)uv
∏
A

γ−ulcdA

A
= ξcd(11)

and

(cβ − d)uv
∏
B

δ−vmcdB

B
= ηcd(12)
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are units in O1 and O2, respectively. To those coprime pairs c, d for which the
integers (7) and (8) are smooth, we assign the pairs (ξcd, ηcd) ∈ U1 × U2 of units.
We can obtain ≈ B such pairs of units. Indeed, by condition (3),

|cn1f(d/c)| ≤≈ Ln1 |f | ≈ p1/k, |cn2g(d/c)| ≤≈ Ln2 |g| ≈ p1/k.

The results of [12] imply that the probability P of the smoothness of both integers
(7) and (8) equals ≈ exp(−2k ln k). Since L2P ≥≈ B under the assumptions made
above, we obtain ≈ B pairs of the required form. Every s ≤ n1 + n2 pairs give two
multiplicative relations ∏

cd

ξycdcd = 1,
∏
cd

ηycdcd = 1.(13)

2.3. Relations (11), (12), and (13) imply that∏
cd

(cα− d)uvycd
∏
A

γ−uycdlcdA

A
= 1 and

∏
cd

(cβ − d)uvycd
∏
B

δ−vycdmcdB

B
= 1.

Let xA and xB denote the logarithms of γA, δB ∈ Fpt . The relations given above
yield the convergence

∑
A

u

(∑
cd

ycdlcdA

)
xA −

∑
B

v

(∑
cd

ycdmcdB

)
xB ≡ 0 (mod pt − 1).(14)

2.4. Let S = (lcdA) and R = (mcdB) be matrices whose rows are indicated by
the pairs c, d for which the integers (7) and (8) are B-smooth and coprime to the
indices, and columns are indexed by the good ideals A and B. Then the left-hand
side of (14) equals the product of the row (ycd)cd and the matrix (uS,−vR). Thus
each relation (13) gives one row (ycd)cd and congruence (14). These rows form a
matrix Y . We have a system of congruences with matrix T = Y (uS,−vR). This
matrix is a product of two sparse integer matrices. Consider xA0 = 1 for some A0.
The system can be reduced to one system with matrix Y and to another system
with matrix (uS,−vR). All the fundamental solutions of the first system can be
written at once, since the matrix Y is of a very special form. We solve the other
system modulo p−1 by applying the Wiedemann algorithm [13] and thereby obtain
xA ≡ z(A,A0)xA0 (mod p− 1) and xB ≡ z(B,A0)xA0 (mod p− 1).

We have to solve the following problems:

(1) Evaluate the terms of relations (5) and (6), i.e., solve the principal ideal
problem.

(2) Evaluate the terms of (13) for pairs of units (11), (12), i.e., find multiplicative
relations between the units.

(3) Express the unknown individual logarithm in Fp via xA, xB(mod p − 1) and
estimate the running time of the entire algorithm.

These problems are solved successively in Sections 3–5.

3. The principal ideal problem

In this section, we evaluate the terms of (5) and (6). Let B1 = B1/2.
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3.1. We sieve pairs c, d of small integers (|c|, |d| ≤ L1/2) to find coprime pairs for
which Norm(cα − d) = cn1f(d/c) is smooth with respect to B1 and coprime to
[O1 : Z[α]]. Recall that we assume that a0 = 1. For such c, d, we have

(cα− d)O1 =
∏
A

AvcdA ,(15)

where A ⊂ O1 are good ideals with Norm A ≤ B1. Let s1 be the number of such
ideals. Then s1 ≈ B1. By (3),

|Norm(cα− d)| ≤≈ Ln1/2|f | ≈ p1/2k.

According to [12], the probability P1 of smoothness of Norm(cα−d) is≈exp(−k lnk).
Since LP1 ≥≈ B1, we obtain ≈ B1 ≈ s1 pairs c, d. Consider the sparse integer
(≈ B1)×s1 matrix V = (vcdA)cdA. We can treat V as a square s1×s1 matrix. Using
Wiedemann’s coordinate recurrence method [13], we determine the characteristic
polynomial of V :

λ(x) = xs1 + λ1x
s1−1 + · · ·+ λs1 ,

where v = | det V | = |(−1)s1λs1 |. It is easy to see that |λi| ≤ exp(≈ s1). If v = 0,
we can slightly change V by using several new decompositions of the form (15).
Thus, we can restrict ourselves to the case v 6= 0.

