
MATHEMATICS OF COMPUTATION
Volume 71, Number 237, Pages 77–103
S 0025-5718(01)01304-7
Article electronically published on March 9, 2001

CONVERGENCE OF AN ITERATIVE ALGORITHM
FOR SOLVING HAMILTON-JACOBI TYPE EQUATIONS

JERRY MARKMAN AND I. NORMAN KATZ

Abstract. Solutions of the optimal control and H∞-control problems for non-
linear affine systems can be found by solving Hamilton-Jacobi equations. How-
ever, these first order nonlinear partial differential equations can, in general,
not be solved analytically. This paper studies the rate of convergence of an
iterative algorithm which solves these equations numerically for points near
the origin. It is shown that the procedure converges to the stabilizing solution
exponentially with respect to the iteration variable. Illustrative examples are
presented which confirm the theoretical rate of convergence.

1. Introduction

Partial differential equations of the type

pT f(x)± pTR(x)p+ l(x) = 0,(1.1)

where x ∈ Rn, p = Vx(x) and R(x), l(x) ≥ 0 are known as Hamilton-Jacobi type
equations. They are of considerable importance in the solution of nonlinear optimal
control problems [1], nonlinear H∞ problems [2], and in various other areas.

Because (1.1) is a first order nonlinear equation, closed form solutions cannot
be found in general. Furthermore, the only information known about V (x) is that
it is a C2 positive definite solution locally in a neighborhood around the equilib-
rium point x = 0 and V (0) = 0. The size of this neighborhood is not known in
advance, and no boundary conditions are known, so traditional numerical methods
are not applicable. Approximate solutions of (1.1) have been found either through
a power series method [3], [4] or a successive approximation approach [5], [6], [7].
In [8], [9], an iterative procedure was introduced which computes the stabilizing so-
lution of (1.1) for any x0 near the origin. By applying the algorithm to sufficiently
many points near the origin, an approximate solution over the entire neighborhood
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can be pieced together through, for example, polynomial interpolation. Details of
implementation and numerical simulations are given in [8],[9].

This paper concentrates on the convergence of the algorithm. After describing
the algorithm in Section 2 and proving convergence in Section 3, Section 4 ana-
lyzes the rate of convergence to the stabilizing solution of (1.1). It is shown that
the procedure converges exponentially with respect to the iteration variable. The
rate of convergence bound in the linear case is, however, sharper than that in the
nonlinear case. More specifically, if λ1 is the eigenvalue of an associated linearized
Hamiltonian system with the largest negative real part, it is shown that the order
of convergence is 0(eReλ1t

i

) for nonlinear systems and 0(e2Reλ1t
i

) for linear systems,
where ti is the time at the ith iteration. Section 5 gives several illustrative exam-
ples and studies the rate of convergence in each example. The computed rates are
consistent with theoretical predictions.

2. Algorithm

2.1. Motivation. First, the problem is formally defined. For the dynamic system

ẋ = f(x) + g(x)u,

y = h(x)
(2.1)

with x ∈ Rn, u ∈ Rm, h(x) ∈ Rp, where f(x), g(x), h(x) are sufficiently smooth (as
needed) and f(0) = h(0) = 0, a positive semidefinite function V −(x) : Uρ → R is
sought in an open neighborhood Uρ around the origin which satisfies the Hamilton-
Jacobi equation

H(x, Vx) ≡ Vxf(x) +
1
k
Vxg(x)gT (x)V Tx + hT (x)h(x) = 0(2.2)

and renders (2.1) asymptotically stable with u = 2
kg

T (x)V −x (x). Here, k is a
parameter which depends on the type of problem being considered. For instance,
in a special case of the H∞ problem, k = 4γ2, where γ is the gain, while for optimal
control problem k = −4. It is assumed throughout this paper that σ(A)εC−, where
A ≡ ∂f

∂xf(0).
The algorithm operates in the Hamiltonian space of (2.2), i.e., it considers the

2n-dimensional ODE
dx

dt
= Hp,

dp

dt
= −Hx.

(2.3)

In [10] it is shown that (2.2) has a C2 solution V : Up → R with V (0) = Vx(0) = 0
if and only if the manifold

M = {(x, p)εUρ ×Rn : p = V Tx (x)}

is an invariant manifold of the corresponding Hamiltonian system (2.3). In partic-
ular if V (x) is a solution of (2.2), then the restriction of the Hamiltonian system to
M is

ẋ = f(x) +
2
k
g(x)gT (x), V Tx (x),
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and

u∗(x) =
2
k
gT (x)V T (x)

is an optimal control for (2.1) if the performance index is taken as hT (x)h(x). Thus,
solutions of the Hamilton-Jacobi equation (2.2) can be characterized as invariant
manifolds of the equilibrium point (0, 0) of the Hamiltonian system (2.3). The
manifold corresponding to u∗(x), which asymptotically stabilizes (2.1) is called the
stable manifold of the Hamiltonian system (2.3).

Furthermore, under suitable conditions for optimal control and H∞ problems,
the Hamiltonian system is restricted to the hyperbolic case, i.e., the linearization
of (2.3) has no eigenvalues on the imaginary axis. This insures the existence of an
n-dimensional stable manifold. Finally, for x near the origin, the stable manifold
can be expressed as a graph of x. Therefore, seeking the stabilizing solution of
(2.2) at a fixed point near the origin is equivalent to identifying the stable invariant
manifold of (2.3) at that point.

In [14] van der Schaft established the connection, which we use here, between
stable manifolds of the Hamiltonian system (2.3) and solutions to the Hamilton-
Jacobi equation (2.1). The purpose of this paper is to provide a numerical algorithm
with an associated rate of convergence to compute points on the stable manifold of
(2.3) and thereby solve (1.1).

