
MATHEMATICS OF COMPUTATION
Volume 71, Number 237, Pages 379–391
S 0025-5718(01)01310-2
Article electronically published on March 7, 2001

SOME BABY-STEP GIANT-STEP ALGORITHMS
FOR THE LOW HAMMING WEIGHT
DISCRETE LOGARITHM PROBLEM

D. R. STINSON

Abstract. In this paper, we present several baby-step giant-step algorithms
for the low hamming weight discrete logarithm problem. In this version of
the discrete log problem, we are required to find a discrete logarithm in a
finite group of order approximately 2m, given that the unknown logarithm
has a specified number of 1’s, say t, in its binary representation. Heiman
and Odlyzko presented the first algorithms for this problem. Unpublished im-
provements by Coppersmith include a deterministic algorithm with complexity

O
(
m
(
m/2
t/2

))
, and a Las Vegas algorithm with complexity O

(√
t
(
m/2
t/2

))
.

We perform an average-case analysis of Coppersmith’s deterministic algo-
rithm. The average-case complexity achieves only a constant factor speed-up
over the worst-case. Therefore, we present a generalized version of Copper-
smith’s algorithm, utilizing a combinatorial set system that we call a splitting

system. Using probabilistic methods, we prove a new existence result for these
systems that yields a (nonuniform) deterministic algorithm with complexity

O
(
t3/2 (logm)

(
m/2
t/2

))
. We also present some explicit constructions for split-

ting systems that make use of perfect hash families.

1. Introduction: the Heiman-Odlyzko algorithm

Let G be an abelian group, written multiplicatively. Let α ∈ G, and suppose
β ∈ 〈α〉. The discrete logarithm logα β is the unique integer x such that 0 ≤ x ≤
ord(α)− 1 and αx = β. The discrete logarithm problem is to compute logα β, given
α and β.

Denote m = dlog2(ord(α))e. Then the binary representation of x = logα β
requires at most m bits, so we can write

x =
m−1∑
i=0

xi2i,

where xi ∈ {0, 1} for 0 ≤ i ≤ m− 1. The hamming weight of an integer x, denoted
wt(x), is the number of 1’s in its binary representation.

In cryptographic protocols, such as the Diffie-Hellman key agreement (see, for
example, [9]), it is often advantageous to choose an exponent x in such a way that
αx can be computed quickly. One way to do this is to choose x to be small relative
to 2m. This scenario is investigated in [10], where the reader is cautioned that a

Received by the editor June 22, 1999 and, in revised form, May 8, 2000.
2000 Mathematics Subject Classification. Primary 68Q25, 11Y16, 05B30.
Key words and phrases. Discrete logarithm problem, baby-step giant-step algorithm, splitting

system.

c©2001 American Mathematical Society

379

380 D. R. STINSON

small choice of x may be insecure. Another slightly more general approach is to
choose x such that wt(x) is small compared to m. (Given such an x, it is faster
to compute αx using a typical square-and-multiply algorithm since the number of
multiplications is reduced to at most t+ m, as compared to 3m/2 for a “random”
x.) However, if wt(x) is too small, then this fact can possibly be exploited by an
adversary who is trying to compute x. This is the problem we investigate in this
paper.

Suppose t < m is a positive integer. Given α and β, the hamming weight t
discrete logarithm problem is to compute logα β whenever wt(logα β) = t. In this
paper, we look at several algorithms for the hamming weight t discrete logarithm
problem. The algorithms can be thought of as “baby-step giant-step algorithms”
(see, e.g., [9, §3.6.2]).

The binary vector (x0, . . . , xm−1) can be regarded as the characteristic vector of
a subset of Zm in an obvious way. This correspondence is made explicit by the two
mappings

set : {0, . . . , 2m − 1} → 2Zm

and

val : 2Zm → {0, . . . , 2m − 1},
which are defined as

set(x) = {i : xi = 1},
where (x0, . . . , xm−1) is the binary representation of x, and

val(Y) =
∑
i∈Y

2i.

Clearly val and set are inverse functions, and

val(Y1 ∪ Y2) = val(Y1) + val(Y2)

if Y1 ∩ Y2 = ∅. It is also clear that wt(x) = |set(x)| for 0 ≤ x ≤ 2m − 1.
The following lemmas are easy.

Lemma 1.1. Suppose that Y1, Y2 ⊆ Zm and αval(Y1) = β(αval(Y2))−1. Then

logα β = (val(Y1) + val(Y2)) mod ord(α).