3.2. Let Λ0 be the s1×r1 matrix whose rows are the vectors l1(cα−d) ∈ Rr1 , where
c, d range over all pairs used in (15). Each coordinate of l1(cα − d) is determined
with an accuracy of ≈ B1 binary digits. Let V ′ be a square s1 × s1 matrix such
that V ′V = vE for the identity matrix E. We evaluate Λ1 = V ′Λ0 by

Λ1 = − sgn(λs1 )(V s1−1 + λ1V
s1−2 + · · ·+ λs1−1E)Λ0

according to Horner’s method. So Λ1 is the s1 × r1 matrix with rows l1(γA),
where each γA is defined by Av = γAO1 and A ranges over all good ideals A with
Norm A ≤ B1. Since V is sparse and |λi| ≤ exp(≈ s1), the entries of Λ1 are
determined with an accuracy of ≈ B1 binary digits.

3.3. Let A′ be a good ideal with Norm A′ = q, where B1 < q ≤ B. Let αq be
a root of the polynomial f(x)(mod q) such that A′ = gcd((α − αq)O1, qO1). We
sieve pairs of small integers c, d such that |c|, |d| ≤ L and cαq ≡ d(mod q) to find a
coprime pair c, d for which

Norm(cα− d)/q = cn1f(d/c)/q

is a B1-smooth integer coprime to [O1 : Z[α]]. For such c and d we have

(cα− d)O1 = A′
∏
A

Av(A′,A),(16)

where A are good ideals with Norm A ≤ B1. Let s be the number of good ideals
A ⊂ O1 with Norm A ≤ B.
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3.4. Let ∆ be the (s− s1)× r1 matrix with rows l1(cα−d) determined by (16) for
each good ideal A′ such that B1 < Norm A′ ≤ B. The coordinates of these rows are
determined with an accuracy of ≈ B1 binary digits. Let us define the (s− s1)× r1

matrix Λ2 by

Λ2 = v∆− V1Λ1,(17)

where V1 is the (s− s1)× s1 matrix whose rows are (v(A′,A))A in (16). The rows
of the matrix Λ2 are l1(γA) for good ideals A′ such that B1 < Norm A′ ≤ B. Their
coordinates are determined within ≈ B1 binary digits. This gives (5). Relations
(6) are obtained similarly.

It is easy to see that decompositions (15) and (16) can be derived with the use
of the sieving procedure described in Section 2.

The application of relations (5) requires ≈ B1 bits of storage space for each
vector l1(γA), i.e., ≈ BB1 = B3/2 bits in total. To reduce the storage requirement,
we store only the matrix Λ1 and all decompositions of the form (16) used; in
other words, we only store the vector (v(A′,A))A and pair c, d for each ideal A′.
This requires ≈ B bits. The storage space necessary for the application of (6) is
determined similarly.

4. Multiplicative relations between units

In this section, we evaluate the terms of (13). To apply Theorem 1, we have
to specify the vectors (l1(ξcd), l2(ηcd)) ∈ L(f, g) corresponding to the pairs of units
ξcd, ηcd defined by (11), (12). In addition, we must estimate their Euclidean lengths.
Let us do this for l1(ξcd). By (11), we have

l1(ξcd) = uvl1(cα− d)− u
∑
A

lcdAl1(γA).(18)

Since the vector (lcdA)A is sparse, we can easily evaluate all l1(γA) in (17) with the
use of the stored matrix Λ1 and the corresponding decompositions of the form (16).