Define

z(t, z0) ∆=
(
x(t, x0, p0)
p(t, x0, p0)

)
,(2.4)

z0
∆=

(
x0

p0

)
,(2.5)

where x(t, x0, p0) and p(t, x0, p0) are the solutions of (2.3) at time t with initial con-
ditions x0 and p0. Also define H̄ as the linearization of (2.3) around the equilibrium
point (x, p)T = (0, 0)T . Then (2.3) can be rewritten as

ż = H̄z + h(z), h ∈ O(‖z‖2),

H̄ =
∂

∂z

(
Hp

−Hx

)
z=0

=

(
A

1
2k
R

−2Q −AT

)
,

(2.6)

where A = ∂f
∂x(0), B = g(0), C = ∂h

∂x (0), R = BBT , Q = CTC.
Fix a point x = x0, x0 ∈ Uρ. Finding the stabilizing solution of (2.2) at x0 de-

fined as p∗0
∆= V −x (x0), is equivalent to finding the vector p0 which causes z(t, z0)→ 0

as t→∞.
The algorithm uses this asymptotic behavior of the stabilizing solution of (2.2) to

find p∗0. For a fixed time t, it evaluates each possible solution vector p by measuring
how close the trajectory of the Hamiltonian system (2.3) passing through (x0, p)
comes to the origin. This is repeated for larger and larger times to produce a
sequence of vectors which converge to a point on the stable manifold.

Define the distance function

F (t, p0) ∆= ‖z(t, z0)‖2 = ‖x(t, x0, p0)‖2 + ‖p(t, x0, p0)‖2.(2.7)

F measures the distance from the solution of (2.6), z(t, z0), to the origin at time
t with initial condition z0. Because x0 is fixed, F depends solely on the terminal
time t and the initial condition p0.
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Since the solution of (2.2), p∗0 = V −x (x0), lies on the stable manifold of (2.6),
limt→∞ F (t, x0, p

∗
0)→ 0. Because F is a positive semidefinite function, finding p∗0,

or where the stable manifold intersects x = x0, is equivalent to solving

inf
p0

lim
t→∞

F (t, x0, p0).(2.8)

However, because the Hamiltonian system (2.6) is nonlinear, a closed form so-
lution for z(t, z0) is generally not available, and the minimization cannot be done
analytically. To approximate a solution numerically, a sequence of times which
monotonically increases toward infinity is chosen, and for each element in this se-
quence F is minimized with respect to p0. For each i = 1, 2, 3, . . . define

ti ↑ ∞,(2.9a)

F i
∆= min

p0
F (ti, p0),(2.9b)

pi0
∆= argminp0F (ti, p0).(2.9c)

As i becomes larger, ti →∞, and F can be considered, in a sense, as measuring
the asymptotic behavior of candidate solutions. It will be shown in Section 3 that
F i → 0 and pi0 → p∗0. Details of the minimization procedure in (2.9b) and (2.9c)
are given in [9].

2.2. Initial guess. In order to solve (2.9b) and (2.9c) for fixed i, an iterative
procedure is, in general, required. The procedure we use is described in detail in
[8], [9]. For each i, a starting estimate is taken to be pi−1

0 . A good estimate for
p∗0 which is taken to be p0

0 can be found by considering the linearization of (2.1).
For any linear system, the solution of the corresponding Hamilton-Jacobi equation
is V L(x) = xTPx, where P is the stabilizing solution of the Algebraic Ricatti
Equation

PA+ATP +
1
k
PBBTP + CTC = 0.(2.10)

Thus, the initial guess for the algorithm is

V Lx (x0) = pL0 = 2xT0 P.(2.11)

This has a nice geometric interpretation because pL0 is the intersection of the
stable eigenspace of H̄ with the linear variety x = x0. Because x0 is always chosen
near the origin, pL0 will lie close to p∗0.

3. Convergence

pL0 is the intersection of the stable eigenspace of H with the linear variety x = x0.
pL0 can be found directly from the solution of the Algebraic Ricatti Equation (2.10)
and is used as the initial guess in the iteration formulas defined by the algorithm.
Because x0 is chosen to be near the origin, at x0 the stable manifold of (2.3) should
be “close” to the stable eigenspace, i.e., p∗0 should lie near pL0 . Therefore, instead of
considering all vectors p as candidates to lie on the stable manifold, the algorithm
considers the set P ′ ∆= {p : ‖p− pL0 ‖ ≤ δ} for δ suitably large. See Figure 3.1.

Assumption 1. The point (x0, p
∗
0) lies in P ′. Since the stable eigenspace is tangent

to the stable manifold at 0, this can be accomplished by choosing ‖x0‖ sufficiently
small.



CONVERGENCE OF AN ITERATIVE ALGORITHM 81

x0

Es = stable eigenspace

Ws = stable manifold

p0*
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Figure 3.1. Restricting the search space of p∗0

Assumption 2. For any sequence (tj , x0, p
j
0) and p = limj→∞ pj0, the following

holds:

z( lim
j→∞

tj , x0, p
j
0) = lim

tj→∞
z(tj , x0, p).

This assumption will prevent situations such as that depicted in Figure 3.2. In
the figure as tj → ∞, there is a sequence (x0, p

j
0) with z(tj, x0, p

j
0) → 0. However

pj0 → p with z(tj , x0, p)→ z∗ as tj → ∞. Again, this assumption is satisfied when
‖x0‖ is sufficiently small since then p0

0 = pL0 and subsequent iterates pj0 are close to
p∗0, the point on the stabilizing manifold.

Lemma 3.1. F i → 0, as ti →∞.

Proof. p∗0 lies on the stable manifold of (2.3), so limti→∞ ‖z(ti, x0, p
∗
0)‖ → 0. For

each ti,

F i = ‖z(ti, x0, p
i
0)‖2 = min

p0∈P
‖z(ti, x0, p0)‖2 ≤ ‖z(ti, x0, p

∗
0)‖2.(3.1)

Therefore, as ti →∞,

0 ≤ limF i ≤ lim ‖z(ti, x0, p
∗
0)‖2 = 0.(3.2)

That is, F i → 0.
Because pi0 lies in the closed bounded set P , it has an accumulation point p̄ in P .

The next lemma states that any accumulation point must lie on the stable manifold
of (2.3).

Lemma 3.2. If F i → 0, then any accumulation point of pi0 lies on the stable
manifold. Furthermore, there exists exactly one accumulation point, i.e., pi0 is a
convergent sequence.
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Figure 3.2. A possible phase portrait

Proof. Define pj0 as a subsequence of pi0 which converges to an accumulation point
p̄. Then, by assumption 2,

lim
j→∞
‖z(tj, x0, p

j
0)‖ = ‖ lim

j→∞
z(tj , x0, p

j
0)‖

= ‖z( lim
j→∞

tj , x0, lim
j→∞

pj0)‖

= lim
t→∞
‖z(t, x0, p̄)‖,

which goes to zero from Lemma 3.1. Therefore, p̄ must lie on the stable manifold.
Now suppose two accumulation points p̄1, p̄2 exist. Both points must lie on

the stable manifold, but x0 was chosen to lie inside the neighborhood where the
stable manifold can be written as a graph, i.e., M− ∆= p = V −x (x0). Therefore,
p̄1 = p̄2 = p∗, and the entire sequence converges to the stable manifold.