Lemma 1.2. Suppose that wt(logα β) = t, where t is a positive integer. Then
there exist subsets Y1, Y2 ⊆ Zm such that Y1 ∩ Y2 = ∅, |Y1| =

⌊
t
2

⌉
, and αval(Y1) =

β(αval(Y2))−1.

Lemmas 1.1 and 1.2 are the basis of the following algorithm, independently due
to Heiman and Odlyzko [5], which solves the hamming weight t discrete logarithm
problem for even t.

Algorithm 1.
1. INPUT: α, β ∈ G, an integer m and an even integer t
2. For all Y1 ⊆ Zm such that |Y1| = t/2, compute αval(Y1)

3. Sort the list of ordered pairs (val(Y1), αval(Y1)) by their second coordinates
4. For all Y2 ⊆ Zm such that |Y2| = t/2, compute β(αval(Y2))−1

5. Sort the list of ordered pairs (val(Y2), β(αval(Y2))−1) by their second coordi-
nates

6. If possible, find Y1, Y2 such that αval(Y1) = β(αval(Y2))−1.

SOME BABY-STEP GIANT-STEP ALGORITHMS 381

7. If the previous step is successful, output logαβ=(val(Y1)+val(Y2)) mod ord(α).
Otherwise, output fail.

Remarks. 1. “fail” means that either β 6∈ 〈α〉 or wt(logα β) 6= t.
2. The complexity of Algorithm 1 (neglecting logarithmic factors) is O(

(
m
t/2

)
).

The space requirement is also O(
(
m
t/2

)
).

3. Many variations of the algorithm are possible. For example, it is not necessary
to generate the second list and sort it. It suffices to try each Y2 and determine
if the second coordinate is in the first list by means of a binary search (see,
for example, [9, p. 105]).

The remainder of this paper is organized as follows. In Section 2 we describe two
algorithms due to Coppersmith. The first algorithm is a deterministic algorithm
which we present in terms of new type a combinatorial structure which we call a
“splitting system”. The second algorithm is a Las Vegas probabilistic algorithm.
In Section 3 we perform a detailed average-case analysis of a particular version
of the deterministic algorithm. In Section 4 we present several new constructions
for splitting systems. For convenience, we assume in Sections 2 through 4 that m
and t are both even integers. Then we briefly consider how the algorithms can be
modified to handle arbitrary integers m and t in Section 5. Finally, Section 6 is a
conclusion.

2. The Coppersmith algorithms

2.1. Splitting families. Coppersmith’s algorithm is summarized in [9, p. 128]
(it is, in fact, based on an idea from [3]). We describe a generalized version of
this algorithm in terms of a type of combinatorial set system that we define now.
Suppose m and t are even integers, 0 < t < m. An (m, t)-splitting system is a pair
(X,B) that satisfies the following properties:

1. |X | = m and B is a set of m
2 -subsets of X called blocks;

2. For every Y ⊆ X such that |Y | = t, there exists a block B ∈ B such that
|B ∩ Y | = t/2.

We will use the notation (N ;m, t)-SS to denote an (m, t)-splitting system having
N blocks.

Here is a simple construction for splitting systems.

Lemma 2.1 (Coppersmith). For all even integers m and t with 0 < t < m, there
exists an (m2 ;m, t)-SS.

Proof. Let X = Zm and define

Bi = {i+ j mod m : 0 ≤ j ≤ m/2− 1}
for i ∈ Zm. Let B = {Bi : 0 ≤ i ≤ m/2 − 1}. We will show that (X,B) is an
(m, t)-splitting system.

Fix any subset Y ⊆ X such that |Y | = t. For i ∈ Zm, define

ν(i) = |Bi ∩ Y | − |(Zm\Bi) ∩ Y |.
If ν(0) = 0, then we are done, so assume that ν(0) 6= 0. It is easy to see that ν(i) is
even for all i, ν(m/2) = −ν(0), and |ν(i+ 1)− ν(i)| ∈ {−2, 0, 2} for all i. Therefore
there exists some integer i such that 0 < i < m/2 and ν(i) = 0.

Splitting systems can be used to solve the hamming weight t discrete logarithm
problem, as follows.

382 D. R. STINSON

Algorithm 2.
1. INPUT: α, β ∈ G, even integers m and t, and an (N ;m, t)-SS, (Zm,B), where
B = {Bi : 0 ≤ i ≤ N − 1}.