First, we estimate the Euclidean length of l1(cα − d) for c, d with |c|, |d| ≤ L.
We have

|l1(cα− d)| ≤
n1∑
i=1

| ln |cα(i) − d||,

where α(i) are the roots of the polynomial f(x). Since |cα(i)−d| ≤ 2Lmax{1, |α(i)|}
and by the Landau inequality

max{1, |α(i)|} ≤
n1∏
i=1

max{1, |α(i)|} ≤ (n1 + 1)1/2|f |,

we have |cα(i) − d| ≤ 2L(n1 + 1)1/2|f | = O(p1/k). Hence ln |cα(i) − d| ≤ c1(ln p)/k
for some c1 > 0. On the other hand, |

∑n1
i=1 ln |cα(i) − d|| = | ln |Norm(cα − d)|| =

O((ln p)/k). Therefore,

|l1(cα− d)| ≤
∣∣∣∣∣
n1∑
i=1

ln |cα(i) − d|
∣∣∣∣∣ = O(ln p).

Now, we estimate the Euclidean lengths of the rows of Λ1. We have Λ1 = V ′Λ0

for some integer matrix V ′ such that V ′V = vE (see Section 3). By Hadamard’s
inequality, the entries of V ′ are bounded by exp(≈ B1). Thus the Euclidean lengths
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of the rows of Λ1 are also bounded by exp(≈ B1). Since v = exp(≈ B1), (17)
implies that the Euclidean lengths of the rows of Λ2 are bounded by the same value
exp(≈ B1). Thus, by (18) |l1(ξcd)| ≤ exp(≈ B1). Similarly, |l2(ηcd)| ≤ exp(≈ B1).

Using the algorithm suggested by this author in [11], we obtain the terms of the
relation

∑
cd ycdl(ξcd, ηcd) = 0 in L(f, g) for integers ycd, i.e., of the relations∑

cd

ycdl1(ξcd) = 0,
∑
cd

ycdl2(ηcd) = 0.

Now, the sought relations of the form (13) are obtained from Theorem 1 by multi-
plying the integer ycd by some factors of |U∗1 | or |U∗2 |, if necessary.

5. The individual logarithm

In this section we express the unknown logarithm y(mod p − 1) via the
xA, xB(mod p − 1) values found in Section 2. We assume that the integer a is
bounded by p1/k in absolute value; this is so under the assumption of the general-
ized Riemann hypothesis [15].

5.1. We search through random integers l ∈ [1, p− 1] until we find one for which

alb ≡ q1q2 · · · qr(mod p),(19)

where qi are rational primes ≤ p1/k; the fulfillment of (19) is verified by the elliptic
curve factoring method [14]. For i ∈ [0, r] let xi be the logarithm of the residue qi
modulo p (we assume that q0 = a). To find y(mod p− 1), we must relate xi to xA

and xB.

5.2. For each i ∈ [0, r] we find an integer c bounded by L1/2 in absolute value for
which the ideal Qc = (qi + cg(α))O1 has the decomposition

Qc =
∏
A

AltA ,(20)

where A are prime ideals with Norm A ≤ p1/k coprime to [O1 : Z[α]]. To obtain (20),
we evaluate Norm Qc, which is coprime to [O1 : Z[α]], and find its prime factors
≤ p1/k by the elliptic curve factoring method. If the decomposition obtained is
complete, then the degrees of the prime ideals on the right-hand side of (20) equal
1 with probability tending to 1. Indeed, let Qc be a product of first-degree prime
ideals in O1 whose norms are ≤ p1/k and exponents in Qc equal 1. This is so if
Norm Qc is a p1/k-smooth square-free integer. The probability that a p1/k-smooth
integer bounded by ≈ p in absolute value is square-free tends to 1 as p → ∞; this
readily follows from the considerations of [12].

Proposition 2 implies that

Norm Qc = |Norm(qi + cg(α))| ≤ (n2 + 1)n1(n1 + 1)n2/2|f |n2 |qi + cg(x)|n1 ≈ p.

So the probability of the event under consideration is ≈ exp(−k ln k). Under con-
ditions (3), L1/2 ≥≈ exp(−k ln k), which implies (20).
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5.3. Take a positive real ν < 1. Our immediate goal is to construct a reduction
of a good ideal A′ ⊂ O with Norm A′ = q, where B < q ≤ p1/k. In other words,
we want to find a relation between this ideal and ideals with norms ≤ qν in Oi,
i = 1, 2. The ideal A′ is the gcd of the ideals (α − αq)O1 and qO1 for some root
αq of the polynomial f(x) modulo q. Let Lq(αq) be the lattice of pairs of integers
(c, d) such that cαq ≡ d(mod q).

