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NEWTON-LIKE METHOD WITH MODIFICATION
OF THE RIGHT-HAND-SIDE VECTOR

NATAŠA KREJIĆ AND ZORANA LUŽANIN

Abstract. This paper proposes a new Newton-like method which defines new
iterates using a linear system with the same coefficient matrix in each iterate,
while the correction is performed on the right-hand-side vector of the Newton
system. In this way a method is obtained which is less costly than the Newton
method and faster than the fixed Newton method. Local convergence is proved
for nonsingular systems. The influence of the relaxation parameter is analyzed
and explicit formulae for the selection of an optimal parameter are presented.
Relevant numerical examples are used to demonstrate the advantages of the
proposed method.

1. Introduction

Consider the system of nonlinear equations

F (x) = 0(1.1)

where F : Rn → Rn is a nonlinear C1-function.
The best-known method for finding a solution to (1.1) is the Newton method.

Algorithm N: (Newton method)
Let x0 be given.

For k = 0, 1, 2, . . .
• Step 1. Solve

F ′(xk)skN = −F (xk).(1.2)

• Step 2. Define xk+1 = xk + skN .
Equation (1.2) is known as the Newton system, while the vector skN is called the

Newton correction. The Newton method possesses good theoretical characteristics
such as quadratic convergence for any sufficiently good initial guess. Despite its
obvious qualities, this method has a number of disadvantages in practice. This is
primarily the case with the high cost of a Newton iterate, due to the necessity to
compute all the elements of the Jacobian matrix, as well as the need for an exact
solution of a system of linear equations using a new matrix for every iterate.

In recent years, powerful software packages for automatic differentiation have
been developed (see [7] and the references therein), so that computing analytic
derivatives in an efficient way in many cases does not seem to present serious prob-
lem. In these cases the most important drawback of the Newton method is the
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necessity to solve the Newton system. A possible way of overcoming this difficulty
is to apply the inexact Newton method, [4, 8], and to solve the Newton system only
approximately by means of some iterative method.

Algorithm IN: (Inexact Newton method)
Let x0 be given.

For k = 0, 1, 2, . . .
• Step 1. Find some step sk which satisfies

F ′(xk)sk = −F (xk) + rk(1.3)

where

||rk|| ≤ ηk||F
(
xk
)
||.

• Step 2. Define xk+1 = xk + sk.

Another possibility is to use some quasi-Newton method “with cheap linear alge-
bra”. The simplest modification of the Newton method is the fixed Newton method
(also known as the chord method or modified Newton method).

Algorithm FN: (Fixed Newton method)
Let x0 be given.

For k = 0, 1, 2, . . .
• Step 1. Solve

F ′(x0)skF = −F (xk).(1.4)

• Step 2. Define xk+1 = xk + skF .

This method diminishes both disadvantages of the Newton method mentioned
above but is significantly slower. If LU decomposition is used as a linear solver, then
solving of (1.4) requires O

(
n2
)

flops (except for the first iteration), as opposed to
(1.2) where O

(
n3
)

flops are needed. From the computational complexity point of
view, the fixed Newton method is significantly cheaper. However, it is only linearly
convergent. That is why we can say that the Newton method is “expensive and
fast” while the fixed Newton method is “cheap and slow”.

In this paper we propose a new method, the method of Modification of the Right-
hand-side Vector (MRV method), which is cheaper than the Newton and faster than
the fixed Newton method. The main idea is to modify the right-hand-side vector in
(1.4) so that the fixed Newton method becomes more similar to the Newton method.
Contrary to the common practise in Newton-like methods, we do not update the
approximation of the Jacobian in every iteration, but keep the initial approximation
through the whole iteration process fixed and update the right-hand-side vector in
each iteration using the Jacobian. In this way, one step of the method requires the
solution of a linear system, as is usual with this type of methods, but the system
matrix is the same in all iterations. In fact, the inverse Jacobian is updated in every
iteration with the perturbation of the right-hand-side vector as will be explained
later. The first attempt of this kind was made in [12], but with much less success
than here.