2. For i = 0, . . . , N − 1, perform the following steps:
(a) For all Y1 ⊆ Bi such that |Y1| = t/2, compute αval(Y1)

(b) Sort the list of ordered pairs (val(Y1), αval(Y1)) by their second coordinates
(c) For all Y2 ⊆ Zm\Bi such that |Y2| = t/2, compute β(αval(Y2))−1

(d) Sort the list of ordered pairs (val(Y2), β(αval(Y2))−1) by their second co-
ordinates

(e) If possible, find Y1, Y2 such that αval(Y1) = β(αval(Y2))−1.
(f) If the previous step is successful, output logαβ=val(Y1)+val(Y2) mod ord(α)

and QUIT. Otherwise, proceed to the next iteration of the FOR loop.

The complexity of Algorithm 2 is O(N
(m/2
t/2

)
). The space requirement is O(

(
m
t/2

)
),

which does not depend on N . Using the splitting systems described in Lemma 2.1
yields an algorithm having complexity O(m

(m/2
t/2

)
); this is the algorithm that was

presented in [9, p. 128].

2.2. A randomized algorithm. A Las Vegas algorithm with good average-case
complexity is easy to construct. This algorithm is also due to Coppersmith [2].

Algorithm 3.
1. INPUT: α, β ∈ G, and even integers m and t.
2. REPEAT the following steps:

(a) Let B be a random m
2 -subset of X

(b) For all Y1 ⊆ B such that |Y1| = t/2, compute αval(Y1)

(c) Sort the list of ordered pairs (val(Y1), αval(Y1)) by their second coordinates
(d) For all Y2 ⊆ Zm\B such that |Y2| = t/2, compute β(αval(Y2))−1

(e) Sort the list of ordered pairs (val(Y2), β(αval(Y2))−1) by their second co-
ordinates

(f) If possible, find Y1, Y2 such that αval(Y1) = β(αval(Y2))−1.
(g) If the previous step is successful, output logαβ=val(Y1)+val(Y2) mod ord(α)

and QUIT. Otherwise, proceed to the next iteration of the REPEAT loop.

The complexity of Algorithm 3 is analyzed as follows. In any iteration, the
algorithm is successful if |B ∩ set(logα β)| = t/2. This happens with probability

p =
(
t
t/2

) (m− t
(m− t)/2

)
(
m
m/2

) .

We can compute a lower bound on p using the following lemma.

Lemma 2.2 ([7, p. 309]). Suppose that n and λn are positive integers, where 0 <
λ < 1. Define

H(λ) = −λ log2 λ− (1− λ) log2(1− λ).

Then
1√

8nλ(1− λ)
2nH(λ) ≤

(
n
λn

)
≤ 1√

2πnλ(1 − λ)
2nH(λ).

SOME BABY-STEP GIANT-STEP ALGORITHMS 383

Now, applying Lemma 2.2, it is easy to see that

p ≥
√
π

8

√
m

t(m− t) > ct−1/2.(1)

Hence, the complexity of Algorithm 3 is O(
√
t
(m/2
t/2

)
).

3. Average-case analysis of the deterministic algorithm

Suppose we use Algorithm 2 with the splitting systems from Lemma 2.1. We
consider the average-case complexity of this algorithm, where the average is com-
puted over all

(
m
t

)
possible exponents having hamming weight t. For any integer x

with 0 ≤ x ≤ 2m − 1, wt(x) = t, let ψ(x) denote the minimum integer i ≥ 0 such
that |Bi ∩ set(x)| = t/2. Then Algorithm 2 requires ψ(x) + 1 iterations of step 2 if
β = αx. It follows from Lemma 2.1 that 0 ≤ ψ(x) ≤ m/2− 1 for all x.

Next, define

δ(m, t) =
∑

{x:0≤x≤2m−1,wt(x)=t}
ψ(x).

Then the average-case complexity of the algorithm is in fact O((δ(m,t)(mt)
+ 1)

(m/2
t/2

)
).

We proceed to develop a formula for δ(m, t). For any integer h such that 0 ≤
h ≤ m/2− 1, we determine the value

η(h) = |{x : 0 ≤ x ≤ 2m − 1,wt(x) = t, ψ(x) = h}|.
Then it is clear that

δ(m, t) =
m/2−1∑
h=1

h η(h).

First, it is easy to see that

η(0) =
(
m/2
t/2

)2

.

Next, we have that ψ(x) = 1 if and only if

x0 = 0,
|{1, . . . ,m/2− 1} ∩ set(x)| = t/2− 1,

xm/2 = 1, and
|{m/2 + 1, . . . ,m− 1} ∩ set(x)| = t/2;

or

x0 = 1,
|{1, . . . ,m/2− 1} ∩ set(x)| = t/2,

xm/2 = 0, and
|{m/2 + 1, . . . ,m− 1} ∩ set(x)| = t/2− 1.