Together, the above insure convergence of the algorithm to the stabilizing solu-
tion of (2.3). We now study the rate of convergence.

4. Rate of convergence

4.1. Nonlinear systems. Only the case where the Hamiltonian system has sim-
ple eigenvalues is considered here. Similar results can be derived when there are
multiple eigenvalues. The main result in this section is

‖pi0 − p∗0‖ = 0(e(Reλ1)ti),

where λ1 is the eigenvalue of H with the largest negative real part.
A procedure different from (2.9) is given in [2, Appendix B, Section 4] for com-

puting a point on the stable manifold corresponding to x0, and also in [15, Section
2.6, Exercise 2.6.7]. In this procedure a two point boundary value problem is for-
mulated for (2.3) with x(0) = x0 and p(ti) = ξ, a constant (see [2, B. 73]). Then
let ti → ∞. In [2, B. 80], it is shown that the procedure converges with rate of
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convergence e−β
′ti , where β′ < β (see [2, B. 46]). β corresponds to (−Reλ1) in our

notation, so that the convergence result in [2] is somewhat weaker than ours. In
our algorithm given in (2.9), the need to solve a two point boundary value problem
is replaced by the minimization problem in (2.9b) and (2.9c).

Since H has 2n distinct eigenvalues, there exists a nonsingular transformation
matrix T which transforms (2.2) into a diagonalized system, i.e., T : u → z, or(
w
v

)
→
( x
p

)
. Thus, without loss of generality, the Hamiltonian system (2.3) can be

written as
ẇ = Λw + g1(w, v),
v̇ = −Λv + g2(w, v),(4.1)

where Λ is diag(λ1, . . . , λn), and Re λn ≤ Re λn−1 ≤ · · · ≤ Re λ1 < 0. We assume
that for ‖u‖ sufficiently small, and i = 1, 2

‖gi(u)‖ ≤ K‖u‖2, ‖∂gi
∂u

(u)‖ ≤ K‖u‖.(4.2)

Divide T into four n× n submatrices, i.e., T ∆=
(
α1 α2
α3 α4

)
. Then, in the new coordi-

nates, the algorithm consists of the sequence of problems

argmin(w0,v0) u
T (ti, w0, v0)T TTu(ti, w0, v0)(4.3)

such that α1w0 + α2v0 = x0(4.4)

for a sequence ti →∞. Note that the constraint x0 fixed is now a linear variety in
the new coordinates.

Lemma 4.1. α1, α2 are invertible if σ(A) ⊂ C− and R ≥ 0.

Proof. Note that
(
α1
α3

)
spans the n-dimensional stable eigenspace and

(
α2
α4

)
spans

the n-dimensional unstable subspace. Standard results from Algebraic Riccati
Equation theory [2] show that the stable and unstable subspaces of H have the
form

Υ = Im
(
I
P

)
,

where P is a solution of the Algebraic Riccati Equation

ATP + PA+
4
k
PRP +Q = 0,

i.e., there exists an ω ∈ Rn×n such that

α1 = ω,
α3 = Pω,

and thus α3 = Pα1. So if x ∈ ker(α1), then x ∈ ker(α3). However, since the
combined vector

(
α1
α3

)T must span n-dimensions, this is only possible if x = 0.
Therefore, ker (α1) = {0}, and α1 is invertible. By the same method, α2 is non-
singular as well.

The constraint (4.4) can now be written as

w0 = α−1
1 (x0 − α2v0).(4.5)

Define

û(t, v0) =
(
ŵ(t, v0)
v̂(t, v0)

)
=
(
w(t, w0(v0), v0)
v(t, w0(v0), v0)

)
.(4.6)
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From Lemma 3.2, it is known that as i→∞, vi0 → v∗0 , where
(w∗0
v∗0

)
= u∗0 is on the

stable manifold.
We consider ti in a compact interval [0, t], t > 0. The rate of convergence is

found using the mean value theorem. For any element vi0,

v̂(t, vi0)− v̂(t, v∗0) =
∂v̂

∂v0
(û(t, ṽi0))(vi0 − v∗0)(4.7)

for all t ∈ [0, ti], where ṽi0 lies on the line segment connecting vi0 and v∗0 .
It will be shown below that ∂v̂

∂v0

−1
exists. Assuming for now that it does,

rearrange (4.7) and take the norm of both sides to obtain

‖vi0 − v∗0‖ ≤ ‖
∂v̂−1

∂v0
(û(t, ṽi0)‖ ‖v̂(t, vi0)− v̂(t, v∗0)‖.(4.8)

Since ‖vi0−v∗0‖ → 0 as i→∞, ‖v̂(t, vi0)− v̂(t, v∗0)‖ → 0 for all t in [0, ti]. Therefore,
if ‖ ∂v̂∂v0

−1‖ goes to zero, then vi0 must approach v∗0 at least at the same rate.

We now calculate ‖ ∂v̂∂v0

−1‖. First, use the chain rule on û, i.e.,

∂û

∂v0
=

 ∂ŵ

∂v0
∂v̂

∂v0

 =
∂u

∂u0
(û(t, ṽi0))

∂u0

∂v0

=

 ∂w

∂w0

∂w

∂v0
∂v

∂w0

∂v

∂v0

(−α−1
1 α2

I

)
,

and therefore
∂v̂

∂v0
=
(
∂v

∂w0
(−α−1

1 α2) +
∂v

∂v0

)∣∣∣∣
û(t,ṽi0)

.(4.9)

Let Zi be the variational matrix of (4.1) at the ith iteration, i.e., Zi ∆= ∂u
∂u0

(û(t, ṽi0)).
Then Zi satisfies the equation

Żi = (A+Bi(t))Zi,

Zi(0) = I,
(4.10)

where

A
∆=
(

Λ 0
0 −Λ

)
Bi(t) ∆=


∂g1

∂w

∂g1

∂v

∂g2

∂w

∂g2

∂v


∣∣∣∣∣∣∣∣∣
û(t,ṽi0)

.