This paper is organized as follows. In Section 2 we define the MRV method and
analyze its local convergence for the system (1.1) assuming a suitable choice of the
initial approximation and the relaxation parameter. The choice of the relaxation
parameter is analyzed in Section 3. The optimal choice is the solution of the
minimization problem. In Section 4 we describe our test functions and present a
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numerical comparison of our new method with some of the well-known methods.
Finally, in Section 5 we conclude with some final remarks and suggestions for future
research.

2. Convergence result for the new method

In this section we will consider the method for solving the system (1.1) where
F is a continuously differentiable mapping. The method is given by the following
algorithm.

Algorithm MRV:
Let x0 ∈ Rn and A ∈ Rn×n nonsingular matrix be given.

For k = 0, 1, 2, . . .
• Step 1. Solve

Ask = (αkH(xk)− E)F (xk).(2.1)

• Step 2. Define xk+1 = xk + sk,

where

H(xk) = F ′(xk)−A,
E is the identity matrix and αk is a real parameter. In every iteration one has to
calculate H(xk), assuming that the Jacobian is available, and to solve the system
of linear equations (2.1). Generally, in this way the cost of one iteration, in general,
is O

(
n2
)
, since the LU factorization of A can be performed only once.

As the referee pointed out, the algorithm can be interpreted in a most classical
way as the Newton-like method where the Inverse-Jacobian approximation is A−1 +
αk
(
E −A−1F ′

(
xk
))
. In fact, the choice of the line determined by E−A−1F ′

(
xk
)

in the space of matrices allows us to keep the matrix in (2.1) constant. Of course,
there are other possibilities for correction of the Inverse-Jacobian, such as correction
along A − F ′

(
xk
)

but in this case the unknown matrix A−1 appears in the right-
hand-side vector. Since the main idea of this paper was to reduce the linear algebra
work treating the whole iterative sequence as the sequence of the solutions of the
linear systems with the same coefficient matrix and getting the improvement by
a perturbation of the right-hand-side vector, the choice of E − A−1F ′

(
xk
)

seems
optimal.

Obviously, the new method for A = F ′(x0) and αk ≡ 0 reduces to the fixed
Newton method. Although the Newton method is not a special case of MRV, with
a good choice of A and αk we can achieve quite good behavior of the new method.

Let us now state the basic assumptions that will be used for proving local con-
vergence of the method defined by the MRV Algorithm. As usual with the local
convergence theories, we assume that there exists x∗ ∈ Rn that solves the problem,
that is,

F (x∗) = 0

and F ′ is continuous and nonsingular at x∗.
The following lemmas are used for proving the convergence result.

Lemma 2.1 ([19]). Let F : Rn → Rn be continuously differentiable at x∗. Then
for any γ > 0 there exists ε > 0 such that

‖F (x)− F (x∗)− F ′ (x∗) (x− x∗)‖ ≤ γ ‖x− x∗‖
for ‖x− x∗‖ < ε.
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Lemma 2.2 ([6]). Let M ∈ Rn×n. If ‖M‖ < 1, then (E −M)−1 exists and

(E −M)−1 =
∞∑
j=0

M j.

Lemma 2.3 ([6]). Let M,N ∈ Rn×n. If M is nonsingular and
∥∥M−1 (M −N)

∥∥ <
1, then N is nonsingular and

‖N−1‖ ≤
∥∥M−1

∥∥
1− ‖M−1 (N −M)‖ .

We are now ready to prove the local convergence result which is the theorem of
two neighborhoods.

Theorem 2.4. Let F satisfy the basic assumptions and r ∈ (0, 1) . There exist
ε = ε (r) , δ = δ (r) and α > 0 such that if

∥∥x0 − x∗
∥∥ ≤ ε, ‖A− F ′ (x∗)‖ ≤ δ and

|αk| < α, then the sequence
{
xk
}

generated by Algorithm MRV converges q-linearly
to x∗ and satisfies

‖xk+1 − x∗‖ ≤ r‖xk − x∗‖
for all k = 0, 1, . . . .

Proof. There exists α′ > 0 such that for |α∗| ≤ α′ we have

‖α∗H (x∗)‖ < 1.(2.2)

The continuity of H allows us to claim

‖αH (x)‖ < 1(2.3)

for |α| ≤ α′′ ≤ α′ and ‖x− x∗‖ ≤ ε1. Let us denote

Γ (x, α) = (E − αH (x))−1
A.