From this it follows that

η(1) = 2
(
m/2− 1
t/2− 1

)(
m/2− 1
t/2

)
.

384 D. R. STINSON

Now, let us look at computing η(h) for general h. Suppose the bit-sequences
[x0, . . . , xh−1] and [xm/2, . . . , xm/2+h−1] are fixed. Then it is clearly necessary that
the following sum conditions hold for 0 ≤ k ≤ h− 1:

h−1∑
j=h−1−k

xj 6=
m/2+h−1∑

j=m/2+h−1−k
xj .(2)

Denote

s1 =
h−1∑
j=0

xj

and

s2 =
m/2+h−1∑
j=m/2

xj .

Then s1 6= s2, and ψ(x) = h if and only if (2) holds, and in addition,

|{h, . . . ,m/2− 1} ∩ set(x)| = t/2− s1

and

|{m/2 + h, . . . ,m− 1} ∩ set(x)| = t/2− s2.

Let ζ(h, s1, s2) denote the number of ways of choosing x0, . . . , xh−1 and xm/2, . . . ,
xm/2+h−1 such that the inequality (2) holds for 0 ≤ k ≤ h − 1. Then, by the
discussion above, we have that

η(h) =
h∑

s1=0

h∑
s2=0

ζ(h, s1, s2)
(
m/2− h
t/2− s1

)(
m/2− h
t/2− s2

)
.

Thus, it remains to find a formula for ζ(h, s1, s2). We do this using the familiar
“reflection” technique that can be used to determine the well-known formula for
the Catalan numbers (see, e.g., [6, §3.4]).

For 0 ≤ i ≤ h − 1, define zh−i = xi − xm/2+i. Then zi ∈ {0, 1,−1} for all i.
Inequality (2) can then be rewritten as

i∑
j=1

zj 6= 0(3)

for 1 ≤ i ≤ h.
Given the sequence [z1, . . . , zh], we define a path P = [(0, y0), (1, y1), . . . , (h, yh)],

where y0 = 0 and yi − yi−1 = zi for 1 ≤ i ≤ h. Observe that yh = s1 − s2. Also,
inequality (3) can be interpreted as saying that the path P never hits the x-axis,
except for the initial point, (0, 0).

For j1, j2 ∈ {0, 1}, define

aj1,j2 = |{i : (xi, xm/2+i) = (j1, j2)}|.

SOME BABY-STEP GIANT-STEP ALGORITHMS 385

Note that a type (1, 0) pair correpsonds to an “up” edge in P , a type (0, 1) pair
correpsonds to a “down” edge in P , and type (0, 0) and (1, 1) pairs correpsond to
“horizontal” edges in P . We will think of each edge of P as being labelled with
an ordered pair in this manner; this will allow the sequences [x0, . . . , xh−1] and
[xm/2, . . . , xm/2+h−1] to be recovered from P .

It is easy to see that the following equations hold:

a0,0 + a1,1 + a1,0 + a0,1 = h,

a1,1 + a0,1 = s2, and
a1,1 + a1,0 = s1.

Then

(a0,0, a1,1, a1,0, a0,1) = (h+ j − s1 − s2, j, s1 − j, s2 − j),

where j is an integer.
Let us now assume that s1 > s2 (the case s2 > s1 can be analyzed in a similar

fashion). Then the first edge of P must be labelled (1, 0), otherwise (3) will be
violated for i = 1. The total number of such paths P is given by the multinomial
coefficient (

h− 1
h+ j − s1 − s2, j, s1 − j − 1, s2 − j

)
.

Of course, this total includes paths that do not satisfy (3). Now, suppose that (3) is
violated for some i > 1; let i0 be the smallest such i. Form a path P ∗ by reflecting
the initial portion of P (from (0, 0) to (i0, 0)) in the x-axis. (Note that a type (q, r)
pair becomes a type (r, q) pair after this reflection.)
P ∗ is a path from (0, 0) to (h, s1− s2) in which the initial edge is labelled (0, 1).

Also, the values (a0,0, a1,1, a1,0, a0,1) are the same in P ∗ as they are in P . The total
number of such paths P ∗ is given by the multinomial coefficient(

h− 1
h+ j − s1 − s2, j, s1 − j, s2 − j − 1

)
.