Remark 4.1. Note that if the Hamiltonian is linear, then Bi(t) = 0 and (4.10) can
be solved directly. In that case, ∂v̂

∂v0
= e−ΛtI, and ‖vi0 − v∗0‖ = 0(eReλ1t). Since

x0 is chosen near the origin, the nonlinear terms should not have a large effect on
the variational system. See Figure 4.1. The following analysis seeks to measure the
effect of this “perturbation” on the rate of convergence.

The following well-known theorem will be useful and is quoted here in its entirety.
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Theorem 4.1 ([11]). Let fn(t, x) be a sequence of functions which are defined and
continuous in an open set D and suppose that limn→∞ fn = f exists uniformly
on any compact subset of D. Let (tn, ξn) be a sequence of points converging to
a point (t, ξ). Let ϕn(t) be any solution of the differential equation ẋ = fn(t, x)
passing through the point (tn, ξn). If the solution ϕ(t) of the differential equation
ẋ = f(t, x) which passes through the point (t, ξ) is defined on the interval [a, b] and
is unique, then ϕn(t) is defined on [a, b] for all sufficiently large n and ϕn(t)→ ϕ(t)
uniformly on this interval as n→∞.

Since vi0 approaches v∗0 , and ṽi0 is on the line joining vi0 to v∗0 , it follows that
ṽi0 approaches v∗0 as i → ∞. Fix a time ti = t from the sequence of times. From
Theorem 4.1, it follows that û(t, ṽj0) approaches û(t, v∗0) uniformly for t ∈ [0, t] as
j →∞. Now define B∗(t) = ∂g

∂u (u(t, v∗0)). Then

Lemma 4.2. Let g(·) ∈ C2. Then Bj(t)→ B∗(t) uniformly on the compact inter-
val t ∈ [0, t] for any finite t.

Proof.

lim
j→∞

Bj(t) = lim
j→∞

∂g

∂u
(û(t, v̂j0))

=
∂g

∂u
( lim
j→∞

(û(t, v̂j0))

=
∂g

∂u
(û(t, lim

j→∞
ṽj0))

=
∂g

∂u
(ũ(t, v∗0)) ∆= B∗(t).

Now let Z∗(t) be the solution to the variational system along the stable manifold,
i.e., it solves the equation Ż = (A + B∗(t))Z, Z(0) = I. Applying Theorem 4.1
again, it follows that

Zj(t)→ Z∗(t) as j →∞ uniformly for t ∈ [0, t].(4.11)

Trajectories lying on the stable manifold approach the origin exponentially [12].
Therefore, along the stable manifold, asymptotic results on the solutions of time-
varying differential equations, can be applied. We quote one such result in Theorem
4.2.

Theorem 4.2. [13] Consider a system ż = (A + B(t))z. Suppose A has simple
characteristic roots, λk, k = 1, . . . , n satisfying Reλk−1 ≤ Reλk < Reλk+1 ≤
Reλk+2 and

∫∞ ‖B(t)‖dt <∞. Then there are n solutions z1, z2, . . . , zn such that

zk = eλkt(ek + o(1))(4.12)

as t→∞, where ek is the kth unit vector.

Since the trajectories along the stable manifold approach the origin exponen-
tially,

∫∞ ‖B∗(t)‖dt converges, and Theorem 4.2 can be applied to the system

ẇ = (A+B∗(t))w.(4.13)
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Combine the n solutions which satisfy (4.12) into the matrix W (t). However, since
W (0) is not the identity, W (t) is not the variational matrix Z∗(t). Using (4.12) it
is easy to check that

W (t) = e

 ∧ 0

0 −∧

t
(I + ψ(t)),

Z∗(t) = W (t)W (0)−1,

(4.14)

where ψ(t) = o(1) as t→∞.
The following theorem will be used to bound ψ(0).

Theorem 4.3 ([13]). Again, consider a system ż = (A + B(t))z, and suppose A
has simple eigenvalues λk, ordered as in Theorem 4.2, and ‖B(t)‖ → 0 as t →∞.
Then each solution z1, z2, . . . , zn satisfies the inequality

c2e
Reλkt−d2

∫ t
0 ‖B‖dt ≤ ‖zk‖ ≤ c1eReλkt+d1

∫ t
0 ‖B‖dt(4.15)

for t ≥ 0, with c1, c2, d1, d2 all positive constants. Furthermore, each solution zk,
k = 1, . . . , n, also satisfies the integral equation

zk(t) = eλktek +
∫ t

0

Y1(t− s)B(s)z(s)ds−
∫ ∞
t

Y2(t− s)B(s)z(s)ds,(4.16)

where

Y1(t) ∆= diag(eλ1t, . . . , eλkt, 0, . . . , 0) and Y2(t) ∆= diag(0, . . . , 0, eλk+1t, . . . , eλnt).

Theorem 4.3 can be applied to each column of W , since ‖B∗(t)‖ → 0 as t→∞.
Using (4.16) at t = 0 on wk,

wk(0) = ek −
∫ ∞

0

Y2(−t1)B∗(t1)zk(t1)dt1.(4.17)

So for wk, the kth column of W , the kth column of ψ(0), ψk(0), is equal to the
integral term of (4.17).

Lemma 4.3. Given ε > 0. For all x0 sufficiently close to 0, ‖B∗(t)‖ < ε, for all
t > 0.

Proof. Solutions starting on the stable manifold remain there and approach zero
exponentially [12]. For any u∗0 = T−1( x0

p∗0
) on the stable manifold it follows that

‖u(t, u∗0)‖ → 0 as t→∞.(4.18)

By choosing ‖x0‖ small so that p∗0 is also small, ‖u∗0‖ is small and

‖u(t, u∗0)‖ < ε1 fort > 0.

From (4.2) letting ε1 = ε/K

‖B∗(t)‖ = ‖∂g
∂v

(ũ(t, v∗0)‖ ≤ K‖ũ(t, v∗0)‖ ≤ Kε1 = ε.

Lemma 4.4. Given ε > 0. By choosing x0 sufficiently close to 0,∫ ∞
0

‖B∗(t)‖dt < ε.
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Figure 4.1. Stable subspace and manifold for Hamiltonian system

Proof. Since
∫∞ ‖B∗(t)‖dt < ∞, there is a T > 0 such that

∫∞
T ‖B

∗(t)‖dt < ε
2 .