From (2.2), Lemma 2.2 and nonsingularity of A, Γ (x∗, α∗) is nonsingular and∥∥Γ−1 (x∗, α∗)
∥∥ ≤ β1

for some β1 > 0. Let β = 2β1. The mapping Γ : Rn ×R→ Rn is continuous, so for
any δ1 > 0 we have

‖Γ (x, α)− Γ (x∗, α∗)‖ ≤ δ1(2.4)

for α′′, ε1 small enough. Now Lemma 2.3 implies that Γ (x, α) is nonsingular for
δ1 < β−1 and

‖Γ−1 (x, α) ‖ ≤ β.(2.5)

Denote

‖α∗Γ (x∗, α∗)− E‖ = C(2.6)

and choose ε ≤ ε1, α ≤ α′′, δ such that

‖F (x)− F (x∗)− F ′ (x∗) (x− x∗)‖ ≤ γ ‖x− x∗‖ ,(2.7)

‖A− F ′ (x∗)‖ ≤ δ
and

β (Cδ + δ1 + γ) ≤ r < 1

for ‖x− x∗‖ ≤ ε and |α| ≤ α.
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Now we prove the statement by induction on k. Let ‖xk−x∗‖ ≤ ε, |αk| ≤ α and
Γk = Γ(xk, αk), Γ∗ = Γ (x∗, α∗) . Then, by (2.4)

‖Γk − Γ∗‖ ≤ δ1

and ∥∥xk+1 − x∗
∥∥ =

∥∥−Γ−1
k F

(
xk
)

+ xk − x∗
∥∥

=
∥∥∥∥Γ−1

k

(
[Γk − F ′ (x∗)]

(
xk − x∗

)
−
[
F
(
xk
)
− F (x∗)− F ′ (x∗)

(
xk − x∗

)] )∥∥∥∥
≤

∥∥Γ−1
k

∥∥( ‖Γk − F ′ (x∗)‖
∥∥xk − x∗∥∥

+
∥∥F (xk)− F (x∗)− F ′ (x∗)

(
xk − x∗

)∥∥ ) .
Also

‖Γk − F ′ (x∗)‖ ≤ ‖Γk − Γ∗‖+ ‖Γ∗ − F ′ (x∗)‖

and

‖Γ∗ − F ′ (x∗)‖ =
∥∥∥(E − α∗H (x∗))−1

A− (A+H (x∗))
∥∥∥

=

∥∥∥∥∥∥
 ∞∑
j=0

(α∗H (x∗))j
A−A−H (x∗)

∥∥∥∥∥∥
=

∥∥∥∥∥∥α∗H (x∗)

 ∞∑
j=0

(α∗H (x∗))j
A−H (x∗)

∥∥∥∥∥∥
≤ ‖H (x∗)‖

∥∥∥α∗ (E − α∗H (x∗))−1A− E
∥∥∥

≤ δC,

which follows from (2.2), Lemma 2.2 and (2.6). From these inequalities we obtain

‖xk+1 − x∗‖ ≤ β (δC + δ1 + γ) ‖xk − x∗‖
≤ r‖xk − x∗‖

and ‖xk+1 − x∗‖ ≤ ε, so the inductive step is finished and the statement is proved.

3. The choice of αk

In this section we will analyze some strategies for choosing the parameter α.
Obviously, the easiest way is to assume

αk ≡ α = const(3.1)

in all iterations.
Let us consider the linear modelM(x) of F (x) around the current iterate xk ∈ Rn

M(xk + d) = F (xk) + F ′(xk)d.(3.2)

The Newton correction skN is the solution of M
(
xk + d

)
= 0. In the MRV method

the correction sk is

sk = −A−1(E − αkH(xk))F (xk),
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so the reasonable way to choose the parameter αk is to solve the following mini-
mization problem:

αopk = arg minα∈R||M(xk + sk)||22,(3.3)

i.e.,

αopk = arg minα∈R||F (xk) + F ′(xk)(−A−1(E − αH(xk))F (xk)||22.(3.4)

Using F ′(xk) = A+ H(xk) and with the notation

M = H(xk)A−1, v = MF (xk), w = H(xk)F (xk), t = Mw,

(3.4) becomes

αopk = arg minα∈R||v − αw − αt||22.
The exact solution of the previous problem is

αopk =
〈v, w + t〉
〈w + t, w + t〉 .(3.5)

This choice is referred to as the optimal parameter. In this case we need to solve
two systems of linear equations with the matrix A,

Av1 = F (xk)

and

At1 = w.