Therefore, it follows that the number of paths P that satisfy all the inequalities (3)
is(

h− 1
h+ j − s1 − s2, j, s1 − j − 1, s2 − j

)
−
(

h− 1
h+ j − s1 − s2, j, s1 − j, s2 − j − 1

)
,

which simplifies to give

s1 − s2

h

(
h

h+ j − s1 − s2, j, s1 − j, s2 − j

)
.

Thus, for h 6= 0, it holds that

ζ(h, s1, s2) =
|s1 − s2|

h

min{s1,s2}∑
j=max{s1+s2−h,0}

(
h

h+ j − s1 − s2, j, s1 − j, s2 − j

)
.(4)

386 D. R. STINSON

The sum in (4) can be simplified, as follows:∑
j

(
h

h+ j − s1 − s2, j, s1 − j, s2 − j

)

=
∑
j

(
h− s2

s1 − j

)(
h− j
h− s2

)(
h

h− j

)

=
∑
j

(
h− s2

s1 − j

)(
h
s2

)(
s2

s2 − j

)

=
(
h
s2

)∑
j

(
h− s2

s1 − j

)(
s2

j

)

=
(
h
s2

)(
h
s1

)
.

Combining everything, we get

δ(m, t) =
m/2−1∑
h=1

min{h,t/2}∑
s1=1

s1−1∑
s2=0

2(s1 − s2)

×
(
m/2− h
t/2− s1

)(
m/2− h
t/2− s2

)(
h
s1

)(
h
s2

)
.

(5)

We are unable to simplify (5) any further. However, computational evidence
show that the speed-up is, at best, only a constant factor. Recalling that the
worst-case of the algorithm requires m/2 iterations, the ratio of the average-case to
the worst-case complexity is in fact

δ(m, t)(
m
t

) +
1
m
2

=
2 δ(m, t)
m m

t

+
2
m
.

Ignoring the term 2/m, which tends to 0 as m→∞, we compute the ratio

r(m, t) =
2 δ(m, t)

m

(
m
t

)
for various values of m and t. It is clear from the definition of the function δ that
δ(m, t) = δ(m,m− t), so it suffices to restrict t so that 2 ≤ t ≤ m/2. We computed
all these ratios r(m, t) for even values of m and t such that 2 ≤ t ≤ m/2 and
4 ≤ m ≤ 80. We found that the values r(m, 2) decrease as m increases; the values
r(m,m/2) increase as m increases; and, for any fixed value of m, the values r(m, t)
increase as t increases from 2 to m/2.

Table 1 lists values of δ(m, t) and r(m, t) for m ≤ 16 and t ≤ m/2; and for
m ∈ {24, 32, 40, 48, 56, 64, 72, 80} when t = m/2 .

It is easy to see from equation (5) that δ(m, 2) = (m3−4m)/24. Hence r(m, 2)→
1/6 as m → ∞. The numerical evidence also suggests strongly that r(m,m/2) =
m/(4m+ 8) for m ≡ 0 mod 4. We verified that this is indeed the case for m ≤ 100,
though we do not know how to prove it in general.

SOME BABY-STEP GIANT-STEP ALGORITHMS 387

Table 1.

m t δ(m, t) r(m, t)
4 2 2 .166667
6 2 8 .177778
8 2 20 .178571
8 4 56 .200000

10 2 40 .177778
10 4 216 .205714
12 2 70 .176768
12 4 616 .207407
12 6 1188 .214286
14 2 112 .175824
14 4 1456 .207792
14 6 4576 .217687
16 2 168 .175000
16 4 3024 .207692
16 6 14040 .219156
16 8 22880 .222222
24 12 7488432 .230769
32 16 2262890880 .235294
40 20 656412042000 .238095
48 24 185746197214656 .240000
56 28 51694598543070560 .241379
64 32 14216720608524338688 .242424
72 36 3874974677018786931408 .243243
80 40 1048850816910596843528000 .243902

4. Improved results concerning splitting systems

4.1. Probabilistic methods. We can improve Algorithm 2 by constructing smal-
ler splitting systems. We first provide a bound using probabilistic methods. Let m
and t be even integers such that 0 < t < m. Suppose that B a set of m

2 -subsets of
an m-set, X , and |B| = N . For a subset Y ⊆ X with |Y | = t, define ZY (B) = 0
if there exists a block B ∈ B such that |B ∩ Y | = t/2, and define ZY (B) = 1,
otherwise. Let ZY denote the random variable obtained by letting B be a set of
N randomly chosen m

2 -subsets of X . Clearly, the expected value of ZY , denoted
E[ZY], is (1− p)N , where

p =

(
t
t/2

)(
m− t

m− t)/2

)
(
m
m/2

) .