We look for a coprime pair (c, d) ∈ Lq(αq) such that |c|, |d| ≤ Lq1/2 and the
integers

Norm(cα− d)/q ≡ cn1f(d/c)/q and Norm(cβ − d) ≡ cn2g(d/c)

are qν-smooth and coprime to the indices [O1 : Z[α]] and [O2 : Z[β]], respectively.
To find it, we apply the elliptic curve factoring method for each such pair. For the
pair c, d obtained, we have the decompositions

(cα− d)O1 = A
′
∏
A

A
l(A′,A),(21)

(cβ − d)O2 =
∏
B

B
m(A′,B),(22)

where l(A′,A),m(A′,B) ∈ N and A ⊂ O1,B ⊂ O2 are good ideals with norms
≤ qν . We have the estimate

|Norm(cα− d)| = |cn1f(d/c)| ≤ (n1 + 1)|f |(Lq1/2)n1 ≈ p1/kqn1/2.

Similarly,

|Norm(cβ − d)| = |cn2g(d/c)| ≤ (n2 + 1)|g|(Lq1/2)n2 ≈ p1/kqn2/2.

We assume that the probability of qν -smoothness of Norm(cα−d) and Norm(cβ−d)
for a random pair c, d ∈ Lq(αq) with |c|, |d| ≤ Lq1/2 equals the probability of
the occurrence of two qν -smooth naturals in [1,≈ p1/kqn1/2] and [1,≈ p1/kqn2/2],
respectively. This probability is ≈ exp(−u lnu), where

u =
k

2ν
+

2 ln p
kν ln q

.

We have u = k
2ν (1 + o(1)) if p1/m < q ≤ p1/k, where m = k3/2, and u ≤ 5k

2ν if
B < q ≤ p1/m.

It is easy to see that, for a random a(mod q), the lattice Lq(a) has a basis of
vectors whose coordinates are bounded by O(q1/2 ln ln q) with probability tending
to 1 as q → ∞. So with probability tending to 1, the number of vectors in Lq(a)
with coordinates bounded by Lq1/2 is ≈ L2.

For 5/8 ≤ ν < 1 we have L2 ≥≈ exp(u lnu). Thus, we can find the desired pair
and the corresponding decompositions (21) and (22) by searching through a set of
pairs (c, d) ∈ Lq(αq) bounded by Lq1/2 in absolute value.

A good ideal B′ ⊂ O2 with Norm B′ = q, where B < q ≤ p1/k, is reduced
similarly.

5.4. For each prime rational qi, i ∈ [1, r], on the right-hand side of (19) and q0 = a,
we proceed as follows.

Applying the reduction constructed above to each ideal A′ with Norm A′ =
q > B on the right-hand side of (20), yields decompositions of the form (21)
and (22), where Norm A, Norm B ≤ qν . Applying the same reduction to each
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of the ideals A and B obtained yields decompositions of the forms (21) and (22)
with Norm A, Norm B ≤ qν

2
, etc. Each step gives O(k) new ideals. Thus, after

exp(O(ln ln2 p)) steps, we obtain

(qi + cig(α))
∏
cd

(cα− d)zicdO1 =
∏
A

Al
′
iA ,(23)

∏
cd

(cβ − d)zicdO2 =
∏
B

B
m′iB ,(24)

where A ⊂ O1 and B ⊂ O2 are good ideals with Norm A, Norm B ≤ B. Note that
the number of nonzero l′iA and m′iB is bounded by exp(O(ln ln2 p)).The same value
bounds the Euclidean lengths of the vectors (l′iA)A, (m′iB)B, and (zicd)cd.