After that

v = H(xk)v1, t = H(xk)t1,

w = H(xk)F (xk),

αk is given by (3.5) and

sk = − (v1 − αkt1) .

One iteration requires O
(
2n2
)

flops for v1 and t1 and three matrix-vector products.
Thus, one iteration requires the double work in comparison with (3.1) but numerical
examples in Section 4 show that the effort is justified.

We are now going to prove the convergence theorem for the MRV method with
the optimal parameter assuming that the basic assumptions from Section 2 are
satisfied. The proof is based on the following theorem from [4].

Theorem 3.1. Assume that ηk ≤ η < 1. There exists ε > 0 such that, if ||x−x∗|| ≤
ε, then the sequence of inexact Newton iterates

{
xk
}

converges to x∗. Moreover,
the convergence is linear in the sense that

||xk+1 − x∗||∗ ≤ r||xk − x∗||∗,
where ||y||∗ = ||F ′ (x∗) y||.

In order to prove the convergence of MRV method we are going to consider it as
an Inexact Newton method.

Theorem 3.2. There exist δ, ε > 0 such that, if ||x−x∗|| ≤ ε and ||A−F ′ (x∗) || ≤
δ, then the sequence

{
xk
}

generated by Algorithm MRV with the parameters {αk}
given in (3.5) converges to x∗. The convergence is linear in the sense that

||xk+1 − x∗||∗ ≤ r||xk − x∗||∗.
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Proof. Choose ε, δ > 0 such that ||A − F ′(x)|| ≤ 2δ, for ||x− x∗|| ≤ ε and δ <
η/(2M), for η < r < 1 and ||A−1|| ≤M. Let us define functions

s (x, α) = −A−1 (E − αH (x))F (x)

and

η (x, α) = ||F (x) + F ′ (x) s (x, α) ||2.
Since

η (x, αop) ≤ η (x, 0)

and

η (x, 0) = ||F (x)− F ′ (x)A−1F (x) ||
≤ ||E − F ′ (x)A−1|| ||F (x) ||
≤ ||A− F ′ (x) || ||A−1|| ||F (x) ||
≤ 2δM ||F (x) ||
≤ η||F (x) ||,

considering the MRV method as an Inexact Newton method with

||rk|| = η
(
xk, αopk

)
,

we have

η
(
xk, αopk

)
≤ η

(
xk, 0

)
≤ η||F (x) ||

and the statement follows from Theorem 3.1.

Let us mention that for some special systems the correction sk for αopk becomes
the solution of M(xk + d) = 0, in other words sk = skN . If for every k we can
determine αk = αopk such that M(xk + sk) = 0, the MRV iterative sequence will
be the Newton sequence. This is true for the systems of the form F (x) =

[
F1(x)
Cx

]
,

where C ∈ R(n−1)×n and F1 : Rn → R is a nonlinear mapping.

4. Numerical results

In this section we present the results of numerical experiments. Let us describe
first the algorithms we used.

1. MRV denotes the method proposed in this paper with the optimal parameter
αk, (3.5) and A = F ′

(
x0
)
.

2. MRVF stands for the same method with a constant value of the parameter,
αk = α, A = F ′

(
x0
)
.