Using Lemma 4.3, choose x0 so that ‖B∗(t)‖ < ε
2T . Then∫ ∞

0

‖B∗(t)‖dt =
∫ T

0

‖B∗(t)‖dt+
∫ ∞
T

‖B∗(t)‖dt

≤ ε

2T
T +

ε

2
= ε.

Now by choosing ‖x0‖ sufficiently small, (4.15) becomes

‖zk‖ ≤ c1eReλkt+d1
∫∞
0 ‖B

∗(t1)‖dt1 ≤ c1ed1εeReλkt

and the integral term in (4.17) is bounded by

‖
∫ ∞

0

Y2(−t1)B(t1)zk(t1)dt1‖ ≤ c1ed1ε

∫ ∞
0

eRe(λk−λk+1)t1‖B(t1)‖dt1

≤ c1ed1εε

since Re(λk − λk+1) ≤ 0. Therefore ‖ψ(0)‖ can be made arbitrarily small, by
choosing ‖x0‖ sufficiently small. That is

‖ψ(0)‖ = o(1) as ‖x0‖ → 0.(4.19)

Define z∗k(t) as the kth column of Z∗(t). Using the above result on W (0), z∗k(t) =
eλkt(δik + o(1)) as ‖x0‖ → 0. Similarly, define zik(t) as the kth column of Zi(t).
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Introduce the notation oi(1) to mean o(1) as i → ∞, ot(1) to mean o(1) as
t → ∞, and ox0(1) to mean o(1) as ‖x0‖ → 0. Using this notation, for fixed ti, it
follows from (4.10) with t = ti that

‖zi(ti)− z∗(ti)‖ = oi(1),(4.20a)

from (4.14) that

z∗(ti) = e

 ∧ 0
0 −∧

ti
(I + ψ(ti))(I + ψ(0))−1,(4.20b)

where

‖ψ(ti)‖ = oti(1),(4.20c)

and from (4.19) that

‖ψ(0)‖ = ox0(1).(4.20d)

Theorem 4.4.

‖pi0 − p∗0‖ ≈ 0(eReλ1t
i

) + oi(1) + ox0(1).

Proof. In the following calculations we retain only terms which are first order in
o(1). Using (4.20a), (4.20b), (4.20c), and (4.20d), we have

∂u

∂u0
(û(ti, ṽi0)) ≡ Zi(ti)

= Z∗(ti) + oi(1)

= e

 ∧ 0
0 −∧

ti
(I + ψ(ti))(I + ψ(0))−1 + oi(1)

= e

 ∧ 0
0 −∧

ti
(I + ψ(ti)− ψ(0) + ψ(ti)ψ(0)) + oi(1)

= e

 ∧ 0
0 −∧

ti
(I − ψ(0) + oti(1)) + oi(1).

(4.21)

Let

ψ(t) =
[
ψ11(t) ψ12(t)
ψ21(t) ψ22(t)

]
.

Then

∂v

∂w0
(û(ti, ṽj0)) = e−∧t

i

(−ψ21(0) + oti(1)) + oi(1),

∂v

∂v0
(û(ti, ṽj0)) = e−∧t

i

(I − ψ22(0) + o
(1)
ti ) + oi(1).

(4.22)
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Substituting (4.22) in (4.9) gives
∂v̂

∂v0
(û(ti, v̂i0)) = [e−∧t

i

(−ψ21(0) + oti(1)) + oi(1)](−α−1
1 α2)

+ [e−∧t
i

(I − ψ22(0) + oti(1)) + oi(1)]

= [e−∧t
i

(ox0(1) + oti(1)) + oi(1)](−α−1
1 α2)

+ [e−∧t
i

(I + ox0(1) + oti(1)) + oi(1)]

= e−∧t
i

(I + ox0(1) + oti(1)) + oi(1).

Therefore (
∂v̂

∂v0

)−1

(û(ti, ṽi0)) = [e−∧t
i

(I + ox0(1) + oti(1)) + oi(1)]−1

= [e−∧t
i

((I + ox0(1) + oti(1)) + e∧t
i

oi(1))]−1

= [I + oxo(1) + oti(1) + e∧t
i

oi(1)]−1e∧t
i

= [I + oxo(1) + oti(1) + e∧t
i

oi(1)]e∧t
i

and ∥∥∥∥∥
(
∂ṽ

∂v0

)−1

(û(ti, ṽi0)

∥∥∥∥∥ = (1 + oxo(1) + oti(1) + oi(1))e(Reλ1)ti .

Now from (4.8) with t = ti, it follows that

‖vi0 − v∗0‖ = 0(eReλ1t
i

) as i→∞, ti →∞, x0 → 0.(4.23)

From (4.5)

wi0 = α−1
1 (x0 − α2v

i
0), w∗0 = α−1

1 (x0 − α2v
∗
0)

wi0 − w∗0 = −α2(vi0 − v∗0).

Therefore
‖pi0 − p∗0‖ = ‖zi0 − z∗0‖

= ‖T (ui0 − u∗0)‖ ≤ C‖ui0 − u∗0‖ = 0(eReλ1t
i

)
as i→∞, ti →∞, xo → 0.

(4.24)

The following example, although not a Hamiltonian system, illustrates the ideas in
the proof of the previous theorem.

Example 4.1.

ẇ = −w, u =
[
w
v

]
,

v̇ = v + εw2

(4.25)

subject to

α1w(0) + α2v(0) = x0.(4.26)

It is easily verified that the general solution to (4.25) is

w(t) = w(0)e−t,

v(t) =
(
ε
w2(0)

3
+ v(0)

)
et − εw

2(0)
3

e−2t.
(4.27)
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The stable manifold of (4.25) is

ε
w∗2(0)

3
+ v∗(0) = 0.

The variational equation corresponding to (4.25) is( ∂u̇
∂u0

)
=
[
−1 0

2εw(t) 1

] (∂u
∂0

)
=
([−1 0

0 1

]
+B(t)

)( ∂u
∂u0

)
,

(4.28)

where

B(t) =
[

0 0
2εw(t) 0

]
=
[

0 0
2εw(0)e−t 0

]
.

Clearly
∫∞

0 ‖B(t)‖dt < ∞, and ‖B(t)‖ can be made arbitrarily small for all t > 0
by choosing w(0) small.