5.5. Raising the relations (23) and (24) to the power uv and applying (5) and (6)
we see that

(qi + cig(α))uv
∏
cd

(cα− d)uvzicd
∏
A

γ
−ul′iA
A

= ξi,(25)

and ∏
cd

(cβ − d)uvzicd
∏
B

δ
−vm′iB
B

= ηi(26)

are units in O1 and O2, respectively. We evaluate the vectors l1(ξi) and l2(ηi)
and hence the vector l(ξi, ηi) ∈ L(f, g) with the use of the vectors l1(qi + cig(α)),
l1(cα−d), l1(γA), l2(cβ−d), and l2(δB) taken within ≈ B1 binary digits. Therefore,
l(ξi, ηi) is determined with the same accuracy. By the method used in Section 4,
we derive the integer relation∑

cd

ycdl(ξcd, ηcd) + yil(ξi, ηi) = 0,(27)

where l(ξi, ηi) is the vector obtained above and ξcd and ηcd satisfy (11) and (12).
This gives the relations

ξyii
∏
cd

ξycdcd = 1 and ηyii
∏
cd

ηycdcd = 1.(28)

Applying the algorithm given by Theorem 1 to evaluate (27) and determining its
complexity requires estimating the Euclidean length of the vector l(ξi, ηi). In
Section 3 we showed that |l1(cα − d)| = O(ln p). Similarly, we can show that
|l1(qi + cig(α))| = O(ln p). Thus (25) and (26) imply that |l1(ξi)| ≤ exp(≈ B1), be-
cause u, v ≤ exp(≈ B1). Similarly, |l2(ηi)| ≤ exp(≈ B1); so |l(ξi, ηi)| ≤ exp(≈ B1).

5.6. Relations (25), (26), and (28) together with (11) and (12) and the observation
that qi + cig(α) = qi in Fpt give the following multiplicative relation in the finite
field Fpt :

quvyii

∏
A

γ
(uyil

′
iA+u

∑
cd ycdlcdA)

A
=
∏
B

δ
(vyim

′
iB+v

∑
cd ycdmcdB)

B .
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Therefore,

uvyixi + u
∑
A

(yil′iA +
∑
cd

ycdlcdA)xA

= v
∑
B

(yim′iB +
∑
cd

ycdmcdB)xB(mod pt − 1).

5.7. Consider this congruence modulo p − 1. If gcd(uvyi, p − 1) = 1, then xi is
determined by the xA and xB values, which have been found in Section 2. Suppose
that gcd(uvyi, p − 1) = l. Then we have l alternatives for xi. For large l we
repeat some procedures of our algorithm. Let e(Kj) be the exponent of the class
group of Kj for j = 1, 2. Then e(K1) divides v and e(K2) divides u with a high
probability. If gcd(e(Kj), p−1) is large, then the running time of the algorithm may
exceed the expected value, but the probability of this event is small. For example,
if deg g(x) = 1 and |f | is small, then e(K2) = 1 and e(K1) is also small. This
happens when abt + c ≡ 0(mod p), |a|, |b|, |c| = O(1) and t→∞.

6. Runtime analysis

We estimate the running time of the algorithm. The sieving and solution of
the sparse linear system by Widemann’s algorithm require ≈ L2 ≈ B2 ≈ p2/k2

operations. To specify (5) and (6), we must find the characteristic polynomial of
an s1×s1 sparse integer matrix, where s1 ≈ B1/2. This requires ≈ B3/2 operations.
Determining the s1× r1 matrix Λ1 by Horner’s method and the (s−s1)× r1 matrix
Λ2 by (17) requires ≈ B3

1 = B3/2 operations. We also have to derive ≈ B relations
of the form (13) by this author’s method (see Section 4). By Theorem 1, this
requires no more than ≈ BB1+ε

1 = B3/2+ε/2 operations for an arbitrary ε > 0.
Now, we estimate the complexity of the calculations performed in Section 5. The

probability of obtaining decomposition (19) or (20) is ≈ exp(−k ln k). The applica-
tion of the elliptic curve method requires ≈ exp((2 ln p1/k ln ln p1/k)1/2) operations
[14]. Thus, to construct (19) or (20), we must perform

≈ exp(k ln k + (2 ln p1/k ln ln p1/k)1/2)

operations. It is easy to see that this value does not exceed ≈ pσ/k
2
, where σ =