3. The Newton method (N).
4. The Fixed Newton method (FN), as described in Algorithm FN.
5. The Bogle-Perkins method (BP).
6. The Schubert method (S).
7. The row scaling method (RS), with restart after every 5 iterations.
The Bogle-Perkins method was introduced in [1], the Shubert method was intro-

duced in [20] and the row-scaling method was introduced in [11].
In the examples which follow we say that the method converges if the conditions∣∣∣∣xk − xk+1

∣∣∣∣ ≤ 10−4
∣∣∣∣xk∣∣∣∣+ 10−4 and

∥∥F (xk)
∥∥ ≤ 10−4
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are satisfied. If
∥∥F (xk)∥∥ > Mmax holds, we consider the method divergent and if

after Imax iterates neither convergence nor divergence conditions are satisfied, we
consider the method slowly convergent. Both cases are marked with ∗. We used
Mmax = 1010 and Imax = 100.

Let us now describe the nonlinear systems used in our numerical study.

Problem 4.1. See [11].

F1(x) = −2x2
1 + 3x1 − 2x2 + 0.5xα1 + 1,

Fi (x) = −2x2
i + 3xi − xi−1 − 2xi+1 + 0.5xαi + 1, i = 2, . . . , n− 1,

Fn(x) = −2x2
n + 3xn − xn−1 + 0.5xαn + 1

for αi, i = 1, . . . , n, randomly chosen in the interval

αi ∈ {max{1, i− p},min{n, i+ p}}
and parameter p which defines the bandwidth. We used two start approximations:
x0 = (−1, . . . ,−1)T and x0 = (−3, . . . , −3)T .

The Jacobian is treated as a band matrix with upper and lower bandwidth p,
so the cost of LU factorization is O(np2) and the additional O(2n(p+ 1)) flops for
the solution of linear system (see Golub, van Loan [10]). The matrix H(x) is a
diagonal matrix in this case.

Problem 4.2. Structured Jacobian problem (see [14]).

F1 (x) = −2x2
1 + 3x1 − 2x2 + 3xn−4 − xn−3 − xn−2 + 0.5xn−1 − xn + 1,

Fi (x) = −2x2
i + 3xi − xi−1 − 2xi+1 + 3xn−4 − xn−3 − xn−2

+0.5xn−1 − xn + 1, i = 2, . . . n− 1,
Fn (x) = −2x2

n + 3xn − xn−1 + 3xn−4 − xn−3 − xn−2 + 0.5xn−1 − xn + 1,

with x0
i = −1, i = 1, . . . , n.

Problem 4.3. Generalization of Brown (see [3]).

F1(x) = −1 +
n∏
i=1

xi,

Fi(x) = −(n+ 1) + xpi +
n∑
k=1

xk, i = 2, . . . , n,

with the initial approximation x0 = (0.9, . . . , 0.9)T .
For p = 1 we obtain the function from [2]. In this case nonlinearity appears

only in the first equation. For p > 1 the system becomes more nonlinear. This
system is ill-conditioned. The condition number of the Jacobian at the initial
point increases with increasing order due to the values of the Jacobian elements in
the first row.

Problem 4.4. Band Broyden, [11].

Fi (x) = (3 + 5x2
i )xi + 1−

∑
j∈Ii

(xj + x2
j), i = 1, . . . , n,

where Ii = {max {1, i− p} , . . . ,min {n, i+ p}} − {i} . The initial approximation
was (−2, . . . ,−2)T . For this function the Jacobian is a band matrix with lower and
upper bandwidth p, so the cost is the same as for Problem 1.



NEWTON-LIKE METHOD WITH MODIFICATION 245

Problem 4.5. Chandrasekhar H-equation, [17].
The integral equation

F (H)(x) = H(x) −
(

1− C

2

∫ 1

0

xH(y)dy
x+ y

)−1

= 0

is discretized using the midpoint quadrature formula∫ 1

0

f(t)dt =
1
n

n∑
j=1

f(tj),

for tj = (j − 1
2 )h, h = 1

n , 1 ≤ j ≤ n, and the following system is obtained:

Fi (x) = xi −

1− c

2n

n∑
j=1

tixj
ti + tj

−1

, i = 1, . . . , n.

The integral equation and the discrete analog have two solutions for c ∈ (0, 1),
but only one of them has physical meaning. The problem becomes more difficult
as c approaches 1. We report results for c = 0.9, 0.99, 0.9999. For c = 0.9999 the
Jacobian at the solution is nearly singular. In all the cases the Jacobian is dense,
so the solution of the Newton system with LU factorization requires O(n3) flops.
All tests were performed using (1, . . . , 1)T as the initial approximation.