The transition matrix Z(t) for (4.28) is

Z(t) = Z(t, w(0)) =

[
e−t 0

2εw(0)
3

(et − e−2t) et

]

=
[
e−t 0
0 et

] [ 1 0
2εw(0)

3
(1 − e−3t) 1

]
.

(4.29)

The 2 solutions z1(t), z2(t) in (4.12) can be computed by writing zi(t) = Z(t)ci,
i = 1, 2, and substituting in (4.16) to determine ci.

This gives

z1(t) =

[
e−t

−2ε
3
w(0)e−2t

]
, z2(t) =

[
0
et

]
so

W (t) = W (t, w(0)) = [z1(t)
... z2(t)]

=
[
e−t 0
0 et

]
(I + ψ(t)),

where

ψ(t) =

[
0 0

−2ε
3
w(0)e−3t 0

]
,

W (t)W−1(0) =

[
e−t 0

−2ε
3
w(0)e−2t et

][
1 0

2ε
3
w(0) 1

]−1

=
[
e−t 0
0 et

][ 1 0
2ε
3
w(0)(1 − e−3t) 1

]
= Z(t)

=
[
e−t 0
0 et

] (
I + ψ(t)− ψ(0)

)
.

Note that ψ(t)→ 0 as t→∞, and for w(0) sufficiently small, ψ(0) is small. Also,
for each fixed t, z(t, wi(0))→ z(t, w∗(0)) as wi(0)→ w∗(0).
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Equation (4.24) shows that ‖wi(0)−w∗(0)‖ = 0(e−t
i

) as i→∞. This bound is
not sharp. A calculation for small ε shows that, in fact, ‖wi(0)−w∗(0)‖ = 0(e−4ti)
as i → ∞. This is the rate of convergence of the linearized system of (4.25) as
shown in the next section.

4.2. Linear systems. It is now not assumed that the Hamiltonian system has
distinct eigenvalues.

The main result in this section is

‖pi0 − p∗0‖ = 0(e2Reλ1t
i

).

If the stable and unstable eigenspaces are orthogonal, then

‖pi0 − p∗0‖ = 0(e4Reλ1t
i

).

Define T as the set of generalized eigenvectors of H such that D ∆= T−1HT is in
Jordan block form. Furthermore, partition T into the four n× n submatrices

T =
(
α1 α2

α3 α4

)
.(4.30)

Again, to facilitate the analysis, the system is put into “eigenvector” form by making
the coordinate transformation Tu = z, where uT ∆= (wT vT ). In the new coordinates
the Hamiltonian system (2.6) with h(z) ≡ 0 is u̇ = Du, or more explicitly

d

dt



wλ1

...
wλN
vλ1

...
vλN


=



Jλ1

...
. . .

... 0

JλN
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
... J−λ1

0
...

. . .
... J−λN





wλ1

...
wλN
vλ1

...
vλ


,(4.31)

where Jλi is the Jordan block corresponding to the eigenvalue λi of H , and wλi ,
vλi ∈ Rki , where ki is the multiplicity of λi. T is constructed such that

Re(λn) ≤ Re(λn−1) ≤ · · · ≤ Re(λ1) < 0.

Recall that the algorithm solves the minimization problem

min
p0

F (t, x0, p0) = zT (t, x0, p0)z(t, x0, p0)(4.32)

such that (I 0)z0 = x0(4.33)

for a fixed time t. Using the transformation Tu = z, the problem in the new
coordinates is

min
u0

F (t, u0) = u0e
DT tXeDtu0(4.34)

such that(I 0)Tu0 = x0(4.35)

where X ∆= T TT .
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Because the time t is fixed, (4.34) can be solved analytically using Lagrangian
multipliers. Define the costate vector µ ∆= [µ1 · · ·µn] and the objective function

J
∆= F + µ(α1w0 + α2v0 − x0).(4.36)

Then for any finite t, the minimizing initial condition u0(t) of (4.34) also satisfies
the 3n-dimensional linear system

∂J

∂u0
= 2eD

T tXeDtu0 + T T (I 0)TµT = 0,(4.37)

∂J

∂µ
= (I 0)Tu0 = x0.(4.38)

Solving equation (4.37) gives the expression

u0(t) = −1
2

(eD
T tXeDt)−1T T

(
I
0

)
µT ,(4.39)

which can be substituted into (4.38) to obtain

µT = −2
(
(I 0)T (eD

T tXeDt)−1T T
(
I
0

))−1
x0.(4.40)

Combining (4.39) and (4.40), the vector u0(t) found by the algorithm is, for any
fixed time t,

u0(t) =
(
w0(t)
v0(t)

)
= (eD

T tXeDt)−1T T
(
I
0

)(
(I 0)T (eD

T tXeDt)−1T T
(
I
0

))−1
x0

∆= (eD
T tXeDt)−1

(
αT1
αT2

)
G−1(t)x0.

(4.41)

Although Lemma 3.2 states that for nonlinear systems u0(t) → u∗0, as t → ∞, for
linear systems this can be shown directly. Toward that end, define the following
partitions

X−1 ∆=
(
X1 X2

XT
2 X3

)
, eDt

∆=
(
eΛt 0
0 e−Λt

)
.(4.42)

From the definition of D, eΛt → 0 as t increases and e−Λt grows exponentially in t.
From (4.41) it follows that for v0(t)

v0(t) = (eΛtXT
2 e
−ΛT tαT1 + eΛtX3e

ΛT tαT2 )G−1(t)x0.(4.43)

It will be shown that as t increases, v0(t) approaches zero exponentially.
Expand G(t) using the partitions of D,T and X to obtain

G(t) =
(
α1e
−ΛtX1e

−ΛT tαT1 + α1e
−ΛtX2e

ΛT tαT2

+α2e
ΛtXT

2 e
−ΛT tαT1 + α2e

ΛtX3e
ΛT tαT2

)
.

(4.44)

Factoring the first term on the left and right gives

G(t) = α1e
−Λt
(
X1 + eΛtα−1

1

{
α1e
−ΛT tX2e

ΛT tαT2 + α2e
ΛtXT

2 e
−ΛT tαT1

+ α2e
ΛT tX3e

ΛT tαT2

}
α−T1 eΛT t

)
e−ΛT tαT1 ,

(4.45)
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which is equivalent to

(4.46) G(t) = α1e
−Λt
(
X1 +X2e

ΛT tαT2 α
−T
1 eΛT t

+ eΛtα−1
1 α2e

Λt(XT
2 +X3e

ΛT tαT2 α
−T
1 eΛT t)

)
e−ΛT tαT1 .