(1 + 2
√

2)/2 = 1.91 · · · and k ≤ ((3/2)1/3 + o(1))(ln p/ ln ln p)1/3.
Let us estimate the complexity of the reduction. If p1/m < q ≤ p1/k and

m = k3/2, then the probability of obtaining decompositions (21) and (22) is
≈ exp(− k

2ν ln k). The application of the elliptic curve method requires

≈ exp((2 ln p1/k ln ln p1/k)1/2)

operations. Thus, if 1/2 ≤ ν < 1 the complexity of constructing (21) and (22) does
not exceed ≈ pσ/k2

operations. If B < q ≤ p1/m, then the probability of obtaining
decompositions (21) and (22) is at least ≈ exp(− 5k

2ν ln k). The application of the
elliptic curve method requires

≈ exp((2 ln p1/m ln ln p1/m)1/2) ≈ po(1/k2)

operations. Thus, if 5
4σ ≤ ν < 1, the total complexity of the reduction step is at

most ≈ pσ/k
2
. The number of reduction steps is exp(O(ln ln2 p)). Therefore, we
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can calculate an individual logarithm in ≈ pσ/k2
operations. For

k = ((3/2)1/3 + o(1))(ln p/ ln ln p)1/3,

we have pσ/k
2 ≈ Lp[1

3 ; 1+2
√

2
(18)1/3 ]; 1+2

√
2

(18)1/3 = 1.4608 · · · .

7. Some identities for resultants

The following theorems are proved in [9].
For a natural m, let Φm(x) be the mth cyclotomic polynomial over Q. By

definition, Φm(x) =
∏
i(x − ξim) over i ∈ [1,m] such that gcd(i,m) = 1 and ξm

is a primitive mth-order root of unity. Let Φm(x, y) be the form of degree φ(m)
corresponding to the polynomial Φm(x) (φ is the Euler function).

Theorem 2. Suppose that m,n, s, and l are positive integers, gcd(m,n) = 1, a
and b are nonzero integers, s = s0 + ls1, δ = (−1)l if n = 1 and m = 1, 2, and
δ = 1 otherwise. Then the following identity is valid:

Φmn(as, b) = δRes(Φm(as0xl, b),Φn(x, as1 )).

This identity with m = n = 1 was applied by many authors to factor integers of
the form as − b. Theorem 2 implies the identity

Φmn(a) = δRes(Φm(x),Φn(x, a)),

where gcd(m,n) = 1 and a is a nonzero integer. This identity can be used for fac-
toring purposes or for calculating discrete logs modulo algebraic factors of amn−1.

Let ai and bj, where i, j ∈ [0, 2], be integers. Put

A = a2b1 − a1b2, B = a0b2 − a2b0, C = a1b0 − a0b1.

Theorem 3. The resultant of the polynomials

f(x) = a0x
n + a1x

k + a2 and g(x) = b0x
n + b1x

k + b2,

where a0, b0 6= 0, 1 ≤ k < n, and gcd(n, k) = 1, equals

Res(f, g) = (−1)(n+1)(k+1)(Bn − Cn−kAk).

This theorem can be used for factoring purposes or for calculating discrete logs
modulo integers of the form Bn −Ak, where A and B grow as n→∞.

Theorem 4. For integers a0 6= 0, a2, and bj, where j ∈ [0, n] and b0 6= 0, the
resultant of the polynomials

f(x) = a0x
2 + a2, g(x) = b0x

n + b1x
n−1 + · · ·+ bn

equals

Res(f, g) = (am0 bn − am−1
0 a2bn−2 + · · · (−1)mam2 b0)2

+ a0a2(am−1
0 bn−1 − am−2

0 a2bn−3 + · · · (−1)m−1am−1
2 b1)2

for n = 2m and

Res(f, g) = a0(am0 bn − am−1
0 a2bn−2 + · · · (−1)mam2 b1)2

+ a2(am0 bn−1 − am−1
0 a2bn−3 + · · · (−1)mam2 b0)2

for n = 2m+ 1.

This theorem can be used for factoring purposes or for calculating discrete logs
modulo integers close to sums of two squares, i.e., having the form rA2 + sB2 with
small r and s.
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