Problem 4.6. Singular Broyden, [11].

F1(x) = ((3− hx1)x1 − 2x2 + 1)2,

Fi(x) = ((3 − hxi)xi − xi−1 − 2xi+1 + 1)2,

Fn(x) = ((3− hxn)xn − xn−1 + 1)2.

We used x0 = (−1, . . . ,−1)T as a starting approximation and h = 2.

Problem 4.7. Trigonometric System, [14].
For k = div (i− 1, 5) ,

Fi (x) = 5− (k + 1) (1− cosxi)− sinxi −
5k+5∑
j=5k+1

cosxj , i = 1, . . . , n,

with x0
i = 1/n.

Problem 4.8. Trigonometric-Exponential System, [14].

F1 (x) = 3x2
1 + 2x2 − 5 + sin (x1 − x2) sin (x1 + x2) ,

Fi (x) = 3x2
i + 2xi+1 − 5 + sin (xi − xi+1) sin (xi + xi+1) + 4xi

−xi−1 exp (xi−1 − xi)− 3, i = 2, . . . , n− 1,
Fn (x) = 4xn − xn−1 exp (xn−1 − xn)− 3,

with x0
i = 0.

Problem 4.9. Generalized function of Rosenbrock, [14].

F1 (x) = −4c
(
x2 − x2

1

)
x1 − 2 (1− x1) ,

Fi (x) = 2c
(
xi − x2

i−1

)
− 4c

(
xi+1 − x2

i

)
xi − 2 (1− xi) , i = 2, . . . , n− 1,

Fn (x) = 2c
(
xn − x2

n−1

)
,

with c = 2 and x0
i = 1.2.
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Table 1.

Pr. x0 Paramet. N FN MSV MSVF S BP RS

1 x0
i = −1 p = 5 4 12 6 6 (α = −0.25) 6 5 6

1 x0
i = −3 p = 5 6 47 10 12 (α = −0.2) 12 8 7

2 x0
i = −1 5 16 14 8 (α = −0.3) 8 7 7

4 x0
i = −2 p = 12 6 ∗ 14 14 (α = −0.05) 25 ∗ 7

4 x0
i = −2 p = 30 6 ∗ 18 38 (α = −0.01) 21 8 7

5 x0
i = 1 c = 0.9 4 7 4 4 (α = −1.8) 4 6 6

5 x0
i = 1 c = 0.99 5 21 5 4 (α = −4.5) 6 27 8

5 x0
i = 1 c = 0.9999 8 ∗ 8 30 (α = −5) 10 ∗ 17

6 x0
i = −1 13 ∗ 18 ∗ (α = 0.05) ∗ ∗ 17

9 x0
i = 1.2 4 18 9 9 (α = −0.08) 7 6 ∗

Table 2.

N FN MRV MRVF S BP RS
R 1 0.6 1 0.9 0.9 0.7 0.9
E 0.98 0.2929 0.6552 0.565 0.595 0.6475 0.706
E ×R 0.98 0.17574 0.6552 0.5085 0.5355 0.45325 0.6354

The numbers of iterations for the following ten problems are presented in Table
1. The third column contains the parameters of problems. The parameter α used in
the MRVF method is presented in column MSVF. In these tests we used n = 100.

Three indices are used to collect the data for comparison (see [1]). If rij is the
number of iterations required to solve the problem i by the method j, rib = minj rij ,
i.e., the best result for problem i by any of tested methods, tj the number of
successes by method j and nj the number of problems attempted by method j,
then the robustness index is

Rj =
tj
nj
,

the efficiency index is

Ej =
m∑

i=1,rij 6=0

(
rib
rij

)
/tj ,

and the combined robustness and efficiency index:

Ej ×Rj =
m∑

i=1,rij 6=0

(
rib
rij

)
/nj.

R is the percentage of cases in which each method found a solution. For E and
E × R the best possible result is 1, and larger values of indices indicate a better
result. The results from Table 1 are summarized in Table 2. The new methods
appear to be fairly competitive with the considered Newton-like methods.