Note that the middle term has a factor eΛt, and therefore approaches X1 as t
increases. Thus, for t large enough,

G−1(t)→ α−T1 eΛT tX−1
1 eΛtα−1

1 .(4.47)

Substituting this approximation into (4.43) gives the large time approximation for
v0:

v0(t)→ (eΛtXT
2 e
−ΛT tαT1 + eΛtX3e

ΛT tαT2 )α−T1 eΛT tX−1
1 eΛtα−1

1 x0

→
(
eΛtXT

2 X
−1
1 eΛtα−1

1 + eΛT tX3e
ΛT tαT2 G

−1(t)
)
x0.

(4.48)

Again, because Λ contains only negative eigenvalues of H , (4.48) will approach zero
as time increases.

The rate of convergence is determined by considering the “slowest” exponential
function of (4.48), which will depend on the structure of σ(H). For example,
suppose H has distinct eigenvalues. By combining the terms of (4.48) into one
expression, it is seen that each element of v0(t) will contain a linear combination of
the functions e(λi+λj)t for i, j = 1 · · ·n. Therefore, the algorithm will converge to
the stable manifold exponentially at a rate of 2Reλ1.

Now suppose λ1 has multiplicity k1 > 1. In this case, the corresponding ba-
sis solution of the Hamiltonian system grows like tk1−1eλ1t. Hence, for repeated
eigenvalues, the rate of convergence will be slowed by a factor of t2k1−2.

From (4.48), it is clear that if the first term equals zero, the rate of convergence
is doubled to an exponential rate of 4Reλ1. This can occur, for example, when
X2 = 0. Because X = (T TT )−1 and T is the set of eigenvectors of H, X2 = 0
occurs when the stable and unstable subspaces are orthogonal to one another.

Of course orthogonality of the stable and unstable spaces is a specific case, but
the higher rate of convergence can be achieved for any system by reformulating
the problem. For example, instead of minimizing F = ‖z(t, z0)‖2, diagonalize the
Hamiltonian first and run the algorithm on the function F̃ = ‖u(t, u0)‖2 instead.
The new sequence of initial conditions, ũi0(t) will satisfy (4.41) as well, except X−1

is now replaced by the identity, or more specifically, X1 = X3 = I, and X2 = 0.
This can be seen explicitly in the following example.

Example 4.2. Consider a two-dimensional linear diagonalized Hamiltonian sys-
tem

ẇ = λw, λ < 0,
v̇ = −λv.(4.49)

The stable manifold is the subspace v = 0.
The algorithm minimizes the function

F (t, w0, v0) = (w v)
(
x1

x2
2

x2
2 x3

)(
w
v

)
,(4.50)

where x = T TT , over (w0, v0) subject to the constraint

aw0 + bv0 = c.(4.51)
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The optimal initial conditions can be expressed as a function of time to be

w0(t) =
(2ax3 − bx2e

2λt)c
2(x1b2e4λt − x2abe2λt + a2x3)

,

v0(t) =
(2bx1e

4λt − ax2e
2λt)c

2(x1b2e4λt − x2abe2λt + a2x3)
.

(4.52)

It can be seen that v0(t) → 0 as t → ∞ at a rate of e2λt. Now consider the
“simplified” function

F̃ (t, w0, v0) = (w v)
(
w
v

)
,(4.53)

which is minimized over the same constraint (4.51). The optimal sequence is now

w̃0(t) =
ac

a2 + b2e4λt
,

ṽ0(t) =
bc

a2 + b2e−4λt
,

(4.54)

which also converges to the stable manifold, but at the rate of e4λt. Because the
“cross-term” of the quadratic is missing, the rate of convergence effectively doubles.

Of course, the faster convergence of the algorithm will be balanced by the com-
putational cost of diagonalizing the Hamiltonian beforehand. Because eigenvector
computation can be expensive, it may not be worthwhile to implement the modified
problem for higher dimensional systems.

5. Examples

5.1. Example. Consider the H∞ problem for the nonlinear system

ẋ = Ax+ εf(x) +Bu,
y = Cx.

Increasing ε is equivalent to strengthening the effect of the nonlinear terms on the
system dynamics.

Define

A =
(

0 1
−1 −2

)
, B =

(
0
1

)
, C = (1 0),

f(x) =
(

x2
1

x1x2 − x2
2

)
, γ = 1.3.

The algorithm was used to solve the corresponding Hamilton-Jacobi equation at
the point (0.1 0)T for different values of ε. For all cases, the first terminal time
in the sequence ti in (2.9a) used in the program was 2.0. Since the solution to the
Hamilton-Jacobi equation is not known when ε 6= 0, for all cases the simulation was
run until five significant digits were obtained in the solution. The resulting state
trajectories are given in Figure 5.1. This indicates that the algorithm is indeed
finding a stabilizing trajectory. Figure 5.2 shows the error graph of the algorithm
for each iteration for each value of ε.
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Figure 5.1. State trajectories of system with algorithmic control
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Figure 5.2. Effect of nonlinear terms on convergence

The eigenvalues of the corresponding Hamiltonian matrix are ±1.31,±0.48. For
the linear case ε = 0, the straight line of the error curve on the semi-logarithmic
axis implies exponential convergence with respect to the iteration variable. The
slope of the line indicates the rate of convergence, which can be calculated using
a least square fit. In this case, the rate of convergence is −0.96, which is indeed
O(e2λ1t) as expected. As ε increases, the nonlinear terms have a stronger effect on
the algorithm, and the rate of convergence decreases accordingly.
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Figure 5.3. Numerical solution for system (5.1)

5.2. Optimal control problem with non-quadratic cost. The first example
is a linear system with a non-quadratic cost function. The example is from [4]:

ẋ = −ax+ u,

J =
∫ ∞

0

(x2 + x4 + u2)dt.
(5.1)

The corresponding Bellman equation is

H(x, Vx) = −axVx −
1
4
V 2
x + x2 + x4 = 0,(5.2)

and the optimal control of (5.1) is u∗ = − 1
2V
−
x , where

V −x (x) = −2x(a−
√
a2 + 1 + x2).(5.3)

In the case a = 1, equation (5.2) was solved by the algorithm for x ∈ [−1, 1]. The
initial guess for V −x (x) was chosen to be −2x. The starting time in the sequence ti

in (2.9a) was chosen as t0 = 2, and the times were increased at each iteration by
0.1.