If we define the random variable

Z =
∑

{Y⊆X:|Y |=t}
ZY ,

388 D. R. STINSON

then we have E[Z] =
(
m
t

)
(1 − p)N . It is clear that there exists an (N ;m, t)-SS if

E[Z] < 1. Since
(
m
t

)
< mt, this will be true if

t logm+N log(1− p) < 0,

which is equivalent to

N >
t logm

− log(1− p) .

Using elementary calculus, we have that − log(1 − p) > p; and p ≥ ct−1/2 was
shown in equation (1). Hence, an (N ;m, t)-SS exists if

N >
1
c
t3/2 logm.

Thus we have proven the following result.

Theorem 4.1. For any even integers t and m with 0 < t < m, there exists an
(N ;m, t)-SS with N ≈ c0 t3/2 log2m, where c0 is a constant.

Thus, Theorem 4.1 yields a (nonuniform) deterministic algorithm having com-
plexity O(t3/2 (logm)

(m/2
t/2

)
).

4.2. Explicit constructions. In this section, we present a recursive construction
for splitting families that uses perfect hash families. Perfect hash families were
introduced by Mehlhorn (see, e.g., [8]) and have been studied extensively since
then (for a recent survey, see [4]).

We require some definitions. Let n ≥ m be positive integers. An (n,m)-hash
function is a function h : A → B, where |A| = n and |B| = m. The hash function
h is said to be balanced provided that |h−1(y)| = n/m for all y ∈ B.

Let n,m and w be integers such that n ≥ m ≥ w ≥ 2. An (n,m,w)-perfect
hash family is a finite set H of (n,m)-hash functions such that h : A→ B for each
h ∈ H, where |A| = n and |B| = m, with the property that for any X ⊆ A with
|X | = w, there exists at least one h ∈ H such that h|X is one-to-one. H is said to
be an (n,m,w)-balanced perfect hash family if H is an (n,m,w)-perfect hash family
and h is balanced for every h ∈ H.

We will use the notation BPHF(N ;n,m,w) to denote an (n,m,w)-balanced
perfect hash family with |H| = N . We can depict a BPHF(N ;n,m,w) as an N ×n
array on m symbols, say A, where each row of A corresponds to one of the functions
in the family. This array has the property that, for any subset of w columns, there
exists at least one row such that the entries in the w given columns of that row are
distinct; and any row of A contains exactly n/m occurrences of each symbol.

Here is a recursive construction for splitting families.

Theorem 4.2. Suppose there exist a BPHF(N0;n,m, t) and an SS(N1;m, t). Then
there exists an SS(N0N1;n, t).

Proof. Let M be the N1 × m incidence matrix of an SS(N1;m, t), and
denote the columns of M by c1, . . . , cm. Let A be the array representation of the
BPHF(N0;n,m, t), and replace each entry y = A(i, j) by the column vector cy.
Call the resulting matrix M1.

It is easy to see that M1 is the incidence matrix of an SS(N0N1;n, t): The
“balance” property of the hash family ensures that each block of the resulting
splitting system has cardinality n/2. Also, given a t-subset of points, say B1,

SOME BABY-STEP GIANT-STEP ALGORITHMS 389

there exists a hash function h such that h|B1 is injective. Restricting to the N1

corresponding rows of M1, property 2 of splitting families is inherited from M .

The following corollary is an immediate application of Lemma 2.1 and Theorem
4.2.

Corollary 4.3. If there exists a BPHF(N0;n,m, t), then there exists an
SS(N0m/2;n, t).

In order to apply Theorem 4.2 or Corollary 4.3, we need balanced perfect hash
families. It is not difficult to verify that certain direct constructions for perfect
hash families in the literature yield BPHF. We illustrate with an example.

Let q be a prime power. An (N,K,D, q)-code is a set C of K vectors in (Fq)N
such that the Hamming distance between any two distinct vectors in C is at least
D. The code C is linear if it is a subspace of (Fq)N ; in this case K = qk, where
k = dim(C).
Theorem 4.4. If a linear (N,K,D, q)-code exists, then there exists a
BPHF(N ;K, q, w), provided that

D

N
> 1− 1(

w
2

) .
Proof. Construct an N × K array whose columns are the codewords in C. It is
shown in [1] that this array is a PHF(N ;K, q, w) provided that D/N > 1−(1/

(
w
2

)
).

Since C is linear, it follows that each hash function in the family is balanced, and
the result follows.