We have also done some tests on systems with larger dimension, n = 1000. The
results are reported in Table 3.

The problem 3 has a nearly singular Jacobian. The results are reported in
Table 4.
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Table 3.

Pr. x0 Param. N FN MRV MRVF S BP RS

1 x0
i = −1 p = 5 4 13 6 6 (α = −0.25) 7 5 6

1 x0
i = −3 p = 5 6 ∗ 10 11 (α = −0.1) 13 8 7

2 x0
i = −1 5 17 ∗ 8 (α = −0.3) 8 7 7

7 x0
i = 1

n
5 171 8 15 (α = 1) ∗ ∗ ∗

8 x0
i = 0 5 ∗ 12 15 (α = −0.08) 11 10 ∗

Table 4. Problem 3, x0
i = 0.9

n Parameters N FN MRV MRVF
5 p = 1 13 ∗ 13 11 (α = −0.5)
7 p = 1 14 ∗ 14 ∗ (α = −0.5)
9 p = 1 14 ∗ 14 ∗ (α = −0.4)
5 p = 2 13 14 13 9 (α = −0.3)
7 p = 2 13 ∗ 14 14 (α = −0.4)
9 p = 2 14 ∗ 14 ∗ (α = −0.4)
5 p = 3 13 11 13 8 (α = −0.2)
7 p = 3 13 ∗ 14 17 (α = −0.4)
9 p = 3 14 ∗ 15 ∗ (α = −0.4)

Figure 1.

The optimal choice for the parameter αk is defined in Section 3. Obviously, the
parameter has a strong influence on the behavior of the method. Figures 1a–1c
show the values of the optimal parameter for Problem 3 (n = 7, p = 2), Problem 5
(n = 100, c = 0.999) and Problem 8 (n = 100, x0

i = 1/i), respectively.
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Figure 2.

As we mentioned before, the most simple choice is αk = const. Figures 2a–2d
show the number of iterations for different values of αk = const, for Problem 5
(n = 100, c = 0.9), Problem 5 (n = 100, c = 0.999), Problem 1 (n = 100, p = 5)
and Problem 7 (n = 100) respectively. We can see that the FN method (α = 0) is
not the best one in any of the problems considered. Obviously, the best choice for a
constant parameter depends on the problem we are solving. One of the possibilities
for the choice of a constant parameter is to calculate the optimal parameter only
in the first iteration and keep that value to the end of the process,

α = αopt1 .

This choice happens to be satisfactory with the problems considered here, although
this conclusion is influenced by the collection of test problems.

5. Conclusions

We presented a new method for solving nonsingular systems of equations. The
method belongs to the class of Newton-like methods.

The central idea was to keep the initial approximation of the Jacobian fixed (and
its LU factorization) and to modify the right-hand-side vector in each iteration in
order to make it computationally cheaper than the Newton method and faster
than the fixed Newton method. The modification is obtained using a relaxation
parameter and assuming that the Jacobian is available in each iteration. Some
suitable choices for the relaxation parameter are proposed. Numerical experiments
indicate that the parameter α plays an important role in the proposed algorithm
and that the question needs further investigation, both from the theoretical and
computational points of view.
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As we have already mentioned, the relaxation parameter has a crucial influence
on the behavior of the MRV method. One possible generalization would be to
consider relaxation with a diagonal matrix (diag (α1, . . . , αn)) instead of only one
parameter. Of course, in this way we can obtain the Newton method as a special
case, using optimal values of αi, but calculation of n parameters is expensive in
the general case. The idea seems promising with αi = 1 except in a few rows
for solving systems that are ill-conditioned, mainly because of instability in a few
components of the function. This is the case with the systems which arise from the
discretization of singularly perturbed boundary value problems. Since nonequidis-
tant discretization grids are a necessity in these problems, the change of the step
size usually implies more problems at some specific components of the function (see
[13], [9]). Thus, the idea would be to use suitable relaxation parameters and modify
only those components of the right-hand-side vector.
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Novi Sad, Yugoslavia

E-mail address: natasa@unsim.im.ns.ac.yu

Institute of Mathematics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000
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