The top graph of Figure 5.3 shows that the algorithm finds the stabilizing so-
lution of (5.2) for different fixed values of x. The graph on the bottom shows the
progress of the algorithm to the correct solution for x = −1, which is V −x (−1) =
−1.46410.
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Figure 5.4. Error functions for system (5.1)

Figure 5.4 displays two error estimates used when the true solution is not known
in advance. The graph on the top displays the first error estimate which is the
residual of the Bellman equation for each minimizing initial condition pi0. Since the
algorithm seeks a solution to the Bellman equation, each iteration should cause the
residual to decrease to zero. The bottom graph shows the second error estimate
which shows the progress of the distance function

F (ti, pi0) = ‖x(ti, x0, p
i
0)‖2 + ‖p(ti, x0, p

i)‖2

as ti increases. Clearly, this function should monotonically decrease to zero as well
as ti grows bigger.

5.3. A two-dimensional linear H∞ problem. For a linear system

ẋ = Ax+Bu,

y = Cx,
(5.4)

the Hamilton-Jacobi-Isaacs equation, whose solution insures the L2 gain from u to
y is less than or equal to γ, reduces to the Algebraic Ricatti Equation (2.10). Specif-
ically, with k = 4γ2, the stabilizing solution is V −x = xTP , and the corresponding
control is u∗ = 1

2γ2B
T (V −x )T = 1

2γ2B
TPx.
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Figure 5.5. Solution and error analysis for equation (2.10)

Although (2.10) can be solved directly, the optimal control can also be found at
a specific initial condition by the algorithm. Let

A =
(

0 1
−1 −2

)
,

B =
(

0
1

)
,

C =
(
1 0

)
,

(5.5)
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and set γ = 1.3. The algorithm was run at the initial point x = (1 0)T , with
initial guess for p∗ arbitrarily chosen to be (1 1)T . The first time in the sequence
ti in (2.9a) used in the program was t0 = 5, and the times were increased at each
iteration by 0.25.

The true solution Vx(x) = (2.839 1.220)T is found by directly solving the Al-
gebraic Ricatti Equation. Figure 5.5 shows the convergence of each component of
pi to the true solution. The bottom two graphs show the distance function F and
the residual function H∗, which indicate that the algorithm is indeed converging to
a stabilizing solution of (2.10).

5.4. Convergence rate versus eigenvalues of Hamiltonian. Section 4.2 shows
that for linear systems

ei = ‖pi0 − p∗0‖ ≈ Ce2Reλ1t,(5.6)

where λ1 is the eigenvalue with largest negative real part of H̄ . Therefore,

ln(ei) ≈ lnC + 2Reλ1t
i.(5.7)

So if the graph of the error function versus the sequence ti is a straight line on
semilog axes, then the error is truly decreasing exponentially as the times in the
algorithm increase. Furthermore, the slope of the line will determine the time
constant, or the rate of decay.

The Hamiltonian matrix associated with equation (5.2) is

H =
(
−a − 1

2
−2 a

)
.(5.8)

H has eigenvalues ±
√
a2 + 1. Running the algorithm at x = 1 for different

values of a, Figure 5.6 displays the logarithmic error graph. Clearly, the curves
are all linear, which imply exponential convergence. Furthermore, as a increases,

1 1.2 1.4 1.6 1.8 2 2.2
25

20

15

10

5

0

t

lo
g(

e)

a=1
a=2
a=3
a=4

Figure 5.6. Error at each iteration for different a
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Table 5.1. Eigenvalues of H vs. rate of convergence

a λ 2λ mcalc

1
√

2 -2.83 -2.83
2
√

5 -4.47 -4.46
3
√

10 -6.32 -6.37
4
√

17 -8.24 -8.25

the slope of each line increases, indicating a faster rate of convergence. By finding
the least square fit to each curve, the rate of convergence can be tested. Table
5.1 shows how the eigenvalues of the Hamiltonian and the convergence rate of the
algorithm vary as a increases. Clearly, the rate of convergence is consistently twice
the eigenvalue of the Hamiltonian matrix.

For higher dimensional systems, this convergence rate depends on the eigenvalue
with largest negative real part eigenvalue of the Hamiltonian. Consider the linear
H∞ problem (5.4), (5.5). The associated Hamiltonian system of the Isaacs equation
is ẋ

ṗ

 =

 A
1

2γ2
BBT

−2CTC −AT


x
p

(5.9)

and the eigenvalues of (5.9) are ±1.31,±0.48. Figure 5.7 shows the graph of the
error versus the time on semilog axes. The straight line indicates that the conver-
gence is indeed exponential, and the slope confirms that the rate is approximately
double the minimum eigenvalue of H .

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11
−10
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−8

−7

−6

−5

−4

−3

−2

−1

0

ti

lo
g(

e)

Slope = −1.043

first component 
second component

Figure 5.7. Convergence rate of algorithm for system (5.5)
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Slope = -1.50
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Figure 5.8. Convergence rate when γ = 2
Repeated eigenvalues
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Figure 5.9. Error graph for repeated eigenvalues
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By changing the H∞-gain to γ = 2, the eigenvalues of the Hamiltonian change
to ±0.721,±1.20. Correspondingly, Figure 5.8 shows a faster convergence rate of
−1.50.

Section 4 implies that as the eigenvalues of the Hamiltonian matrix move to-
ward the imaginary axis, the algorithm takes longer to converge to the stabilizing
solution. This corresponds to the fact that as σ(H) moves closer to zero, the H∞-
problem approaches the singular case.

Next, the case where H has repeated eigenvalues is considered. Suppose H has
eigenvalues

{
1
2 ,

1
2 ,−

1
2 ,−

1
2

}
. The theoretical convergence rate is of the order te−.5t.

Figure 5.9 shows the logarithmic error graph.
While the resulting graphs are not linear, a least square fit of the data to a

straight line gives a slope of −0.8376, which is less than twice the smallest eigen-
value. Therefore, just as repeated eigenvalues slow the rate of a stable system to
the equilibrium point, they also slow the convergence of the algorithm to the stable
manifold.
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