Using Reed-Solomon codes, we obtain the following corollary of Theorem 4.4.

Corollary 4.5. Suppose that q is a prime power, 0 < ` < q is an integer, and
q > (`− 1)

(
w
2

)
. Then there exists a BPHF(q; q`, q, w).

Proof. A q-ary dimension ` extended Reed-Solomon code of length q exists (see, for
example, [7]). This is a linear (q, q`, q − `+ 1, q)-code. Apply Theorem 4.4.

Combining Corollaries 4.3 and 4.5 allows us to prove an interesting asymptotic
existence theorem. Suppose m and t are given, and we want to construct an
SS(N ;m, t). Choose q ≈ t2 logm and ` ≈ logm/ log q. Then all necessary con-
ditions are satisfied, and we obtain an SS(N ;m, t) in which N is O(t4(logm)2).

5. Algorithms for arbitrary m and t

In this section, we discuss briefly how the algorithms we have presented can be
modified to handle the cases where one or both of m and t are odd. First, Algorithm
1 does not care if m is even or odd. So we only need to consider the case when t is
odd. In this case, it suffices to consider all Y1 ⊆ Zm with |Y1| =

⌊
t
2

⌋
in step 3; and

all Y2 ⊆ Zm with |Y2| =
⌈
t
2

⌉
in step 4.

Algorithm 3 is also easy to modify. In step 2(a), B should be chosen to be a
random

⌊
m
2

⌋
-subset; in step 2(b) consider all Y1 ⊆ B with |Y1| =

⌊
t
2

⌋
; and in step

2(d) consider all Y2 ⊆ Zm\B with |Y2| =
⌈
t
2

⌉
. The complexity analyses of the

modified versions of Algorithm 1 and 3 are straightforward.
Now we proceed to Algorithm 2. We defined splitting systems in Section 2.1,

assuming that m and t are both even. We now generalize this definition to arbitrary

390 D. R. STINSON

integers m and t with 0 < t < m. An (m, t)-generalized splitting system is a pair
(X,B) that satisfies the following properties:

1. |X | = m and B is a set of
⌊
m
2

⌋
-subsets of X called blocks;

2. For every Y ⊆ X such that |Y | = t, there exists a block B ∈ B such that
|B ∩ Y | =

⌊
t
2

⌋
.

We will use the notation (N ;m, t)-GSS to denote an (m, t)-generalized splitting
system having N blocks.

Given an (N ;m, t)-GSS, we can apply Algorithm 2 with the following modifica-
tions: in step 2(a) consider all Y1 ⊆ Bi with |Y1| =

⌊
t
2

⌋
; and in step 2(c) consider

all Y2 ⊆ Zm\Bi with |Y2| =
⌈
t
2

⌉
.

When m and t are both even, it is clear that an (N ;m, t)-GSS is the same thing
as an (N ;m, t)-SS, and Algorithm 2 is not changed. The following constructions
for generalized splitting systems allow us to handle the cases where at least one of
m and t is odd.

Theorem 5.1. Suppose that m and t are even and there exists an (N ;m, t)-SS.
Then the following exist: a (2N ;m, t − 1)-GSS; an (N ;m − 1, t)-GSS; and an
(N ;m− 1, t− 1)-GSS.

Proof. Let (X,B) be an (N ;m, t)-SS, where m and t are both even. First we show
that (X,B ∪ {X\B : B ∈ B}) is a (2N ;m, t − 1)-GSS. Suppose that Y ⊆ X ,
|Y | = t− 1. Let x ∈ X\Y , and define Y ′ = Y ∪ {x}. Since |Y | = t, there exists a
block B ∈ B such that |Y ′ ∩B| = t/2. If x ∈ B, then

|Y ∩B| = t

2
− 1 =

⌊
t− 1

2

⌋
.

Otherwise, x ∈ X\B, in which case

|Y ∩ (X\B)| = t

2
− 1 =

⌊
t− 1

2

⌋
.

Therefore we have constructed a (2N ;m, t− 1)-GSS.
Now we construct an (N ;m − 1, t)-GSS and an (N ;m − 1, t − 1)-GSS. Pick an

arbitrary point x0 ∈ X . We can assume without loss of generality that x0 ∈ B for
all B ∈ B (for each B such that x0 6∈ B, replace B by X\B).

Define X ′ = X\{x0}, and for all B ∈ B, define B′ = B\{x0}. Let B′ =
{B′ : B ∈ B}. We will show that (X ′,B′) is simultaneously an (N ;m − 1, t)-GSS
and an (N ;m− 1, t− 1)-GSS.

First, suppose Y ′ ⊆ X ′, |Y ′| = t. There exists a block B ∈ B such that
|Y ′ ∩B| = t/2. Then |Y ′ ∩B′| = t/2, as desired. Therefore we have constructed an
(N ;m− 1, t)-GSS.

Finally, suppose that Y ′ ⊆ X ′, |Y ′| = t− 1. Define Y = Y ′ ∪ {x0}. There exists
a block B ∈ B such that |Y ∩B| = t/2. Then

|Y ′ ∩B′| = t

2
− 1 =

⌊
t− 1

2

⌋
as desired. Therefore, we have constructed an (N ;m− 1, t− 1)-GSS.

SOME BABY-STEP GIANT-STEP ALGORITHMS 391

6. Conclusion

We have described several varaints of baby-step giant-step algorithms for the
low hamming weight discrete logarithm problem. For practical use, Coppersmith’s
Las Vegas algorithm (Algorithm 3) would be preferred. If a deteministic algorithm
is desired, then an algorithm based on the idea of splitting systems can be used.
This is a generalization of another algorithm due to Coppersmith. We performed
an average case analysis of the simplest of these algorithms and found that only a
constant factor speedup is acheived, as compared to the worst case. Several alter-
native methods of constructing splitting systems were investigated. These permit
construction of smaller splitting systems, and hence more efficient determinstic al-
gorithms, at least asymptotically. Finding more efficient methods of constructing
splitting systems is an interesting combinatorial problem.

Acknowledgments

The author’s research is supported by the Natural Sciences and Engineering
Research Council of Canada through the following grants: NSERC-IRC #216431-
96 and NSERC-RGPIN #203114-98.

I would like to thank Ruizhong Wei for his help with computations and for his
useful comments; Alfred Menezes for his assistance with references; and the referees
for many helpful suggestions concerning the presentation of the results in this paper.

References

[1] N. Alon. Explicit construction of exponential sized families of k-independent sets, Discrete
Math. 58 (1986), 191–193. MR 87e:05002

[2] D. Coppersmith. Private communication to Scott Vanstone, December 1997.
[3] D. Coppersmith and G. Seroussi. On the minimum distance of some quadratic residue codes,

IEEE Trans. Inform. Theory 30 (1984), 407–411. MR 86c:94025
[4] Z. J. Czech, G. Havas and B. S. Majewski. Perfect hashing, Theoretical Computer Science

182 (1997), 1–143. MR 98h:68048
[5] R. Heiman. A note on discrete logarithms with special structure. Lecture Notes in Computer

Science 658, 454–457 (Advances in Cryptology – EUROCRYPT ’92).
[6] D. L. Kreher and D. R. Stinson. Combinatorial algorithms: generation, enumeration and

search, CRC Press, 1999.
[7] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes, North-Holland,

1977. MR 57:5408a; MR 57:5408b
[8] K. Mehlhorn. Data structures and algorithms 1: sorting and searching, Springer-Verlag,

Berlin, 1984. MR 86e:68001
[9] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone. Handbook of applied cryptography,

CRC Press, 1997. MR 99g:94015
[10] P. C. van Oorschot and M. J. Wiener. On Diffie-Hellman key agreement with short ex-

ponents. Lecture Notes in Computer Science 1070, 332–343 (Advances in Cryptology –
EUROCRYPT ’96), Springer, Berlin, 1996. CMP 97:04

Department of Combinatorics and Optimization, University of Waterloo, Waterloo

Ontario, N2L 3G1, Canada

E-mail address: dstinson@uwaterloo.ca

http://www.ams.org/mathscinet-getitem?mr=87e:05002
http://www.ams.org/mathscinet-getitem?mr=86c:94025
http://www.ams.org/mathscinet-getitem?mr=98h:68048
http://www.ams.org/mathscinet-getitem?mr=57:5408a
http://www.ams.org/mathscinet-getitem?mr=57:5408b
http://www.ams.org/mathscinet-getitem?mr=86e:68001
http://www.ams.org/mathscinet-getitem?mr=99g:94015

	1. Introduction: the Heiman-Odlyzko algorithm
	2. The Coppersmith algorithms
	2.1. Splitting families
	2.2. A randomized algorithm

	3. Average-case analysis of the deterministic algorithm
	4. Improved results concerning splitting systems
	4.1. Probabilistic methods
	4.2. Explicit constructions

	5. Algorithms for arbitrary m and t
	6. Conclusion
	Acknowledgments
	References

